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ABSTRACT

Direct numerical simulations are performed for a

turbulent channel flow at Reτ = 180, where τ is the shear

stress at the wall. The bottom wall is a realistically rough

surface and the top wall is smooth. The volume-of-fluid

methodology (VOF) is used to resolve the air-water

interface, whereby the interface is considered to be flat.

The height of the interface h is varied. An analytic

study using multiphase unsteady Stokes approximation is

performed on idealized geometry to study the damping

effect of surface roughness. The main objective of the

present work is to understand the effect of geometry of

realistically rough surfaces on the flow in fully wetted

regimes, analyze the flow statistics in the turbulent

flow to study the interaction between the interface and

roughness, and model the effect of unsteadiness in the

viscous sublayer using a multiphase unsteady Stokes

solution. Based on the results, there exists a competing

effect between the interface and the rough wall. The

interface suppresses vertical fluctuations whereas the

exposed asperities enhance them. The unsteady Stokes

flow shows that the high frequencies inhibit the transfer

of forcing to the surface.

INTRODUCTION

Superhydrophobic surfaces (SHS) have the capability

to entrap gas pockets within their microtexture when

submerged in water. Assuming the interface can

withstand the high shear rate and unsteadiness present

in the viscous sublayer of a turbulent boundary layer,

the low viscosity of air in contact with fluid has the

potential to reduce viscous friction between the two. This

is known as the Cassie-Baxter state (Cassie and Baxter,

1944). Numerically, the roughness is commonly idealized

as regular arrays of riblets, grooves, posts, or synthetic

rough textures. In general the SHSs are considered

to be simple grooved geometries, and numerically the

interface is typically assumed to be flat and represented

using zero-shear boundary conditions. Realistically,

rough surfaces do not generally have a regular pattern.

Others have included the effect of viscosity on the

interface (Vinogradova, 1995; Belyaev and Vinogradova,

2010; Nizkaya et al., 2014). Several papers have

investigated the effect of the curvature due to the

meniscus and modified the analytical solutions to take

curvature into account (Cottin-Bizonne et al., 2003;

Sbragaglia and Prosperetti, 2007; Wang et al., 2014;

Li et al., 2017). SHS is been shown to achieve drag

reduction (Ou et al., 2004; Ou and Rothstein, 2005;

Joseph et al., 2006; Choi and Kim, 2006; Maynes et al.,

2007; Woolford et al., 2009; Emami et al., 2011).

Analytical models relate the slip lengths to various

surface parameters such as groove width, pitch and height

(Lauga and Stone, 2003; Ybert et al., 2007) or the slip

velocities to geometry (Seo and Mani, 2016).

To the best of our knowledge, none of the past

numerical work has simulated a multiphase flow over

realistically rough surfaces as done in this paper. The

main objective of this study is to understand the effect

of geometry of realistically rough surfaces on the flow in

fully wetted regimes, study the interaction between the

interface and the geometry roughness and its effect on

turbulent flows, model the effect of unsteadiness in the

viscous sublayer of a turbulent channel using a multiphase

unsteady Stokes solution. First, the effect of geometry is

studied by simulating the wetted (Wenzel state (Wenzel,

1936)). Second, the multiphase aspect of the problem is

investigated by modeling the two phases directly with the

Volume-of-Fluid (VOF) methodology. Last, an analytical

study is performed to inspect the damping effect of the

surface roughness.

This paper is organized as follows: the next

section outlines the numerical details of the DNS

followed by the analytical model description of the

unsteady multiphase Stokes solution. Then a section on

computational setup presents the surface statistics of the

realistic rough wall and provides a problem description of

the simulation setup is given for the range of parameters

considered. Results are presented in the following section
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starting with a turbulent channel and concluding with a

parametric study of the unsteady multiphase Stokes flow.

SIMULATION DETAILS

Numerical method

The governing Navier-Stokes equations of an

incompressible flow are solved using the finite volume

algorithm developed by Mahesh et al. (2004). The

momentum and continuity equations are given by the

following:

∂ui

∂ t
+
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∂x j

(uiu j) =− 1

ρ

∂ p

∂xi

+
1

ρ

∂

∂x j

[
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∂ui

∂xi

= 0, (2)

where ui and xi are the i-th component of the velocity

and position vectors respectively, p denotes pressure, ρ
is density and µ the viscosity of the fluid. The fluids are

assumed to be immiscible. Additionally in eq. 1, δi1 is

the Kroenecker delta, Ki is the body force which is only

active in the liquid phase and Fst,i is the surface tension

force. Direct numerical simulations (DNS) are performed

using a mass conserving VOF methodology on structured

grids to study the multiphase effect over a realistically

rough surface. The algorithm is robust and emphasizes

discrete kinetic energy conservation in the inviscid limit

which enables it to simulate high-Reynolds number flows

without adding numerical dissipation. The solution is

advanced in time using a second order Adams-Bashforth

method. A predictor-corrector methodology is used.

The velocities are first predicted from the momentum

equation and the pressure is determined from the Poisson

equation. The pressure gradients are then computed and

the velocity is updated to satisfy the continuity equation in

the corrector step. The Poisson equation is solved using

a multigrid pre-conditioned conjugate gradient method

(CGM) using the Trilinos libraries (Sandia National

Labs). A Crank-Nicholson discretization is used for the

implicit time advancement with a linearization of the

convection terms.

The volume fraction is represented by a color

function (c) to keep track of two different fluid with a

range of 0 < c < 1 where one is a filled cell and zero in

an empty cell, with an intermediate value between zero

and one to define an interface cell. The volume of each

fluid cell is tracked by the reconstruction and advection

steps. The reconstruction step is based on a set of analytic

relations proposed by Scardovelli and Zaleski (2000);

given the volume fraction in each cell, the reconstruction

of the interface shape uses a local normal vector

and a piecewise linear interface calculation (PLIC) to

approximate the interface shape. This step geometrically

conserves the volume in each cell and therefore conserves

mass and prevents over- and under-shoots in the value of

the color function. This ensures boundedness. The color

function is then advected by the fluid velocity field, while

geometrically conserving the area using a directionally

split flux scheme to exchange the reference phase volume

across the boundary of neighboring cells. The governing

equations for the color function are given by

∂c

∂ t
+u j

∂c

∂x j

= 0, (3)

and the density and viscosity are evaluated as

ρ = ρ2 +(ρ1 −ρ2)c, (4)

µ = µ2 +(µ1 −µ2)c. (5)

The surface tension force is modeled as a continuum

surface force as proposed by Brackbill et al. (1992):

Fst,i = σκ
∂c

∂xi

, (6)

where σ is the surface tension constant, and κ is the

curvature calculated using the height function which has

been shown to significantly reduce numerical errors that

are associated with surface tension. These errors are

known as spurious currents (Cummins et al., 2005). The

gradient of the color function, ∂c
∂xi

, is representative of the

surface normals. The gradient term in the surface tension

force is discretized in the same manner as the pressure

gradient term in the projection step:

∆t∑
f

∂ p

∂N
A f = ∑

f

v̂NA f +∆tσκ ∑
f

∂c

∂N
A f , (7)

where N denotes the outward normal of the face with

respect to the control volume on which the summation is

performed. This method of discretization ensures proper

pressure jump recovery across the interface. The surface

is represented by obstacle cells where they are masked out

from the fluid domain. The cell-centered velocities satisfy

a no-slip boundary condition, with the exception of corner

cells that take a weighted average of the neighboring

cell-centered values. All face normal velocities are

set to zero. The algorithm has been validated for a

variety of flows and most recently in the context of

superhydrophobicity (Li et al., 2016, 2017). In this study,

we enforce a zero face-normal velocity at the interface

v̂N |inter f ace = 0. The condition models a high surface

tension regime with a stable flat interface, which was done

to isolate the effect of varying interface heights h, given

a stable finite viscosity lubricant. The assumption made

is valid for flow regimes where the interfacial surface

tension dominates the interface dynamics. Surface tension

effects will likely become important at larger Reynolds
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number flows. The statistics of the turbulent channel flow

were averaged over a period of 300 flow through times

after the discharge had reached a steady state value.

Given the fact that the roughness in our

simulations is within the viscous sublayer, and the fact

that the flow is fairly quiescent near the rough wall,

we developed an analytical model based on a Stokes

flow assumption to model the near wall flow field. In

order to reduce the complexity of the problem, idealized

longitudinal grooves are used. The analytical model

is used to conduct a parametric study by varying the

geometry of the groove, the interface location and the

frequency of the velocity fluctuations.

Analytical model

The turbulent flow over a rough surface with an

air-water interface is modeled analytically as an unsteady

multiphase Stokes flow over an idealized grooved surface

where the governing equation is given by:

∂u

∂ t
=

ν

L2ω
(

∂ 2u

∂ z2
+

∂ 2u

∂y2
). (8)

The characteristic length scale is half periodicity of the

groove L; the velocity scale is Lτ/ν ; the time scale is

1/ω . The solution is decomposed by û = ℜ(ûexp(it)) =
ℜ(Y (y)Z(z)exp(it)). The domain decomposition and

domain definition can be seen in figure 1.

Figure 1: Model problem definition.
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By eigenfunction expansions and matching the

boundary condition between the regions I and II:

ûII =

{

ûI, 0 6 z < a,

0, a < z 6 L;
(12)

∂ ûI(0,z, t)

∂y
=

∂ ûII(0,z, t)

∂y
, (13)

and the interface between the two phases:

ûI = ûIII (14)

∂ ûI(0,z, t)

∂y
= µr

∂ ûIII(0,z, t)

∂y
, (15)

where µr is the viscosity ratio µr = µIII/µI, one can get

the analytical solution for each region. Then we define

the transfer function to be the ratio between the energy

spectrum at the interface (output) to the energy spectrum

of the forcing (input): H =

√

Φ(ω)output

Φ(ω)input
= ûIû

∗
I , where the

forcing is applied at the top boundary of region II.

COMPUTATIONAL SETUP

Surface generation

The surface used in this study is manufactured

at UT Dallas (courtesy Prof. Wonjae Choi), with a 3D

surface profile measurement using a 20X objective lens

obtained from MIT (courtesy Prof. Gareth McKinley).

The sample is Aluminum 6061 sandblasted using 150

grit, etched for 25 seconds, boehmetized for 30 minutes

and hydrophobized using Ultra Ever Dry top coat in

isopropanol. The scanned surface data colored with

height is illustrated in figure 2.
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Figure 2: Illustration of the real rough surface. The

contour legend describes the height of the surface profile.

We read the scanned surface data and use the

number of pixels in the scan width and height as

the number of nodes in the streamwise and spanwise

directions respectively. The values of the roughness

height and spatial location are then interpolated to cell

centers of the discretized domain. Obstacle cells can

only have one neighboring fluid cell; if this condition

is not satisfied then the obstacle cell is removed and is

assumed to be within the fluid domain. No-slip boundary

conditions are applied at the edge cells and a weighted

average of the neighboring cells is applied at the corners.

This does not affect the pressure equation since we use

collocated grids where the face-normal velocities are set

to zero at the boundaries independent of the cell center

value. This ensures a proper pressure jump recovery at

the obstacle walls. The relevant statistics of the original

surface are reported in table 1. Note that the surface has

negative skewness indicating that the surface is mainly

dominated by valleys instead of asperities.

Table 1: Statistics of the scanned surface used in the

present work.

Parameter Description Value

Sq RMS Roughness Height 2.03 µm

Sv Maximum Valley Depth -10.0 µm

Sp Maximum Peak Height 8.31 µm

Sz,max Maximum Peak to Valley Height 18.38 µm

Sz,5×5 Mean Peak to Valley Height 12.75 µm

Ssk Skewness -0.32

Problem description

Simulations are performed for a turbulent

channel flow, where the rough surface is used on the

bottom wall while the top wall remains flat. The domain

extent is given by table 2.

Table 2: Case under consideration and the domain extents

Case Lx ×Ly ×Lz

Turbulent channel 2πδ ×2.13δ ×πδ

Non-uniform grids are used in all the simulations

with grid clustering near the surface region. Table 3

provides the grid resolution of the turbulent channel

considered in this paper.

Table 3: Case under consideration, grid resolution and

grid spacing in the wall-normal direction.

Case Nx ×Ny ×Nz ∆y+min ∆y+max

Turbulent channel 341×128×207 1.8 6.12

The case names, domain definitions and

interface heights are given in table 4.

Table 4: Cases considered, channel type, relevant Reτ and

interface location for the turbulent channel flow problems.

Case Channel flow condition Reτ Interface height h

1 Fully wetted flat 180 -

2 Fully wetted rough 180 Sv

3 Multiphase rough 180 0

4 Multiphase rough 180 Sp

No-slip boundary conditions are applied on

both the top smooth wall and bottom rough wall with

periodicity in the streamwise and spanwise directions. A

constant body force in the liquid phase is applied such

that the reference Reτ = 180. This was validated (not

shown here) with the results of the flat smooth channel

(Kim et al., 1987). The original surface is scaled such that

S+q ≈ 1.6. The viscosity ratio of µr = µw/µa = 1/50 is

used in all the simulations reported in this paper, where

µr is representative of an air-water interface which is

assumed to be flat. Three cases were considered: (i)

fully wetted rough channel for Case-2, (ii) two-phase

rough channel with h/Sq = 0 for Case-3, and (iii) h = Sp

for Case-4. A flat smooth turbulent channel given by

Case-1 serves as a baseline for comparison. Although

in a realistic scenario the maximum interface height is
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unphysical, it serves the purpose of providing the largest

amount of slip that is theoretically achievable. It also

helps describe the trend between limiting cases.

For the analytical solution, the height of

the interface within the groove is shown figure 1.

The parameters chosen are listed in table 5. An

air-water interface is simulated and is extended in the

parametric study to other viscosity ratios of liquid infused

surfaces, and a range of geometry at different fluctuating

frequencies representative of different Reτ . H/L is chosen

to be representative of the location y+ = 5 of the viscous

sublayer at the prescribed Reτ . The values of Reτ used

in this work are representative of past studies on turbulent

channel flows.

Table 5: Location of the forcing H and the interface h/b,

the relevant non-dimensional number L2ω
ν , the viscosity

ratio µr for all cases solved from analytical solution, and

the applicable Reynolds numbers Reτ . For all cases,

L/δ = 18/3500 is considered.

H/L h/b L2ω
ν µr Reτ

5.40 0.1−1.0 0.04−4.23 0.02,0.37,30.00 180

2.43 0.1−1.0 0.04−4.23 0.02,0.37,30.00 400

1.65 0.1−1.0 0.04−4.23 0.02,0.37,30.00 590

RESULTS AND DISCUSSION

Turbulent channel flow

We simulate the turbulent channel flow, the cases

are run until a statistically stationary solution is obtained

to evaluate the relevant mean profiles and turbulence

intensities.

0 0.5 1 1.5 2
0

5

10

15

20

y/δ

〈U〉
Case-1
Case-2
Case-3

Case-4

Figure 3: Mean profile of the bulk velocity normalized

with the average friction velocity uτ .

Mean velocity profiles and Reynolds stresses are

computed for Cases (1-4). The mean velocity profile

normalized by the friction velocity uτ of the baseline

Case-1 is shown in figure 3. The fully wetted simulation

given by Case-2 shows a slightly lower centerline mean

velocity 〈U〉 with a slight shift away from the rough wall

when compared to Case-1. This is not very evident near

the wall but is more evident in the channel centerline.

The mean roughness height is hydrodynamically smooth,

S+q ≈ 1.6, which explains the small difference observed.

It is known however that a hydrodynamically smooth

channel does not show any difference. Using the surface

property S+z5×5 ≈ 11, which is reported by Busse et al.

(2017) to be a more suitable equivalent to the sand-grain

roughness k, it is possible to explain why we see a

difference. The value is larger than 5 hence can be

considered in the early transition from hydrodynamically

smooth to rough regime. The presence of an air-water

interface displays a clear evidence of slip due to the

interface. Cases 3 and 4 clearly show a slip effect in 〈U〉.

0.2 0.4 0.6 0.8 1
0

5

10

15

20

y/δ

〈U〉
Case-1
Case-2
Case-3

Case-4

Figure 4: Mean profile of the bulk velocity normalized

with the average friction velocity uτ on a semilog scale.

Figure 4 shows the mean profile plotted on a

semilog scale to look at the near wall behavior. Cases-3

exhibits a reverse flow in the near wall region, and at the

centerline location there is a clear increase in maximum

velocity for both cases 3 and 4. Case-4 shows the

largest slip due to the maximum slip area exposed to

the liquid. The linear region of the mean profile seems

to be suppressed due to the presence of the interface.

As observed in Case-3 there exists a linear increase in

the velocity profile from the wall towards the interface

location where a slight gradient is present. The slope

in the liquid phase is close to that of Case-1 however
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the region of linearity is smaller. In case-4 the linear

region is almost non-existent in the liquid phase and

a sharp gradient is present in the air phase. The 〈U〉
profile is partially skewed towards the region of the wall

roughness due to the slip effect. This indicates that the

high momentum fluid is moving closer to the bottom wall.

The skewness in the mean velocity profile for Case-4

is more pronounced when compared to cases 1-3, the

skewness also affects the maximum velocity which is also

shifted from the center towards the rough wall region.

y/δ

〈u′u′〉

Case-1

Case-2

Case-3

Case-4

Figure 5: Components of Reynolds stress tensor

normalized with the average friction velocity u2
τ of Case

1.

Figure 5 shows the turbulence intensities in the

streamwise direction 〈u′u′〉 for cases 1-4. Comparing

cases 1 and 2, the plot does not show much difference

at the peak. The bottom rough wall is almost equivalent

to the smooth wall, the top flat wall however does show

a difference in a slightly smaller peak than that of the

baseline Case-1 by almost 1%. As we move away from

the wall, the streamwise turbulence intensity increases

when compared to the baseline. For Case-3 the interface

is introduced at the root-mean-square (rms) height of

the roughness. We observe a clear drop in the peak

stress near the rough wall region, and an increase in

peak stress near the top smooth wall. There is a slight

skew of the minimum stress values towards the rough

wall region away from the centerline of the channel. For

Case-4 where the interface is at the maximum peak of the

roughness, the streamwise turbulence intensity is much

higher when compared to the baseline peak value. The top

smooth flat wall region has a lower peak when compared

to the rough wall region ( due to momentum balance given

a constant body force). The skewness of the centerline

value is also pronounced in this case, with the values

shifting towards the highest slip region near the rough

wall.

0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

y/δ

〈v′v′〉

Case-1
Case-2

Case-3

Case-4

Figure 6: Components of Reynolds stress tensor

normalized with the average friction velocity u2
τ of Case

1.

Figure 6 shows the wall-normal turbulence

intensity 〈v′v′〉. Comparing the baseline Case-1 to Case-2,

a higher peak near the bottom rough wall is observed

while a lower peak near the top flat wall is obtained. The

centerline value is equivalent in both cases. In Case-3 a

fluid interface is introduced, the peak value in turbulence

intensity near the rough wall region decreases while

the reverse happens near the top flat wall region. The

minimum value of the wall-normal turbulence intensity

skews towards the bottom rough wall region away from

the centerline of the channel. For Case-4 the interface is

located at the height of the maximum asperity of the rough

surface. The wall-normal turbulence intensity peak in the

rough wall region is reduced significantly. There is an

increase in the wall-normal stress within the air region,

it then goes to zero at the interface, peaks then starts

decreasing again as we move away from the wall since

we enforce a zero wall-normal velocity at the interface.

The centerline is significantly skewed towards the rough

wall region. The turbulence intensities go to a larger peak

at the top flat wall region to balance out the constant body

force. Case-4 does not show the same smooth transition

behavior in turbulence intensity in near wall regions to the

channel centerline when compared to all the other cases

1-3.
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y/δ

〈w′w′〉

Case-1
Case-2

Case-3

Case-4

Figure 7: Components of Reynolds stress tensor

normalized with the average friction velocity u2
τ of Case

1.

The spanwise turbulence intensity 〈w′w′〉 exhibit

a similar behavior as the wall-normal turbulence intensity

with the exception of Case-4 as seen in figure 7. Case-2

has a higher peak stress in the near rough wall region, the

constant pressure gradient balances out at the flat top wall

where we observe a lower peak in stress. This is reversed

in Case-3 where the peak is suppressed near the rough

wall, and enhanced in the top flat wall region. However

in Case-4, the peak at the rough wall region is not further

suppressed. The peak in the top wall region behaves as

expected and is significantly higher than cases 1-3.

The Reynolds stresses 〈u′v′〉 is shown in figure

8. Case-2 has a lower peak in near the rough wall when

compared to Case-1. This is due to the increase in the

vertical velocity fluctuations which enhances the mixing

mechanism near the rough surface. Near the top wall,

the behavior of Case-2 and Case-1 follow the same trend.

The peak value of the Reynolds stresses remains lower in

Case-2 when compared to the Case-1. Once an interface

is introduced in Case-3, we get the opposite effect. This is

evident in both cases (3 and 4) where an interface is placed

at h= 0 or h= Sp. The Reynolds stress value near the wall

for cases 3 and 4 has a higher peak when compared to both

cases 1 and 2. When the interface is at h = Sp, the peak of

Reynolds stress is highest when compared to all the other

cases. An oscillation in the stress values is observed at

the location of the interface due to the imposed boundary

condition which enforces a zero wall-normal velocity

to satisfy the infinite surface tension condition. It is

therefore evident that there are competing effects between

the interface suppressing vertical velocity fluctuations and

the asperities doing the opposite by enhancing them.

y/δ

〈u′v′〉

Case-1
Case-2

Case-3

Case-4

Figure 8: Components of Reynolds stress tensor

normalized with the average friction velocity u2
τ of Case

1.

Unsteady multiphase Stokes solution

The analytical solution of the transfer function

is validated against VOF simulations over a range of

frequencies. The domain of the VOF simulations is

equivalent to that of the analytic solution, the boundary

conditions of region II and the VOF simulation are

periodic. There is an exception to the applied boundary

condition at the interface, where the analytic solution

explicitly applies equal velocities and shear stress as

shown in eq. 14 and 15 but in the VOF simulation it is

handled implicitly where the infinite surface tension keeps

the interface flat. Good agreement is seen in figure 9. The

frequency range is selected such that it is representative of

a turbulent channel flow at a given Reτ listed on the last

column in table 5.

10
-2

10
-1

10
0

10
1

10
-3

10
-2

10
-1

10
0

H (ω)

L2ω/ν

Figure 9: Comparison of the transfer function results

from VOF (symbols) with analytical solutions (solid line).

L = 1, ν = 1, H = 2.5, b = h = 1.75, and µr = 0.02.
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Figure 10: Transfer function H (ω) with increasing

forcing frequency ω normalized by either viscous units

u2
τ/ν (top axis) or modeled equation units ν/L2 (bottom

axis) with increasing representative (a) Reτ = 180, (b)

Reτ = 400, (c) Reτ = 590. Here, µr = 0.02, 0.37, 30.00

is denoted by black solid lines, blue dashed-dotted lines,

and red dashed lines respectively. H (ω) solutions with

µr > 1 are shaded in gray. The arrows indicate decreasing

h/b in the area of µr > 1 or µr < 1. As h/b decreases,

penetration of outside fluid grows, H (ω) merges towards

the border between the gray and white areas (µr = 1).

✁
✁
✁

✁☛

τrms(ω)

τrms(ω)

L2ω/ν

L2ω/ν

ων/u2
τ

ων/u2
τ

(a)

(b)

Figure 11: Shear stress τrms(ω) at the interface

between regions I and III with increasing forcing

frequency ω normalized by either viscous units u2
τ/ν

(top axis) or modeled equation units ν/L2 (bottom axis)

with representative Reynolds number Reτ = 400. (a)

Penetration rate is h/b = 0; viscosity ratios are µr =
30 (long-dashed line), µr = 0.37 (short dashed line),

and µr = 0.02 (solid line). (b) Viscosity ratio is µr =
30; penetration rates are h/b = 0,0.15,0.5,0.9. Arrow

indicates the increasing of penetration rate.

The location of the forcing H is equivalent to

y+ = 5 for the Reτ given. The viscosity ratios are chosen

to be 0.02, 0.37, 30.00 to represent air, heptane, and

Dupont Krytox to water respectively (Rosenberg et al.,

2016). Results of the parametric study for the transfer

function are shown in figure 10. Overall, high frequency

suppresses the forcing energy at the interface. However,

one must bear in mind that as Reynolds number increases,

the forcing also comes closer to the surface. The shaded

area represents the condition µr > 1. The trend of H

differs between µr > 1 and µr < 1. When µr > 1,

as h/b decreases, the penetration of the outside fluid

improves the transfer of forcing. The opposite is true

when µr < 1. Moreover, neither of these two conditions

cross the border that represents µr = 1. The air-water

interface still performs the best over the other two types of
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combinations, which is intuitively reasonable, considering

that the interface does not break or drain. Figure 11 shows

the trend of the shear stress with respect to increasing

frequency at a representative Reynolds number of Reτ =
400. Similar to the trend of the transfer function: the

larger the viscosity ratio, the larger the shear stress at

the interface; when the fluid inside the groove is more

viscous, penetration of the outside fluid reduces shear

stress.

SUMMARY

DNS of turbulent channel flow at Reτ = 180 is performed,

where the bottom wall is a realistically rough SHS.

Simulations are also performed for a smooth wall to serve

as a baseline. The fully wetted case and an air-water

interface at various heights are compared to the smooth

channel. The effect of roughness and interface heights

are discussed in detail. An analytical model based on

a unsteady multiphase Stokes flow over an idealized

grooves is presented. A parametric study is conducted for

a range of geometry, frequency oscillations and viscosity

ratios.

Simulations of a fully wetted rough case and

two interface heights h = 0 and h = Sp are performed.

The mean velocity profile 〈U〉 shows a small overall

decrease in the fully wetted case due to roughness,

whereas the presence of an interface shows an increase

(up to 27%) in 〈U〉. The fully wetted case shows an

increase in shear at the bottom rough wall and decreases

at the top wall since a constant body force is prescribed.

The streamwise 〈u′u′〉, wall-normal 〈v′v′〉 and spanwise

〈w′w′〉 turbulence intensities, show an increase in peak

value for the fully wetted roughness and a suppression

in peak values with the presence of an interface. The

Reynolds shear stress 〈u′v′〉 increases in peak intensity

for the fully wetted rough wall case which is indicative

of enhanced mixing. When the interface is present, the

shear stress is further suppressed. The peak in mean

velocity, turbulence intensities and Reynolds shear stress

shift towards the slip wall. This indicates a shift in high

momentum fluid towards the rough wall with increasing

slip. Overall there exists a competing effect between the

interface suppressing vertical fluctuations and the exposed

asperities of the rough surface enhancing them.

Based on the observation that the mean Reynolds

stresses are low near the SHS, the near field of

the surface is modeled as a Stokes flow driven by

a oscillating streamwise velocity in the vicinity of

longitudinal grooves and solved analytically. The solution

shows good agreement with VOF simulation of the same

modeled problem. A parametric study was conducted

by varying the frequency of the forcing function, the

representative Reynolds number, the location of the

interface (penetration rate), and the viscosity ratio across

the interface. It is found that the larger the frequency,

the harder it is for the forcing to be transferred to the

surface; increasing Reτ can increase the transfer function;

the viscosity ratio combined with penetration rate shows

opposite effect on the shear stress when switching from

> 1 to < 1: when µr < 1, penetration of the outside

fluid will prohibit the transfer of energy from outside;

when µr > 1, penetration of the outside fluid will help

the transfer of outside energy.
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