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Abstract

We discuss development of a numerical algorithm, and solver capable of performing large-
eddy simulation (LES) in geometries as complex as the combustor of a gas-turbine engine. The
algorithm is developed for unstructured grids, is non-dissipative, yet robust at high Reynolds
numbers on highly skewed grids. Results from validation in simple geometries is shown along
with simulation results in the exceedingly complex geometry of a Pratt & Whitney gas turbine
combustor.

1 Introduction

The Navier-Stokes equations for incompressible flow are

∂ui

∂t
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∂uiuj
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∂xjxj

;
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Large-eddy simulation (LES) is a computational approach where one filters the unsteady Navier-
Stokes equations in space, and then numerically solves for the large-scales of motion, while
modeling the effect of the filtered scales. Assuming that the spatial filter commutes with the
spatial and temporal derivatives, the LES equations for the filtered velocity and pressure are
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= 0. (2)

where τij = uiuj − uiuj is the subgrid stress, and is modeled.
There is considerable general incentive to develop LES on unstructured grids. However, LES

on unstructured grids requires development of the appropriate numerical methods. Specifically,
the numerical methods used to solve the RANS equations are not directly applicable to LES.
RANS typically uses upwinded numerical methods; upwinding provides numerical dissipation,
which makes the solution-procedure robust. However, when used for LES, upwinding severely
compromises accuracy (e.g. Mittal & Moin 1997), since the numerical dissipation competes
with, and often overwhelms the physical dissipation of the subgrid model.

By definition, the dissipative scales are not resolved by the grid in a LES. In practice this leads
to numerical instability if straight-forward non-dissipative central-difference schemes are used.
One solution to this problem is to develop non-dissipative numerical schemes that discretely
conserve not only first order quantities such as momentum, but also second - order quantities
such as kinetic energy (e.g. Arakawa 1963, Fromm & Harlow 1963, Lilly 1965, Mansour et al.
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1979). Discrete energy conservation ensures that the flux of kinetic energy,
∑

cvs ui∂(uiuj)/∂xj

only has contributions from the boundary faces. This makes the solution robust without the
use of numerical dissipation. Note that satisfying one constraint discretely, does not ensure the
other - both constraints have to be simultaneously enforced when deriving the algorithm. The
Harlow-Welch algorithm (1965) possesses this property on structured grids, and has therefore
been widely used for LES on structured grids in simple geometries. We have developed a nu-
merical method suitable for LES on unstructured grids that has been implemented on massively
parallel computers (Mahesh et al. 1999, 2000, 2001). The development was evolutionary and is
summarized below. First, the Harlow-Welch formulation was generalized to unstructured grids
using a rotational form of the convection terms. While elegant, this formulation was found
lacking when extended to three-dimensions. In particular its restriction to tetrahedral elements,
and lack of robustness on skewed grids were serious limitations. An alternative formulation was
therefore derived which can be applied to arbitrary elements. Robust yet accurate solutions are
now obtained at high Reynolds numbers in very complex geometries on highly skewed grids.
Details follow.

2 Staggered rotational formulation

We describe below the spatial discretization of the two-dimensional incompressible Navier-Stokes
equations on an unstructured grid of triangles. The formulation is a conceptual extension of
the popular staggered formulation on structured grids [?]. Figure ?? shows a single triangular
element. Note that the pressure is stored inside the element (at the circumcenter), while the
velocities normal to the edges of the triangle are stored at the edge-centers.

Denoting the edge-normal velocity by vn, we have:

∂vn

∂t
− (~u × ~ω) · ~n +

∂

∂n

(
~u · ~u

2

)
= −

1

ρ

∂p

∂n
+ ν

(
∇2~u

)
· ~n (3)

We have ∇2~u = −∇× ~ω + ∇ (∇ · ~u) . Also in two dimensions, (~u × ~ω) · ~n = ωvt.
If the velocity field is divergence-free, this implies that

(
∇2~u

)
· ~n = − ∂ω

∂st

. where ∂
st

denotes
the tangential derivative. To time-advance the momentum equation, we therefore need the
vorticity at the nodes and the edge-centers, tangential velocity at edge centers, total kinetic
energy and pressure at the cell-centers.

The vorticity at the nodes is computed using Green’s theorem i.e.
∫

A
ωdA =

∫
C

~u · d~l. The
area over which the integration is performed is shown in figure ??, and is obtained by joining
the circumcenters of the triangles that surround the node. It is easily seen that the velocity
components parallel to the edges of this area are normal to the edges of the triangles that make
up the area. The vorticity at the node ‘n’ is therefore computed as ω = 1

Adual

∑
edges vnledges.

where the length of the edges of the dual mesh is the distance between the circumcenters of the
triangles that constitute the dual mesh.

Once the nodal vorticities are known, the vorticity at the edge-centers may be computed
as the average of the vorticity at the corresponding nodes. Also the tangential derivative of
the vorticity at the edge-center may be computed as the difference of the nodal vorticities
divided by the edge length. These approximations are second-order accurate in the edge length.
The tangential velocities at the edges are obtained by interpolating from neighboring edges.
A fractional step approach for the pressure is derived as follows. Denote the nonlinear terms
by NL and the viscous terms by V , and use the Adams-Bashforth method for both. Ignoring
pressure in the first fractional step, we get

v̂ − vk
n

∆t
=

1

2

[
3(NL + V )k − (NL + V )k−1

]
(4a)
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vk+1
n − v̂

∆t
= −

∂φk+1

∂n
. (4b)

We require that the divergence of the velocity field at tk+1 be zero; i.e Av∇·~u =
∑

e vnele. = 0.
Equation ?? therefore implies that

1
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e
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e

∂φn+1
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le, (5)

which along with the continuity constraint requires that the potential φ satisfy

∑

e

∂φn+1

∂n
le =

1

∆t

∑

e

v̂le. (6)

Since φ is stored at the circumcenter of the volume, its gradient normal to the edge is easily
computed. This yields a set of discrete equations for φ that are then solved. These discrete
equations are of the form,

c(i)φ(i) +

3∑

j=1

c(i, j)φ(j) = rhs(i) (7)

where the sum over j is a sum over the three volumes that are neighbors of volume, ‘i’. Equation
?? is easily written for the interior volumes. However, when it is applied to a boundary volume,
it appears that the gradient of φ at the boundary is required. However this is not the case (see
e.g. Moin & Kim 1980); this requirement can be circumvented as follows. The divergence-free
condition requires that

3∑

j=1

vnele = 0; i.e.
∑

interior edges

vnele = −vnbleb. (8)

This implies that the pressure equation for the boundary elements may be obtained by summing
equation ?? over the interior edges alone, and using equation ?? to relate the interior sum of
the velocity to the normal velocity at the boundary; i.e.

∑

interior edges

∂φn+1

∂n
le =

1

∆t

∑

interior edges

v̂le +
1

∆t
vnbleb. (9)

This eliminates the need for boundary conditions on φ.

2.1 Validation

We consider the steady laminar flow in a two-dimensional driven cavity at a Reynolds number
of 5000. Results from Ghia et al. (1982) are used for validation in figure ??. The quantities
validated include velocity profiles, the vorticity at the center of the primary vortex, and visual-
ization of velocity vectors. The unstructured grid is seen to allow fewer points to be used; at
a Reynolds number of 5000, comparable results were obtained using 10576 nodes (30925 trian-
gles) as compared to 66049 nodes (65536 Cartesian elements) in Ghia et al’s computations. No
attempt was made to optimize the unstructured grids.

2.2 Extension to three-dimensions

The algorithm is extended to tetrahedral elements as follows. The pressure and any scalars are
stored at the circumcenter of the tetrahedron. The velocity component normal to each face,
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vn is stored at the circumcenter of each face. The convection term is computed in rotational
form as (~u × ~ω) · ~n = ut · (ωt × ~n) . vt is obtained by interpolating from the neighboring faces,
and there are two steps to obtaining the vorticity components in the plane of each face. First,
the circulation theorem is invoked to obtain the vorticity along each edge of the face. This
vorticity is then projected along the tangential basis vectors on the face, and averaged to obtain
ωt at the face circumcenter. The circulation theorem is applied on a closed circuit around each
edge. This circuit is obtained by joining the circumcenters of the tetrahedra to which this
edge belongs. This is made possible by the fact that the property of the circumcenter that all
such segments will lie in the same plane. The circulation theorem Adualω =

∑
dual edges vnledges

yields the vorticity component along the edge. The edge-vorticities are interpolated to obtain
the tangential vorticity components at the face circumcenter. The viscous term is obtained

from the edge-vorticities using the identity, Aface

(
~∇× ~ω

)
· ~n =

∑
edges ωledges, where ω is the

vorticity component along the edges previously computed, and le denotes the length of the edges
of the face.

2.3 Problems with formulation

While elegant, the above formulation has some limitations. It is restrictive in that pressure
(and scalars if any) is stored at the circumcenter of the triangular elements. This restricts the
grid to elements whose circumcenter lies within them. For example, in two-dimensions, consider
right-triangles. Their circumcenter lies on the hypotenuse, making it impossible to determine
the pressure gradient normal to the hypotenuse. Highly skewed elements are another source
of problem since the circumcenter will now lie outside the element. Although projection of
the velocity field is still possible in this situation, the inaccurate computation of the pressure
gradient is cause for concern.

Another more fundamental limitation concerns the restriction of the algorithm essentially
to tetrahedra. While well-suited to grid very complex geometries, experience shows that hexa-
hedral elements are better suited for unsteady computations since (i) hexahedral elements are
more easily aligned with flow gradients such as boundary layers, and (ii) it takes fewer hex-
ahedral elements to fill space than comparable tetrahedra. For example, a three-dimensional
grid generated for a Pratt and Whitney gas-turbine combustor required a tetrahedral grid with
approximately 600000 nodes and 6.35 million faces (normal velocities to be solved) while a hex-
ahedral grid with only 1.5 million nodes and faces yielded significantly higher resolution near
the walls.

3 Non-staggered formulation

An alternative approach was therefore derived. The basic idea is that the robustness at high
Reynolds numbers is determined essentially by the convection term, while robustness on skewed
grids is determined by both convection and the pressure gradient term. A formulation is derived
that emphasizes energy conservation for the convection term on arbitrary grids. Accordingly,
the cell velocities ui and the face-normal velocities vn are treated as essentially independent
variables. This storage is similar to that used by Rhie & Chow (1983) to suppress odd-even
decoupling in a colocated formulation. It is readily shown that the passive scalar equation,

∂φ

∂t
+

∂

∂xi

φui = 0 ⇒
∂φ2

∂t
+

∂

∂xi

φ2ui = 0. (10)

if the velocity field is divergence-free. Integrating the first equation in ??, we get V dφcv

dt
+∑

faces φfacevNAf = 0 where V denotes the cell volume. This discrete equation has the same
conservative property for φ2 if φface = (φicv1 +φicv2/2) and

∑
face vNAf = 0. This observation is
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extended to the Navier-Stokes equations by computing the convection term in a similar manner.
Note that the symmetry of the interpolation is retained even on non-uniform grids. This makes
the solution robust on skewed grids since the discretization does not ‘see’ the underlying rough
grid. As the results will show, this robustness results in no visible degradation of accuracy.

The convection term computed in the above manner yields a predicted value for the cell-
velocities ûi. These predicted velocities are interpolated to obtain a prediction for the face-
normal velocities v̂. The face-normal velocities are projected using vN − v̂ = − ∂φ

∂N
and φ is

obtained from the discrete Poisson equation that results. The gradient of φ at the cell-centers
is then used to update the cell velocities; i.e. ui = ûi −

∂φ
∂xi

.

It turns out that the details of how ∂φ
∂xi

are computed, affect the robustness of the solution
on highly skewed grids. An obvious approach to computing the gradient at cell-centers is to use
the gradient theorem; ∂φ

∂xi

= 1
V

∑
faces φfaceAfNi. When applied to flows such as homogeneous

turbulence, turbulent channel flow and even a coaxial combustor for which the grids are very
regular, very accuracet results are obtained. However when applied to highly skewed grids such
as those in the Pratt & Whitney combustor, unstable solutions are obtained. This behavior is
found at both high and low Reynolds numbers, pointing to the pressure-gradient as the source
of the problem. It is readily seen that for a staggered formulation,

∑

cvs

∑

faocv

vf
N (φnbr − φcv) Af = boundary terms (11)

However,

ui − ûi = −
∂φ

∂xi

⇒
∑

cvs

ui

∑

faocv

(
φcv + φnbr

2

)
NiAf =

∑

cvs

ucv

2

∑

faocv

φnbrAfNi (12)

This is because pressure is not obtained by taking the discrete divergence of the above equation;

doing so will result in odd-even decoupling. As a result, 1
2

(
∂φicv1

∂xi

+ (∂φicv2

∂xi

)
Ni 6= ∂φ

∂N
at the

faces. The pressure gradient term is therefore no longer discretely energy conserving. We
therefore developed the following solution. Once φ is known, ∂φ

∂xi

is computed such that for each

cell, ∂φ

∂xiN
faces

i

equals ∂φ
∂N

in a least squares sense. The resulting algorithm is found to be both

robust on highly skewed grids as well as accurate.

3.1 Results

3.1.1 Taylor problem

Figure ??, shows the evolution of kinetic energy in the Taylor problem - an analytical solution,
which describes counter-rotating vortices that decay in time. Our formulation is compared to a
non-dissipative formulation that only conserves momentum. Both formulations have the same
computational stencil. At low Reynolds numbers, where the dissipative scales are resolved, both
formulations are stable, although our formulation shows better agreement with the analytical
result. However, at very high Reynolds numbers where the dissipative scales are not resolved, the
formulation that does not conserve kinetic energy becomes unstable after some time, while our
formulation is seen to essentially maintain its initial kinetic energy as required by the analytical
solution.

3.1.2 Flow in a coaxial combustor

Results are shown for the turbulent flow in a coaxial combustor configuration at conditions
corresponding to experiments by Sommerfeld & Qiu (1991, 1992, 1993). The chamber consists
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of central core (primary) and annular (secondary) jets discharging into a cylindrical test section
with sudden expansion. The primary jet has a radius of 16 mm and the secondary annular jet
extends over the radial interval of 19-32 mm. The outer radius of the annulus is 32 mm, the
test-section is 960 mm long, and flow in the annular section has mean swirl. The Reynolds
number of the primary jet is 26200 and the swirl number in the annulus is 0.47.

The computational domain is divided in ∼ 1.6 × 106 hexahedral volumes, with ∼ 0.9 × 106

elements clustured in the first half of the test section. The smallest grid spacing is ∼ 32 µm
near the walls and in the shear layers close to the annular inlet into the test section. Profiles at
six stations of mean streamwise, radial and azimuthal velocities and turbulence kinetic energy
were compared to experiment and very good agreement was observed. Only turbulence kinetic
energy is shown in figure ??; the other results are reported by Mahesh et al. (2001).

3.1.3 Pratt & Whitney gas turbine combustor

Simulations were performed in the exceedingly complex geometry of the combustor in a Pratt
& Whitney gas-turbine engine. The geometry was provided in IGES format. Experimental
data for mass-splits and pressure drop across the injector was used for validation. Figure ??

illustrates the geometry; the level of complication is apparent. The Reynolds number in the
pre-diffuser based on the bulk velocity and cross-section was 500, 000; values in in the main
(core) swirler channel were 150000. Turbulent fluctuations from a separate calculations in a
pipe sector of identical shape as the pre-dif fuser inlet section were fed at the inlet. Table ??

compares LES predictions of the flow splits to experiment; good agreement is observed.

Location LES Error LES Error

% wrt expt. % wrt inlet

OD dilution hole 3.1 0.8

ID dilution hole 3.5 0.5

Core (main swirler) 10.3 0.14

Second (OD) swirler 7.5 0.35

Third (Guide) swirler 0.4 0.02

Table 1: Comparison to experiment of mass flow splits in the Pratt & Whitney combustor geometry

4 Summary

We have discussed development of a numerical algorithm, and solver capable of performing large-
eddy simulation (LES) in geometries as complex as the combustor of a gas-turbine engine. The
algorithm is developed for unstructured grids, has non-dissipative convection, and yet robust at
high Reynolds numbers on highly skewed grids. Results from validation in simple geometries is
shown along with simulation results in the exceedingly complex geometry of a Pratt & Whitney
gas turbine combustor.
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Figure 1: The staggered positioning of variables on an unstructured mesh of triangles is contrasted
with that on a structured mesh.
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Figure 2: Illustration of the dual mesh used to compute the vorticity at the nodes.
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The Reynolds number is 5000. (a) Vertical profile of streamwise velocity at x = 0.5. (b)Streamwise
profile of vertical velocity at y = 0.5 (c) vorticity at the top boundary.
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(b): Re = 1. At the lower Reynolds number, both schemes are stable. At higher Reynolds number,
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ible swirling flow in a coaxial combustor geometry. Conditions correspond to an experiment by
Sommerfeld & Qiu(1991). Only part of the computational domain is shown for clarity.
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Figure 6: Illustration of the geometry and surface mesh in the Pratt & Whitney combustor geom-
etry.
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Figure 7: Instantaneous velocity magnitude contours in combustor geometry. Red corresponds to
high velocities and blue to low velocities.
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