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Abstract

Incompressible, homogeneous rapid distortion the-
ory is used to examine the response of anisotropic tur-
bulent flows to a shock wave. The shock wave is ide-
alized as a one-dimensional compression and its effect
on two canonical flows - shear flow and axisymmetric
flow is studied. In the shear flow problem, both normal
and oblique (with respect to the shear) compressions
are considered.

Initial anisotropy defined in terms of uh%/ q? (z1 is
the shock-normal direction) affects the amplification of
g2, with higher initial u?/¢? producing higher amplifi-
cation. In the shear flow problem, normal compression
amplifies all components of turbulent kinetic energy,
with the shock-normal component being amplified the
most. The amplification of ¢? for a fixed total volu-
metric strain (p/p,) increases upon increasing the ini-
tial total shear (total shear is defined as the product of
shear rate and the time of application of shear). Normal
compression decreases the magnitude of urus/¢? and
for large total volumetric strains, even changes its sign.
Increasing the initial total shear hastens this trend. Ex-
amination of the terms in the wius evolution equation
shows that the pressure-strain correlation is responsible
for this behavior.

The oblique angle between the directions of com-
pression and shear is seen to considerably affect the tur-
bulence evolution. For a given total volumetric strain,
the amplification of u? decreases with increasing oblique
angle (both positive and negative), while the amplifi-
cation of u% and uZ increases with oblique angle, for
positive angles and decreases for negative angles (the
shear is in the z direction). Obliquity reduces the ten-
dency of the magnitude of uiwz/q? to decrease upon
compression; for large oblique angles uus/¢? ampli-
fies. Comparison of RDT to a compression-corner ex-
periment shows good agreement in the evolution of
Urus/u?, while the amplification of u? is below the ex-
perimental value.

The effect of initial u_f/ ¢? on the amplification of ¢?

is verified in the axisymmetric flow problem, where the
amplification of ¢? for contracted turbulence is seen to
be lower than that of isotropic turbulence which in turn
is lower than the amplification of expanded turbulence.

1. Introduction

The modification of a turbulent flow due to its in-
teraction with a shock wave is of importance in super-
sonic flows of engineering interest. In the vicinity of the
shock, the mean flow dilatation is significant when com-
pared to the mean flow vorticity, causing large changes
in both the mean flow and turbulence across the shock
wave. Turbulence closure models developed for low-
speed shear flows were found unsuccessful in predicting
the rapid changes in the region around the shock.! This
lack of success is attributed to a lack of information
on the behavior of the turbulence during the interac-
tion and has prompted several experimental studies.
Experimental work on shock wave/turbulence interac-
tion has focussed mainly on the interaction between
shock waves and turbulent boundary layers 2=1°, with
a few experiments studying shock wave/ free shear layer
interaction.}’'2 The experiments find that turbulence
intensities and Reynolds shear stress are amplified in
the interaction. The shock structure is unsteady, lead-
ing to a region on the wall where the pressure signal is
intermittent.

The flow field in the region of interaction is quite
complex due to the simultaneous presence of mean shear,
wall-blocking, streamline curvature and possible flow
separation, in addition to direct influence of the shock
wave. In order to isolate the effect of the shock, re-
cent experiments have studied the interaction of shock
waves with free turbulence such as grid turbulence!3:4
and turbulent jets.1?

The numerical simulation of shock/turbulence inter-
action has thus far, been limited to isotropic turbulence
interacting with a normal shock. Two-dimensional in-
teraction was studied by Lee et al.!® who solved the
Navier Stokes equations and, Rotman!® who solved the
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Euler equations. Recently, the interaction between three
dimensional isotropic turbulence and a normal shock
was numerically investigated by Lee et al.l” who re-
port a rise of turbulent kinetic energy in a region down-
stream of the intermittent zone occupied by the shock.

The theoretical analysis of shock/turbulence inter-
action is based on linearization of the turbulence into
vorticity, acoustic and entropy modes and describing
the interaction of each of these modes with the shock.
This analysis (henceforth called LIA) was first devel-
oped by Ribner!® and Moore!® and subsequently by
others such as Chang?®, Kerrebrock?! and McKenzie
and Westphal?2. Ribner and Moore’s analysis has been
shown to agree well with experiments on shock/vortex
interaction performed by Sekundov?® and Dosanjh and
Weekes? and, Rotman’s two-dimensional computations
of isotropic turbulence/normal shock interaction. Lee
et al'® use RDT to predict the response of isotropic tur-
bulence to homogeneous one-dimensional compression.
Idealizing the shock as a one-dimensional compression,
they compare the RDT prediction of kinetic energy evo-
lution to Ribner’s LIA. The two analyses were seen to
agree within 10% in predicting the amplification of the
transverse velocity components for shock waves up to
a Mach Number of 2.0 while, prediction of the ampli-
fication of the longitudinal velocity component agreed
up to a Mach Number of 1.3.

Based on LIA and experimental data, Zang et al
25 suggested that there were at least four identifiable
mechanisms responsible for the enhancement of turbu-
lence across a shock wave. The primary mechanisms
suggested were the amplification of incident vorticity
and the conversion of incident acoustic and entropy
waves into vorticity across the shock, while the focus-
ing of vorticity by shock distortions and, conversion
of mean flow energy into turbulence due to shock os-
cillations were listed as secondary mechanisms. The
linear analyses mentioned above account for the pri-
mary mechanisms of turbulence amplification. While
LIA seems closer to the physics of the problem than
RDT, the agreement between the two for weak shocks
suggests that in the weak-shock regime, RDT is a valid
tool for analysis. As will be seen later, in experiments
on shock wave/boundary layer interaction, the shock-
normal Mach number is in the range of good agreement
between LIA and RDT.

In this paper, we use RDT to study the response
of homogeneous anisotropic turbulent flows to a shock
wave. We idealize the shock as a one-dimensional com-
pression and study its effect on turbulence that is con-
strained to be homogeneous. We consider two problems

- sheared turbulence subjected to a one-dimensional
compression, and axisymmetric turbulence compressed
along the axis of axisymmetry. RDT is used to analyze
the interaction. Section 2 outlines details of the the-
oretical procedure, and Sections 3 and 4 describe the
results obtained.

2. Rapid Distortion Theory

RDT combines linearization of the governing equa-
tions with statistical averaging, to describe the statis-
tical evolution of turbulence in the presence of rapid
mean deformation. When the time scale of the mean
deformation is much smaller than the characteristic time
scale of the turbulence, the turbulence has no time to
interact with itself. Generally, the flow is also con-
strained to be inviscid. These assumptions allow the
neglect of all terms in the governing equations that in-
volve viscosity or products of fluctuations, yielding the
following set of equations that are linear in the fluctu-
ations,
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where, U; and p are the mean velocity and density re-
spectively, and u; and p are the fluctuating velocity field
and pressure respectively. The above set of equations
corresponds to solenoidal turbulence and requires that
the mean density be spatially uniform.

Since the turbulence is homogeneous, the mean ve-
locity gradient is constrained to be spatially uniform;
i.e., the mean velocity is of the form U; = A (t)xk.
The spatial dependency of the mean velocity hampers
solution of the above equations using Fourier trans-
forms in x. The spatial dependency may be removed
however, by transforming the coordinate system to one
that deforms with the mean field 2%; i.e.,

& = Bix(t)xy T=t1

where,

d

EBnk + Ajanj =0 (3)

The transformed equations are then Fourier transformed
and solved. An alternative method of solution is to use

Fourier representation in the original coordinates where

the wavenumber changes with time as,
u(x,t) = Zﬂ(k,t)eiki(t)zi
k

where,

dko
5 Tkidia=0 (4)



In this paper, except where indicated, the first method
of solution was used.

One-dimensional strain is characterized by the fol-
lowing mean flow,
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where Uy, Uy, Us are the mean velocity components in
the z1, z9, z3 directions respectively; p and P are the
mean density and pressure, respectively, and are uni-
form in space. T, is negative for a compression and
positive for an expansion. The mean field is thus, con-
strained by the compressible Euler equations and the
requirement that the turbulence be homogeneous. As
a consequence, the mean strain rate (U ;) varies with
time. Note that the mean field being dilatational, the
governing equations for the fluctuations (equations (1)
and (2)) are obtained by linearization of the compress-
ible Euler equations and correspond to the solenoidal
component of the compressible flow field. The solenoidal
component is assumed to be decoupled from the dilata-
tional component; an assumption that is valid for the
above mean flow if Am = I',L/a < 1 where, L is a
lengthscale of the turbulence and a is the mean speed of
sound 27; i.e., the turbulence is nearly incompressible.
Since, under solenoidal RDT, the turbulence evolution
is determined by the total volumetric strain (p/p,) and
not the strain rate, it would seem unnecessary that the
mean field satisfy homogeneity for compressible fluc-
tuations. However, the above form of the equations
allows the contribution of the solenoidal component to
compressible quantities like the pressure-dilatation cor-
relation to be extracted from the analysis.

The evolution of the turbulence is determined en-
tirely by its initial conditions and the total volumet-
ric strain. Earlier studies?®2° assume isotropic initial
conditions; however, since our interest is in anisotropic
turbulence interacting with shock waves, we consider
anisotropic initial states. The importance of initial
anisotropy in shock/turbulence interaction was noted
by Jacquin et al 2 who showed within the framework
of RDT that the evolution of the shock-normal com-
ponent of turbulent kinetic energy upon compression is
strongly dependent upon the initial energy spectrum.
In their experiments on the interaction of isotropic tur-
bulence and a turbulent jet with shock waves, the am-
plification of the streamwise component of turbulent

Rij/q?

FIGURE 1. RDT prediction of the evolution of R;;/q?
with total shear: (R11/¢?%), -~ (Ra2/¢?),-—--

(Rs3/q%), —— (Ri2/9°)

kinetic energy in the jet was higher than that for isotropic
turbulence - a result they suggest, of either the anisotropy
in the jet or extra production terms introduced by com-
pressibility.

In this paper, two kinds of anisotropic turbulence
are considered; sheared turbulence and axisymmetric
turbulence. These states are obtained by RDT applied
to initially isotropic turbulence that is subjected to
shear in one case and axisymmetric strain in the other.
The conditions prevailing at the start of compression
are discussed in more detail in the sections that follow.

3. One-dimensional compression of sheared
turbulence

3.1 Normal compression

In this section, we consider the one-dimensional com-
pression of sheared turbulence. Isotropic turbulence is
subjected to homogeneous mean shear i.e.,

U1:So£27 P:Po; P:PO (8)

where U; is the mean velocity in the z; direction, and p
and P are the mean density and pressure respectively,
which are uniform.

The shear is imposed till a non-dimensional time
B, = S,t, at which point, one-dimensional compression
is added; i.e., for t > t,,
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FiGure 2. Evolution of kinetic energy for varying
values of initial shear: (Isotropic), «------ (B =
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FIGURE 4. Evolution of Reynolds stress anisotropy
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Variation of the shear rate with time during compres-
sion is necessary for the mean field to satisfy the com-
pressible Euler equations. Note that the compression is
along the z; axis while the shear is along z,; we term
this normal compression.

The state of the turbulence before compression de-
pends only upon the total initial shear, f,; its sub-
sequent evolution depends upon f,, the rate of shear
compared to the rate of compression and the total volu-
metric strain. Since our interest is in shock/turbulence
interaction, we consider the regime where the shear sets
up the initial anisotropy and is negligible as compared
to the subsequently applied compression; i.e., S, /T <
1. In this paper, S,/T, is 0.1 for all cases presented.
Lower values of S,/T, (for eg, S,/T, = 0.01) yielded
results identical to those shown here. Sheared turbu-
lence is thus the initial state for the one-dimensional
compression.
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FIGURE 3. Amplification of the components of turbu-
lent intensity (8, = 3): (u2), -+ (u),---- (u3)
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FIGURE 5. Evolution of uyus/¢? for varying val-
ues of initial shear: (Bo = 1), oo (8s = 2)
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The effect of rapid homogeneous shear on initially
isotropic turbulence has been studied using RDT by
several authors.30~33 Fig. 1 shows the evolution with
total shear, of the Reynolds stresses nondimensional-
ized by the trace of the Reynolds stress tensor. Note
that after a moderate amount of total shear, the Reynol-
ds stresses are remarkably close to the values obtained
in shear flow experiments such as homogeneous shear
34 and boundary layers 3%. The anisotropy of the initial
condition is therefore quite close to that of turbulence
in shear flows before it interacts with the shock wave.

Upon compression, the turbulent kinetic energy is
amplified; the amplification ratio depends upon the ex-
tent of initial shear and is shown in Fig. 2. The kinetic
energy is normalized with its initial value (value before
compression) and the different curves correspond to dif-
ferent values of initial total shear. As 3, is increased,
¢%/q2 increases, indicating that the amplification of ki-
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FIGURE 6. Budget of terms in the Rj» equation
(8. = 38) (LHS), ---=---- (Strain production),
---- (Shear production), —-— (Pressure strain term)

netic energy across a normal shock is higher for shear
flows than it is for isotropic turbulence. The evolution
of the components of turbulent kinetic energy is shown
in Fig. 3. The initial total shear is set to 3. All three
components are seen to amplify, with the shock-normal
velocity component being amplified the most.

Fig. 4 shows the evolution of the diagonal terms
of the Reynolds stress anisotropy tensor b;; defined as
bij = Rij/q* — 6;j/3. We note the effect of compression
to increase the contribution of u; to the total kinetic
energy, while decreasing that of us and u3. The figure
also shows that the interaction of a shear flow with a
normal shock retains the ordering of the components of
turbulent kinetic energy (u1 > u3 > u2).

We see that the response of sheared turbulence to
compression is quite different from that of isotropic tur-
bulence. We attempt to explain this difference in terms
of the initial anisotropy as follows. The kinetic energy
equation (for S,/T, < 1) is given by

1 dq2 Fo -

ou RN L T— 12
9dt ~ 1+ T,(t—to) (12)
For notational convenience, we define f = u_f/ q% (Note
that f = by3 + 1/3) and rewrite the above equation as

1 dg¢? T,

A (13)
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Denoting f at t = 0 by f,, we note that increasing f,
has the effect of increasing the initial rate of change of
kinetic energy and hence the initial kinetic energy am-
plification. Since, as seen in Fig. 4, compression tends
to increase f, this effect of f, is sustained through-
out the evolution; i.e., kinetic energy amplification in-
creases with increasing f,. This explains the trend seen

J

Compression—corner flow (8 >0)

X,L_.

Shock wave incident on flat plate
boundary layer (6 < 0)

X2
L_’ X
X3

Direction of shear

-

Direction of compression

FIGURE 7. Coordinate system used in the analysis of
oblique compression of sheared turbulence

in Fig. 2. Increasing 3, has the effect of increasing f,
and hence, the kinetic energy amplification.

The evolution of Rj2/¢q? (R12 = Uiuz) upon com-
pression is shown in Fig. 5. where, the three curves
correspond to different amounts of initial shear. Ri2/ q?
decreases in magnitude upon normal compression and,
for large compressions it changes sign. This behavior
was first observed by Cambon®3 in a different formu-
lation of the normal compression problem, and is has-
tened upon increasing the initial shear. The cause of
this trend was investigated by examining the budget of
terms in the R;, evolution equation as follows.

The evolution equation for R;s is given by

d _ B So

@ T I T T T T
where ;; is the pressure-strain correlation defined as
mij = p(Wij +uji)/p

Note that both strain production and shear produc-
tion tend to increase the magnitude of Ris (make it
more negative). The tendency of |Ri2| to decrease must
therefore be due to the pressure strain correlation. Fig.
6 illustrates the evolution of the R;, budget for the case
with B, = 3. We see that the tendency of Ry2 to change
sign is due to amplification of the pressure-strain cor-
relation upon compression.

1U3 _IE +m2  (14)

3.2 Obligue compression

Thus far, we have considered the normal compres-
sion of sheared turbulence. However, since shear flows
are anisotropic, one would expect the directionality of
the compression to be a parameter; i.e., the oblique
compression of a shear flow would yield different re-
sults from normal compression. The obliquity of com-
pression may be characterized by the angle § between
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FIGURE 10. Evolution of :(—L—g for varying oblique angles
(B = 3): —— (6= 0°), - (8= —60%), === (6 =
-30°), —-— (8 = 30°), —-— (# = 60°)

the direction of compression and the direction of the
upstream shear flow. 6 = 0 corresponds to the nor-
mal compression discussed so far. RDT using the time-
dependent wave number method of solution discussed
in Section 2, was used to study the effect of oblique
compression. Fig. 7 shows the coordinate system used
along with physical situations corresponding to positive
and negative angles of obliquity. Note that the shear is
assumed to be in the z, direction.

The effect of oblique compression on the compo-
nents of turbulent intensity is shown in Figs. 8,9 and
10. The different curves correspond to different oblique
angles of compression. All components are nondimen-
sionalized by their initial values which correspond to
sheared turbulence with 3, = 3. It is clear that oblig-
uity of the compression has a significant effect on ki-
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Ficure 9. Evolution of u_% for varying oblique angles
(Bo =3): (0 =0°), - (6 =—60°),---- (0=
-30°), —-— (8 = 30°), —— (8 = 60°)
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FIGURE 11. Evolution of uyu;/¢? for varying oblique
angles (8, = 3): (@ = 0%), (6 = —60°),
-—-- (8 = =30°), —-— (8 = 30°), —-— (6 = 60°)

netic energy evolution. Amplification of u? is seen to
decrease with increasing oblique angle for both posi-
tive and negative angles. The amplification of u% and
u3 on the other hand depend on whether the oblique
angle is positive or not. In general, the amplification
increases with oblique angle for positive angles and de-
creases for negative angles. This suggests the possibil-
ity that oblique compression could change the order-
ing of turbulent intensity (and hence the nature of the
anisotropy) in shear flows.

Fig. 11 shows the evolution of the nondimensional
Reynolds shear stress for different oblique angles. Re-
call that for a normal compression, Ri2/q? decreases
and even changes sign. This tendency decreases as
the oblique angle increases and for large oblique angles,
Ri12/q? amplifies.



4
3 ’,x"
o ,a”/
= a" ...........
2 ',x" ................
P i i
1 2 3 4
p/po
FIGURE 12.  Effect of initial anisotropy on ¢ am-
plification. Initially:: (Isotropic), --===--- (Con-
tracted), ---- (Expanded),

3.3 Comparison to experiment

In this section, we compare the results obtained
from RDT to an experiment performed by Smits and
Muck & on shock wave/boundary layer interaction in a
compression-corner. Smits and Muck made measure-
ments of the longitudinal mass flux, (pu;) and den-
sity weighted Reynolds shear stress, (pu;)uz in three
compression-corner flows with corner angles of 8°, 16°
and 20° respectively. The free-stream Mach number
upstream of the corner was 2.9 in all three cases and,
the coordinate system for measurement was aligned
with the local direction of the wall. From the mea-
surements made, Morkovin’s hypothesis was used to
deduce longitudinal velocity fluctuations, (u1) and the
Reynolds shear stress, uyuz. The flows in the 16° and
20° cases were separated and hence, we restrict our
companson to the 8° case. We compare the evolution
of iz /u? and the amplification of u? across the shock
at y/8 of 0.6 (which is sufficiently away from the wall
for wall-blocking effects to be negligible). Experimental
data for a more detailed comparison is not available.

To generate an initial state that is close to the ex-
periment, we take 3, as 3.5 for which, urus/u? is 0.25
(same as its experimental value). Recall that the pa-
rameters determining the evolution of this initial state
are the total volumetric strain (p/p,) and the angle be-
tween the shear and compression. Both these parame-
ters are obtained by assuming that the upstream flow
with a Mach number of 2.9 is turned by 8° across a sin-
gle shock. Solution of the corresponding inviscid prob-
lem yields a shock normal Mach number of 1.29 and an
angle of § = 63.65° between the shear and strain. The
shock normal Mach number is used to determine the
density ratio across the shock which is taken as the to-
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Ficure 13. Effect of initial anisotropy on -u_f_ amplifi-
cation. Initially: (Isotropic), -«------ (Contracted),
---- (Expanded)

tal volumetric strain. Before we compare the RDT evo-
lution to experiment, we note that in the previous sec-
tion, our coordinate system was always aligned with the
shear which in the experiments, would correspond to
the wall upstream of the corner. However downstream
of the corner, the experimental coordinate system is no
longer aligned with the upstream but changes to align
with the local direction of the wall. This amounts to
rotation of the Reynolds stress tensor obtained in the
analysis in the previous section, by an angle a equal to
the angle of the compression corner.

For the volumetric strain and oblique angle indi-
cated above, the analysis yields, uyus/u? = 0.44 which
is remarkably close to the experimental value of 0.45.
The amplification of u? however, is predicted as 1.06
which is much lower than the experlmental value of
about 1.4. The amplification of u% and u3 as predicted
by RDT are 2.55 and 1.40 respectively. RDT predicts
that uZ/q2, u2/q and uZ/q? change to 0.48, 0.16 and
0.36 respectively from their initial values of 0.59,0.08
and 0.33. The oblique compression decreases the con-
tribution of u] while increasing that of u% to the total
energy. The ratio uZ/u2 is predicted to drop from an
initial value of 7.1 to 2.91 after compression.

4. One-dimensional compression of axisymmetric
turbulence

In this section, we consider the one-dimensional com-
pression of axisymmetric turbulence. The objective of
this study is two-fold: to study how grid turbulence
that is passed through a wind-tunnel contraction re-
sponds to a normal shock and, to verify our conclu-
sions from the shear flow problem regarding the effect
of anisotropy on kinetic energy amplification.
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Ficure 14. Evolution of b1; upon one-dimensional
compression. Initially: (Isotropic), === (Con-
tracted), -—-- (Expanded)

To generate axisymmetric turbulence, isotropic tur-
bulence is subjected to homogeneous axisymmetric stra-
in; i.e.,

« «@
U1 = ar, Ug = —-2—1:2, U3 = ——=x3, P = Po (15)

2

where Uy, Us and Us are the mean velocity components
in the &, 2 and z3 directions respectively, and p is the
mean density, which is uniform. « > 0 corresponds to
axisymmetric contraction, while & < 0 corresponds to
axisymmetric expansion. The above strain is applied
till a non-dimensional time, at, when it is replaced
by the one-dimensional compression given by equations
(5) through (7). Axisymmetrically strained turbulence
is thus, the initial condition for the one-dimensional
compression. Regarding the nature of the anisotropy
in the initial state, note that under RDT, axisymmet-
ric contraction suppresses fluctuations along the axis of
axisymmetry (z;) and asymptotes to u%/¢? = 0, while
axisymmetric expansmn enhances fluctuations along 1
and asymptotes to u2/q% = 1/2. (for details, see 28).

In the previous section, we observed that the am-
plification of ¢2 in the normal compression of sheared
turbulence was higher than that for isotropic turbu-
lence; an effect that was attributed to initial uZ/g? be-
ing higher in the sheared turbulence. We check this ef-
fect of the initial anisotropy in Fig. 12 where the evolu-
tion of ¢2 is plotted against the total volumetric strain.
The three curves correspond to initially isotropic turbu-
lence, initially contracted turbulence (at, = 0.5 yield-
ing an initial uf / q? of 0.19) and initially expanded tur-
bulence (at, = —0.5 yielding an initial uj/ u2/q? of 0.44)

respectively. Since contraction decreases u / ¢* and ex-
pansion increases it, the amplification of ¢? for con-
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FIGURE 15. Comparison of the amplification of ¢2

between sheared and axisymmetric turbulence (Initial
u?/q% = 0.44 for both): (Sheared), -------- (Ax-
isymmetric)

tracted turbulence is lower than that for isotropic tur-
bulence whose amplification in turn, is lower than that
for expanded turbulence.

Since the axis of initial axisymmetry coincides with
the direction of compression, the axisymmetry is re-
tained. Fig. 13 shows the effect of initial anisotropy
on the evolution of u?. We note that the compression
tends to amplify E; however unlike ¢2, the ampliﬁca—
tion of u? decreases with increasing initial uj uZ/q?.

Axisymmetry (uZ = u2) enables us to compute u}
and u from ¢2 and u?. From Figs. 12 and 13, we see
that these velocity components are amplified and that
their ampliﬁcation ratio increases with increasing ini-
tial u$ / ¢%. The change in the anisotropy of Reynolds
stress is of interest and is plotted in Figure 14. Due
to axisymmetry, byo = bzgz = —b11/2 and hence, only
b1y is shown. The three curves correspond to initially
isotropic, contracted and expanded turbulence respec-
tively. Note that all three curves show an increase in
b11, indicating that irrespective of initial anisotropy, the
effect of the one dimensional compression is to increase
the contribution of u; to the total energy (and decrease
that of us and ug). Though not shown in Fig. 14, we
mention that in the limit of infinite volumetric strain,
b1; becomes independent of initial anisotropy and be-
comes equal to 1/6 (its asymptotic value for initially
isotropic turbulence).

Thus far, we have seen the 1mportance of initial
anisotropy deﬁned in terms of u?/q? on the amphﬁca—
tion of kinetic energy. It is of interest to see if uj / q
the only significant parameter of the initial field. We do
so by comparing the effect of normal compression upon



sheared turbulence with that on axisymmetrically ex-
panded turbulence. The amount of total shear (3,) and
total axisymmetric strain (at,) are chosen such that

both initial states have the same u—%/ q? of 0.44.

Fig. 15 compares the amplification of ¢? between
the two ﬂows The two curves are different, indicat-
ing that uf / ¢? is not the sole parameter. However, the
extent of disagreement between the two curves is not
very large for moderate total strains. For example, at a
density ratio of 3, which corresponds to a normal Mach
number of about 2.25, ¢? in the shear flow is amplified
by 3.15 while the amplification ratio of ¢ in the axisym-
metric flow is 2.8; a difference of 10%. A qualitative
difference noticed between the two flows concerns the
amplification of u?. For axisymmetric turbulence, the
amplification of u? was seen to decrease with increasing

initial uf / q%. However this trend is reversed for sheared
turbulence (figure not shown) where the amplification
of u? was seen to increase with initial u2/q

5. Conclusion

Inviscid, incompressible rapid distortion theory was
used to study the response of anisotropic turbulence
to a shock wave. Two problems were studied; one-
dimensional compression of sheared turbulence and com-
pression of axisymmetric turbulence along the axis of
axisymmetry.

In the sheared turbulence problem, both normal and
oblique compressions were studied. Normal compres-
sion is seen to amplify all components of turbulent ki-
netic energy with the component normal to the shock
being amplified the most. For a given total volumetric
strain, the total kinetic energy amplification ratio in-
creases as the amount of initial shear increases. This
effect of initial anisotropy on kinetic energy amplifica-
tion is attributed to the initial value of u2/q* (z1 is the
shock-normal direction). The total kinetic energy am-
plification increases with increasing initial uZ/¢?. Nor-
mal compression tends to decrease the magnitude of the
non-dimensional Reynolds shear stress (R12/¢%) and for
large volumetric strains even changes its sign. Increas-
ing the initial total shear is seen to hasten this behavior.
Examination of the budget of terms in the R;3 equa-
tion shows this behavior is due to the pressure-strain
correlation.

The obliquity of compression, characterized by the
angle between the initial shear and the compression
is seen to affect the turbulence evolution considerably.
The amplification of the streamwise (with respect to
the shear) velocity fluctuations is seen to decrease with

increasing oblique angle, while the amplification of the
transverse components increases for positive oblique an-
gles and decreases for negative angles. Obliquity is seen
to reduce the tendency of the magnitude of Ry3 to de-
crease upon compression and for large oblique angles
Ry, amplifies. Comparison of RDT to a compression-
corner experiment by Smits and Muck shows good agree-
ment in wyuz/u? while the amplification of u% is below
the experimental value.

The effect of initial u?/¢% on the amplification of q°
is verified in the one-dimensional compression of ax-
isymmetric turbulence where the amplification of q>
for initially expanded turbulence is higher than that
for isotropic turbulence which in turn is higher than
that of contracted turbulence. Once again compression
is seen to amplify all components of turbulence inten-
sity. The amplification of u? however, decreases with
increasing initial uZ/q? unlike the amplification of u3
and ¢ which increase.
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