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Analysis and subgrid modeling of
shock-wave/boundary-layer interaction

By N. A. Adams1, S. Stolz1, A. Honein AND K. Mahesh

This paper considers two different issues that arise in LES of supersonic wall
bounded flows. First, an a priori analysis of subgrid-scale models in a highly com-
pressible environment is conducted. DNS data from a Mach 3 compression-corner
are used for this purpose. Models of the scale-similarity type correlate best with
filtered DNS data. Lower correlations are obtained with the dynamic mixed model,
the dynamic Smagorinsky model, and the fixed-coefficient Smagorinsky model. Sec-
ond, the possibility of treating the shock as a subgrid scale is investigated. It is
found that a straightforward application of dynamic eddy-viscosity models is unsuc-
cessful. A direct deconvolution is found to give a proper agreement between a 6th
order spectral-like finite-difference scheme and a 5th order ENO shock-capturing
scheme for the simple case of a 1D convected M = 3 shock.

1. Introduction

Large-eddy simulation (LES) is now a viable tool for studying moderately complex
turbulent flows at Reynolds numbers for which direct numerical simulation (DNS)
is infeasible. Most LES performed have been in incompressible flows. This paper
considers LES of a highly compressible flow – the interaction of a shock wave with a
Mach 3 turbulent boundary layer along a compression corner. Two issues relevant
to the LES of this flow are studied: the accuracy of subgrid models, and the effect
of subgrid models on the shock, which itself can be a subgrid-scale entity.

In this paper we conduct an a priori analysis of DNS data for supersonic com-
pression ramp flow. Several models are considered. Of particular concern are SGS
terms in the energy equation, where compressibility effects are significant. Next,
we briefly address the question of whether and how a shock can be treated as a
subgrid-scale structure.

2. Part 1: Analysis of compression-corner data

In this section, we focus on a priori analysis of data from DNS of a compression
ramp at M = 3, Reθ = 1685 and a deflection angle of 18◦. The numerical method
used in the DNS is described by Adams (1998; results are analyzed and reported
by Adams & Kleiser (1998).
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2.1 Mathematical model
Considering the conservative Navier-Stokes equations in curvilinear coordinates,

we apply a filter operation with filter width ∆ in computational space ξ to the
dependent variables

φ(ξ) = G(ξ − ξ′)⊗ φ(ξ′) =
∫

Ω

G(ξ − ξ′)φ(ξ′)dξ′ .

We obtain the fundamental equations for the resolved conservative variables
{ρ, ũi, Ě}. Favre-filtered quantities are denoted by “•̃”. They are computed
from a mass-weighted filtering operation

φ̃ =
ρφ

ρ
.

The nomenclature of the following equations may be found in Vreman (1995) and
Adams (1998). The filtered continuity equation becomes

1
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γC1 is an O(∆2) error term, which results from the non-identity mapping between
computational space ξi and physical space xi. γC2 is an error due to a variable filter
width (commutation error). This error vanishes since in our case the filter G is not
an explicit function of ξi and filtering is peformed in computational space.

The filtered momentum equations are
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The term βi arises from the non-linearity of the viscous stresses. γI1 and γI2 are
error terms analogous to γC1 and γC2.

The resolved-energy equation is obtained by filtering the enthalpy equation and
by adding the filtered momentum equation, multiplied by ũi:
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. (3)

A “•̌” indicates that the respective quantities are computed according to their
definition but with resolved primitive variables, e.g., Ě = p̄/(γ − 1) + ρ̄ũiũi/2,
which we call the total resolved energy. Note that the filtered Jacobian ∂ξi/∂xj
has been replaced by the unfiltered ∂ξi/∂xj. This contributes another error of
order O(∆2), which is on the order of the leading error terms. Whereas subgrid-
scale stresses formally are analogous to the incompressible case, additional terms
appear in Eqs. (1) - (3) due to the non-vanishing velocity-field divergence and due
to variable viscosity. Some of these additional subgrid-scale terms have an intuitive
physical interpretation as shown in Table 1.
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SGS − term physical interpretation

α1 SGS-dissipation.

α2 Pressure-velocity correlation;
reversible transfer between internal and kinetic energy; by re-
arrangement an expression similar to the turbulent heat flux
in RANS-modeling is found:

α2 = 1
(γ−1)γM2

∂
∂ξk

(
ρTuj−ρ̄T̃ ũj

J
∂ξk
∂xj

)
.

α3 Pressure-dilatation correlation.
α4 SGS-molecular dissipation.

TABLE 1. Physical interpretation of SGS-terms.

2.2 A priori analysis
For an assessment of the correlation between modeled and exact data, an a priori

analysis of a DNS data base for a turbulent supersonic compression ramp (Adams
and Kleiser, 1998) was performed. The filter used here is a Padé filter of 2nd order
(Lele, 1992) where the advantage of having a continuous parameter to change the
effective filter width is used to tune the filter in order to best approximate a Gauß
transfer function in wavenumber space. The cut-off wavenumber is kc = π/4 for the
grid filter and k′c = π/8 for the test filter where required. The filter formula is

αf̄i−1 + f̄i + αf̄i+1 = afi +
b

2
(fi−1 + fi+1) (4)

where b = a = 1/2 +α. The effective cutoff wavenumber is given by ∆ in the exact
Gauß transfer function

Ĝ(ξ) = e−(∆ξ/2)2/8

where ξ is the wavenumber normalized with the grid-spacing h. By approximating
the Gauß transfer function by the transfer function of filter (4), one finds the best
matches for α = −0.2 for an effective filter width ∆ = 4h and α = −0.43 for an
effective filter width ∆ = 8h.

We refer to three different subdomains of the compression corner geometry, the
locations of which are indicated in Fig. 1. The first (A) is located ahead of the
shock, the second (B) around the corner, and the last (C) behind the shock. All
blocks span the domain in y-direction. The streamwise extent of block A is about
2.7 mean-boundary-layer thicknesses (at inflow) δ0, and it has a height of about
1.2δ0. Block B is about 2δ0 long and is about 1.2δ0 high (above the plate); the
extents of block C are about 2.7δ0 and 1.4δ0, respectively.

By a comparison of the L2-norms (see Table 2) of the SGS-terms in the momentum
equation, the subgrid-scale stresses τij and related terms in the energy equation are
found to be dominant.
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FIGURE 1. Location of subdomains for the compression corner geometry.

SGS- L2-norm SGS- L2-norm

term global A B C term global A B C

τxx · 103 5.908 3.611 10.297 14.769 α1 5.190 0.885 4.497 7.401
τxy · 103 1.330 0.424 3.124 3.143 α2 3.255 0.694 3.329 5.535

τxz · 103 1.745 0.338 2.363 4.293 α3 1.901 0.430 2.254 3.450
τyy · 103 2.615 0.708 5.955 6.202 α4 0.480 0.113 0.717 1.407
τyz · 103 0.753 0.219 1.613 1.786 α5 0.070 0.038 0.092 0.206

τzz · 103 2.512 0.507 4.637 5.149 α6 0.114 0.127 0.181 0.229

∂τ1j
∂xj

17.123 1.132 16.336 54.340 β1 0.033 0.013 0.055 0.079
∂τ2j
∂xj

4.980 1.297 9.599 12.960 β2 0.049 0.045 0.105 0.099
∂τ3j
∂xj

16.254 1.167 13.089 51.517 β3 0.536 0.230 1.188 1.238

TABLE 2. L2-norms of SGS-terms calculated from DNS-data.

The terms βi (see Eq. 2) are smaller by at least a factor of 5 in subdomain A
than the respective components of the divergence of the SGS-stress tensor. In the
subdomains B and C the βi are even smaller. They vanish in an isothermal flow
since there µ̄ = µ̌ = µ(T̃ ) = const and accordingly σ̄ = σ̌. The most significant
terms in the energy equation are α1 through α4. The magnitude of α5 and α6 is
about one to two orders of magnitude smaller.

In order to evaluate the performance of the models, a correlation coefficient C
and a ratio A between model predictions and filtered DNS data are computed:

C(E,M) =
〈EM〉 − 〈E〉〈M〉√

〈E2〉 − 〈E〉2
√
〈M2〉 − 〈M〉2
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and

A(E,M) =

√
〈(E(x))2〉
〈(M(x))2〉

.

Herein, 〈·〉 denotes an average over all points of the subdomain; E is the filtered DNS
data and M is the SGS model data. If C is 1, both filtered DNS and approximation
are perfectly correlated. Their magnitude is the same if A = 1.

2.2.1 Momentum equation
In Table 3 we show A and C for τij and α1 for subdomain B and different subgrid

models. The different models used are the Smagorinsky model with Yoshizawa’s
extension (Yoshizawa, 1986)

mij = −ρC2
S∆2

√
1
2
SijSij

(
Sij −

2
3
δij
∂uk
∂xk

)
+

2
3
Ckδij∆2

√
1
2
SijSij

with Sij =
∂ui
∂xj

+
∂uj
∂xi

, CS = 0.16 and Ck = 0.0886 ,

the dynamic mixed model (DMM, Zang et al., 1993, Vreman et al., 1994)

mij = ρui ρuj / ρ− ρui ρuj / ρ− ρCd∆2

√
1
2
SijSij

(
Sij −

2
3
δij
∂uk
∂xk

)
where Cd is a dynamic coefficient, the scale-similarity model (SSM, Bardina et al.,
1983)

mij = ρui ρuj / ρ− ρui ρuj / ρ ,

and the resolved turbulent stresses with r = ∆̂/∆ = 2 (Pruett, 1997)

mij =
1
r2

(
(ρui ρuj / ρ)ˆ− ρ̂ui ρ̂uj / ρ̂

)
.

model τxx τxy τxz τyy τyz τzz α1

Smagorinsky/ C 0.813 0.514 -0.227 0.721 -0.092 0.660 0.215
Yoshizawa A 2.113 7.430 2.470 1.160 4.328 1.289 2.116

dynamic C 0.947 0.850 0.696 0.849 0.578 0.695 0.592
mixed-model A 1.481 1.364 1.055 2.186 1.542 1.827 0.934

scale-simi- C 0.967 0.918 0.862 0.949 0.846 0.945 0.854
larity model A 1.554 1.906 1.628 2.943 2.509 2.902 2.875

resolved C 0.914 0.784 0.632 0.907 0.694 0.904 0.670
A 2.872 4.731 3.326 6.509 6.775 5.961 9.515

TABLE 3. Correlation coefficient C and ratio A of the L2-norms over subdomain
B for different SGS models.
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FIGURE 2A. τxz, filtered DNS data

FIGURE 2B. τxz, scale - similarity
model

FIGURE 2C. τxz, dynamic mixed
model

FIGURE 2D. τxz, resolved turbu-
lent stress

FIGURE 2E. τxz, Smagorinsky /
Yoshizawa

The correlation coefficient C and the ratio A show that the Smagorinsky model
correlates poorly with the filtered DNS data, see also Fig. 2E. The correlation of
the turbulent resolved stresses is good for ∆̂/∆ = 2 (Fig. 2D), but the magnitude
is considerably under-predicted. For ∆̂/∆ = 1, which coincides with the SSM,
correlation and magnitude are improved (Fig. 2B). This agrees with the analytical
predictions of Pruett (1997), who showed that the SSM should approximate SGS-
stresses better than the turbulent resolved stresses with ∆̂/∆ = 2. The DMM
performs reasonably well (Fig. 2C, Table 3), but not as well as the SSM.

2.22 Energy equation
Three different models have been tested for the most significant SGS-terms of the

energy equation. These models are the full dynamic mixed model (FDMM, Vreman,
1995), a scale-similarity-approach (SSM), and the resolved SGS quantities.

The SSM-approach for Mi amounts to computing the SGS-terms from the filtered
variables,

αi = F (w) , βi = F (w) ,
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Mi = F (w)

with w = (ρ, ρu, ρv, ρw, p)T .

The resolved SGS quantities Mi of the respective αi are computed in the following
way, using resolved and test-filtered data:

αi = fi(w)− fi(w) ,

Mi =
1
r2

( ̂fi(w)− fi(ŵ)
)

.

Figure 4C shows that α4 of the FDMM does not agree well with filtered DNS
data. α2 + α3, as predicted by FDMM, correlates better with the filtered DNS data
since it contains a scale-similarity part, Fig. 3D. The agreement between resolved
SGS quantities and filtered DNS data is moderate, Fig. 3C. The SSM-approach
gives much better correlation with filtered DNS data, Figs. 3B and 4B, and can
furthermore provide predictions for all other SGS-terms as well, see Table 4.

model α2 α3 α4 α5 α6 β1 β2 β3

dynamic C 0.510 0.137 — — — — —
mixed model A 0.762 0.628 — — — — —

scale-simi- C 0.838 0.781 0.944 0.805 0.573 0.836 0.830 0.924
larity-model A 3.001 2.926 5.127 2.981 0.932 3.320 1.847 3.467

resolved C 0.330 0.552 — — — — — —
A 5.759 10.754 — — — — — —

TABLE 4. Correlation coefficient C and ratio A of the L2-norms over subdomain
B for different SGS-terms of the energy equation and for βi of the
momentum equations.

3. Part 2: Treatment of shock wave
The numerical diffusion introduced by shock-capturing schemes interacts with

subgrid-scale turbulence. In the recent past it has been attempted to make use
of this feature by so-called MILES (monotonically integrated LES, i.e. using a
monotone scheme which suppresses subgrid-scales) to model turbulent subgrid cor-
relations, see Boris et al. (1992).

The question arises whether one can model non-turbulent subgrid-scales such as
shocks by appropriate subgrid-scale models. This would allow for a unified approach
to LES of shock-turbulence interaction similarly as with MILES but with full control
of subgrid-scale modeling. Also the conservation equations could be advanced with
a non-dissipative scheme such as spectral collocation or central finite-differences.

In this section, we briefly report on ongoing work on how to properly treat a
shock as subgrid-scale entity in LES.
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FIGURE 3A. α2+α3, filtered DNS
data

FIGURE 3B. α2+α3, scale-similarity
model

FIGURE 3C. α2+α3, resolved tur-
bulent quantities

FIGURE 3D. α2 + α3, dynamic
mixed model

FIGURE 4A. α4, filtered DNS data

FIGURE 4B. α4, scale - similarity
model

FIGURE 4C. α4, dynamic mixed
model
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3.1 Shock as a sub-grid scale
If the filtering concept is interpreted strictly, then a shock, which is a discontinuity

for an inviscid fluid, becomes a subgrid scale. Its resolved form can be represented
by a filtered Heavyside function which is the error function. For simplicity we
consider the one-dimensional filtered Euler equations

∂ū

∂t
+
∂F (ū)
∂x

= E (5)

with

E =
∂F (ū)
∂x

− ∂F (u)
∂x

(6)

where ū = {ρ̄, ũ, Ě} and F (ū) = {ρ̄ũ, ρ̄ũ2 + p̄, (Ě + p̄)ũ}. The right-hand side
term E which is introduced by the filtering we will here call the error term. The
filtered solution satisfies the modified differential Eq. (5), and E can have dissipative
and dispersive character. If (5) could be solved exactly with an exact E , then at
any (t, x) the solution of (5) would correspond to the filtered solution of the unfil-
tered equation. The nonlinearity in both the filtered and the unfiltered equation is
responsible for the wave steepening which generates the shock. The approximation
of E needs be to sufficiently accurate in order to avoid that SGS-structures appear
(it needs to “dissipate” the small scales generated by the nonlinearity) and to en-
sure the correct shock convection (it needs to compensate for the dispersive error to
some extent). Concerning subgrid-scale approximation theory, a shock is a generic
subgrid-scale with the advantage that one knows the exact and the filtered solution
analytically.

3.2 Dynamic model
An obvious attempt is to approximate E by a standard SGS-model. Here we

chose the dynamic Smagorinsky model since it has the basic form of a diffusion
term, which benefits stabilization of the nonlinear term in Eq. (5). On the other
hand it should be kept in mind that, as we have seen in Part 1, this model gives
a poor approximation to E . In our case the modeled term in the one-dimensional
momentum equation is

m2 = −∆aCρ̄

∣∣∣∣∂ũ∂x
∣∣∣∣ ∂ũ∂x

and in the energy equation it is

m3 = ũ
∂ρ̄m2

∂x
− ∆2

a

(γ − 1)M2

∂

∂x

(
ρ̄C′

∂ũ

∂x

∂T̃

∂x

)
.

The constants C and C′ are computed dynamically from a comparison with the
test filtered Leonard expression for E . ∆a is the filter width. The main ingredients
of standard dynamic modeling are the hypotheses of same SGS structure on grid
and test filter levels and a dynamic constant being unaffected by the filtering. The
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constants are filtered with the test filter of width ∆b to avoid subgrid-scale contri-
butions stemming from the ill-posedness of the coefficient-determination procedure.

Several variants of the dynamic procedure have been tried, also a form that
emerges when the non-linear terms are explicitly filtered. It turned out, however,
that if the explicit filtering formulation is applied consistently, terms of different
character are forced to match by the dynamic procedure. A Taylor-series expansion
shows that to leading order the approximation for the second component of E ,

L2
.= ∆2

bµ2ūū
′′

is forced to match
m2

.= ∆2
aµ2|ū′|ū′ ,

where the primes denote partial derivatives with respect to x, and µ2 is the second
moment of the filter kernel. For the generic filtered shock solution, it was shown
that these terms have different character.

The test case where the model has been applied is the 1D M = 3 test case of
Adams & Shariff (1996) without incoming perturbations. As underlying numerical
schemes, an explicit 2nd order finite difference scheme with 3rd order Runge-Kutta
time integration and a 6th order Padé scheme (Lele, 1992) with same time inte-
gration were used. The former scheme can be stabilized by using a von Neumann-
Richtmyer artificial viscosity for E (Hirsch, 1988) but not so the latter. None of the
dynamic formulations we tried gave a stable solution of Eq. (5), so the concept of a
standard dynamic model for shock computation was not pursued.

3.3 Deconvolution
From the notion that E can be understood not as a term to be modeled but as

an error term which requires proper approximation, one can try to recover E by a
deconvolution of the filter operation at each time instant to obtain u from ū. If
this could be done exactly, E of Eq. (6) would vanish. Since a regularization of the
deconvolution operation is required, a small error remains in practice. The filter
used here is the same 2nd order Padé filter as in section 3.2. The parameter α is
chosen as α = −0.2 in order to resemble a Gauß filter with effective width ∆ = 4h
(h is the grid spacing) and α = −0.43 for ∆ = 8h. Note that the the smallest
resolved wave number is assumed to be half the Nyquist wave number. It cannot
be expected that at ∆ = 2h a finite-difference scheme has any useful resolution
properties and even a spectral scheme’s error is of order one at this wave number.

For the abovementioned test case, a simple deconvolution by inverting the filter
operation (4) has shown remarkably good agreement with filtered data obtained
from a direct simulation with a high-order shock-capturing scheme, Fig. 5. Due to
the ill-conditioned character of the deconvolution procedure the non-regularized de-
convolution became unstable when perturbations were added to the shock-convection
problem as in Adams & Shariff (1996). Indeed, the filter operation (4) is only in-
vertible in its discretized form, a continuous Gauß filter is not invertible as can be
shown by a brief argument in Fourier dual-space. Extending the work on deconvo-
lution approaches for shock-turbulence interaction regularization procedures will be
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Figure 5. Shock simulation, velocity distribution, : filtered 5th order ENO
scheme, ◦ ◦ : deconvolved 6th order Padé scheme, + + : artificial viscosity
and 2nd order central scheme.

considered. It is expected that with regularized deconvolution methods an efficient
treatment of any subgrid-scale entity, such as shocks or turbulent eddies, will be
possible.

4. Concluding remarks and outlook
We have shown that standard subgrid-scale models require improvement before

they can be expected to reliably represent subgrid-scale effects in physically com-
plex flow. Nor did a straightforward application of a standard dynamic modeling
procedure to treat a generic non-turbulent subgrid-scale, in our case a shock, prove
to be applicable. A promising alternative appears to be (approximate) deconvolu-
tion strategies, also called de-filtering or estimation models (see the contribution of
A. Domaradzki in this volume). They show in a priori tests a considerably higher
correlation with filtered DNS data. Also often deemed misleading, in our under-
standing a priori tests constitute a necessary criterion for a SGS approximation
to work, very much as a finite-difference discretization is supposed to give a good
approximation to the, say, spatial derivatives in a PDE before anyone would expect
that time-integration would make any sense. The traditional dynamic procedure,
in fact, tries to alleviate some of these problems by making the Smagorinsky model
more variable and by measuring this variability by a term of scale-similarity type
(the test filtered Leonard term). The brief treatise on LES shock-treatment sug-
gests that regularized deconvolution can be considered as a promising way for an
accurate representation of subgrid-scales. It seems that many problems in the ap-
plication of LES models come from the fact that LES practically always operates
at the numerical resolution limits of the underlying schemes. An LES model needs
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to correct what is not resolved numerically, and, obviously, then an LES model
becomes related to the numerical scheme.
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