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The JICF is studied using direct numerical simulation of the linearized Navier-Stokes
equations, as well as their adjoint, at a Reynolds number of 2000, and two jet-to-cross-flow
velocity ratios: R = 2 with an absolutely unstable upstream shear-layer, and R = 4 with a
convectively unstable upstream shear-layer. Linear stability analysis of the JICF reveals that
the dominant eigenmodes are shear-layer modes whose frequencies match frequencies of the
upstream shear-layer observed in simulation and experiment. Asymmetric modes are shown
to be more important to the overall dynamics at higher jet-to-cross-flow ratios. Adjoint modes
show that the upstream shear-layer is most sensitive to perturbations along the upstream side
of the jet nozzle exit. Wavemaker results are shown to be consistent with the transition of the
upstream shear-layer from absolute to convective instability.

I. Introduction

Jets in cross-flow (JICF), or transverse jets, are canonical flows where a jet of fluid is injected transverse to an
incoming cross-flow. Typically, a flat-plate boundary layer interacts with a wall-normal jet, creating a complex array

of inter-related vortical structures. Shear-layer vortices and the Kelvin-Helmholtz instability are typically observed
on the upstream side of the jet. The counter-rotating vortex pair (CVP), which dominates the jet cross-section [1, 2],
persists far downstream and is a characteristic feature of transverse jets. Additionally, horseshoe vortices are formed
near the wall just upstream of the jet exit and wrap around the jet [3, 4]. As the horseshoe vortices travel downstream
they begin to tilt upward during ‘separation events’ [5] caused by the adverse pressure gradient created as the jet entrains
fluid from the boundary layer. This process forms wake vortices that extend up in the wall-normal direction through
the jet wake [5–9]. Transverse jets are found in many engineering applications, including gas turbine combustors,
film cooling, vertical and/or short take-off and landing (V/STOL) aircraft, and controlled fluidic injection (i.e. thrust
vectoring). Reviews by Margason [10], Karagozian [11] and Mahesh [12] compile most of the JICF research, both
experimental and computational, over the last seven decades. The JICF is characterized by the following parameters:
the jet Reynolds number, Re = vjetD/νjet, based on the average velocity (vjet) at the jet exit, the diameter (D), and the
kinematic viscosity of the jet (νjet); the jet-to-cross-flow velocity ratio (for constant density jets), R = vjet/u∞, where u∞
is the cross-flow velocity.

The JICF has been studied using global linear stability in the past [13] using a steady baseflow obtained using
selective frequency damping (SFD) [14]. From this point on, linear stability analysis will refer to Tri-Global linear
stability analysis unless otherwise specified. It was shown that the shedding frequency for the upstream shear-layer was
not far from the non-linear shedding frequency. However, the linear wake mode frequency was far from the non-linear
wake frequency. Bagheri et al. [13] suggested that the differences in shedding frequencies could be related to the
differences between the SFD solution and the time-averaged solution.

The focus of this paper is to further the understanding of the stability and sensitivity of the JICF using linear stability
and adjoint sensitivity analyses around turbulent mean flows. Understanding the dominant flow instability mechanisms,
and how they are most sensitive to velocity perturbations will help control of the JICF in engineering applications.
Jet-to-cross-flow ratios of 2 and 4 at Re = 2000 are chosen, to straddle the upstream shear-layer stability transition
observed by Megerian et al. [15]. The upstream shear-layer transition is important since optimizing jet penetration and
mixing is shown to be highly dependent on the stability of the shear-layer [15, 16]. The paper is organized as follows.
§II describes the numerical methodology. In §III detailed descriptions of the problem and simulation setup are given.
§IV discusses the results, followed by a brief summary in §V.
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II. Numerical Methodology

A. Governing equations
Modal linear stability analysis is the study of the dynamic response of a base state (i.e. baseflow) subject to external

perturbations (see Theofilis [17] for review). In this paper, the incompressible Navier-Stokes equations are linearized
about a base state ui and p. The base state can be assumed to vary arbitrarily in space (ui = ui (x, y, z)). If the flow
field is decomposed into a base state subject to a small O(ε) perturbation (ui = ui + ε ũi, p = p + ε p̃), the linearized
Navier-Stokes (LNS) equations may be written as

∂ ũi
∂t
+

∂

∂xj
ũiu j +

∂

∂xj
ui ũ j = −

∂ p̃
∂xi
+ ν

∂2 ũi
∂xj∂xj

,

∂ ũi
∂xi
= 0,

(1)

by neglecting the ε2 terms. For linear stability analysis, we are interested in the behavior of perturbations at asymptotic
time of the form

ũi (x, y, z, t) =
∑
ω

ûi (x, y, z) eωt + c.c, (2)

where ω and ûi can be complex. This reduces the linear system of equations to an eigenvalue problem. We solve the
eigenvalue problem using the Implicity Restarted Arnoldi iteration method (IRAM) in conjunction with a time-stepper
method.

Adjoint techniques have been shown to be extremely useful in many fluid mechanics applications involving
laminar-to-turbulent transition, receptivity, sensitivity, acoustics, and control. By choosing an inner product, an adjoint
to the LNS eigenvalue problem may be formed. We choose the energy norm as the inner product, which is defined as:

(u, v) =
∭

V

uTv dx dy dz =
∫
Ω

uTv dΩ =⇒
ncv∑
i=1

uTvVcv, (3)

where Ω is the computational volume, u and v are arbitrary vector quantities, ncv is the total number of control volumes,
and Vcv is the CV volume. By using the generalized Lagrange identity [18], the adjoint to the LNS equations are defined
the same as Hill [19]:

∂ ũ†i
∂t
+

∂

∂xj
ũ†i u j − ũ†j

∂

∂xi
u j = −

∂ p̃†

∂xi
− ν

∂2 ũ†i
∂xj∂xj

,

∂ ũ†i
∂xi
= 0,

(4)

where ũ†i is the adjoint velocity perturbation and p̃† is the adjoint pressure perturbation. Note the opposite sign
on the viscous term, which defines that the adjoint equations must be solved backwards in time. Using the same
modal decomposition (eq. 2), the linear adjoint equations also reduce to an eigenvalue problem. The adjoint velocity
perturbation field, ũ†i , highlights points in the flow where a large response to unsteady point forcing will occur [19].
In the present work, adjoint sensitivity analysis is used in conjunction with linear stability analysis to determine flow
regions that are most sensitive to point momentum forcing.

B. Algorithm
An unstructured, finite-volume algorithm developed by Mahesh et al. [20] is used to solve the linearized N-S

equations (eq. 1) and their adjoint (eq. 4). The spatial discretization emphasizes the simultaneous conservation of
discrete first-order quantities (i.e. momentum) and second-order quantities, such as kinetic energy. In other words,∑

ui∂
(
uiu j

)
/∂xj over all control volumes only has contributions from the boundary elements. In this method,

Cartesian velocities, ui , and pressure, p, are stored at the control volume (CV) centroid. Additionally, face-normal
velocities, vn, are stored separately at the centroids of the faces. The algorithm has been validated and used to simulate a
variety of complex flows, including: a gas turbine combustor [20], free jet entrainment [21], and transverse jets [22–28],
flow over hulls [29, 30] and propellers in crashback [31, 32].
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Fig. 1 A schematic of the jet in cross-flow computational domain is shown. The origin is located at the center
of the jet exit. A Blasius boundary layer is prescribed as the leftmost inflow condition. Additionally, uniform
inflow is prescribed for the jet inflow. The nozzle shape is modeled using a 5th order polynomial that matches
the nozzle used in experiments of Megerian et al. [15].

C. Wavemaker
This paper also discusses the receptivity of the JICF to spatially localized feedback. Due to the non-normality of the

eigenvalue problem associated with the JICF, adjoint solutions alone cannot describe the whole picture. Therefore, the
product for each j-th pair of direct and adjoint global modes is computed as

Wj (x, y, z) =

û j
i

 û j,†
i


max

(û j
i

 û j,†
i

) , (5)

which determines the locations that are most sensitive to localized feedback [33] - also called ‘wavemaker’ regions.
Locations where W ≈ 1 are most sensitive to localized feedback, whereas areas with W << 1 are generally not important
to the stability of the baseflow.

III. Problem Description
Figure 1 shows the simulation set-up. At the inflow, a laminar Blasius boundary layer profile is prescribed. The

boundary layer profile is the same as those used by Iyer and Mahesh [27], and has been shown to match well with
experiments at x/D = −5.5. The jet nozzle is located at the origin of the computational domain and is included in all
simulations. It has been shown by Iyer and Mahesh [27] that the jet nozzle plays a crucial role in setting up the mean
flow near the jet exit, thus affecting the stability characteristics of the flow. A fifth-order polynomial is used to model
the nozzle shape used in the experiments of Megerian et al. [15]. The jet exit diameter D is 3.81 mm and the average
velocity at the jet exit vjet is 8 m s−1. Additional simulation details are outlined in table 1. Simulation cases R2 and R4
are performed at the same conditions as the experiments of Megerian et al. [15].

The unstructured capabilities of the solver allow the cross-flow domain and jet nozzle to be simulated together.
Figure 1 also describes the extent of the computational domain. The domain extends 8D upstream of the jet exit to the
inflow boundary where the Blasius laminar boundary layer solution is applied. 16D downstream of the jet exit is the
outflow boundary. In addition, Neumann boundary conditions are applied to the sides located 8D from the origin in the
span-wise directions. The simulated nozzle extends 13.33D below the jet orifice, at which point a uniform inflow is
prescribed to achieve the correct velocity at the jet exit. The top of the domain is located 16D above the origin and also
has a Neumann boundary condition applied.

The computational grid is made up of 138 million elements. There are 86 elements inside of the inflow laminar
boundary layer in the y-direction and 320 elements around the jet exit. After making the assumption that downstream
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Case R R∗ = vjet,max/u∞ Re Recf = Du∞/ν∞ θbl/D

R2 2 2.44 2000 1000 0.1215

R4 4 4.72 2000 500 0.1718
Table 1 Details are shown for the simulations used to study the stability of the JICF. Jet to cross-flow ratios
R of 2 and 4 are studied at a Reynolds number Re of 2000, based on the average velocity vjet at the jet exit and
the jet exit diameter D. Also shown is the jet to cross-flow ratio R∗, based on the jet exit peak velocity vjet,max,
and the Reynolds number Recf , based on the cross-flow velocity u∞. The momentum thickness of the laminar
cross-flow boundary layer is described at the jet exit when the jet is turned off.

of the jet exit the boundary layer is turbulent, viscous wall units may be computed (e.g. ∆x+ = ∆xuτν ). The local wall
shear stress is used to calculate the friction velocity (uτ =

√
τw/ρ =

√
ν(du/dy |y=0)). Downstream of the jet exit, the

grid maintains spacings of ∆x+ = 2.10, ∆y+min = 0.09, and ∆z+ = 1.45 for case R2 and ∆x+ = 1.09, ∆y+min = 0.05, and
∆z+ = 0.75 for case R4. These grid spacings are finer than the grid used by Muppidi and Mahesh [23] to simulate a
turbulent JICF.

Instantaneous isocontours of Q-criterion colored by stream-wise velocity for the turbulent flow-field are shown in
figure 2 for case R2 (a) and R4 (b). The complexity of the turbulent JICF is illustrated by these instantaneous results.
Important features include the coherent upstream shear-layer roll up, as well as long string-like wake vortices near the
wall. Additionally, downstream shear-layer roll up is seen that interacts with the upstream shear-layer at the collapse of
the potential core. Many fine scale turbulent structures are also visible downstream in the jet wake.

The turbulent mean flows that are used as the base states were generated using the 138 million element grid. To
generate the mean flows, 54000 and 70000 samples are used for case R2 and R4, respectively.

IV. Results
This section presents results from the direct and adjoint analyses of cases R2 and R4. In the following, the behavior

in the upstream shear-layer and CVP are discussed. The eigenvalues are non-dimensionalized such that the growth rate
is Re( ω2π )D/vjet,max and the Strouhal number, St, is Im( ω2π )D/vjet,max. The adjoint eigenvalues match those from linear
stability, and agree well with the upstream shear-layer spectra results from experiments [15] and simulations [27]. The
eigenmodes from linear stability analysis are shown using isocontours of the streamwise (x-direction) perturbation
velocity, Re(û) = ±0.0003. Adjoint sensitivity analysis eigenmodes are presented using isocontours of the vertical
(y-direction) adjoint perturbation velocity, Re

(
v̂†

)
= ±0.0001, which highlight regions most sensitive to vertical point

momentum forcing. Eigenmodes are normalized such that ‖û‖ =
v̂† = 1.

A. Upstream shear-layer
The upstream shear-layer linear stability eigenmodes for both case R2 (figure 3a) and case R4 (figure 4) were

discussed in detail by Regan and Mahesh [28]. The main difference between the direct (i.e. linear stability analysis)
eigenmodes for each case is that for case R2 the mode originates near the jet exit plane, whereas for R4 the mode is
elevated.

The adjoint eigenmodes (figures 3b and 4b) show that the direct modes are most sensitive to y-direction momentum
forcing along the upstream side of the jet nozzle, near the jet exit. Interestingly, for R2 the wavemaker region (figure
3c-d) is localized along the upstream side of the nozzle. Conversely, R4 (figure 4c-d) is most sensitive to localized
feedback along the entire upstream shear-layer.

The wavemaker results are consistent with the notion that the upstream shear-layer region transitions from absolute
to convective instability as R changes from 2 to 4. For R2, the region most sensitive to localized feedback is dominated
by the formation of the upstream shear-layer, which is in direct contrast to case R4, which is sensitive to localized
feedback along the entire upstream shear-layer. The tonal nature of case R2 is due to the fact that the location where the
shear-layer roll-up forms is where localized feedback is strongest. Case R4 is not only weaker, but includes harmonics
due to the wavemaker region extending along the upstream shear-layer.
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(a)

(b)

Fig. 2 Isocontours of Q-criterion colored by stream-wise velocity for the instantaneous turbulent flow-field for
R = 2 (a) and R = 4 (b).

(a) ω = 0.0508 ± i0.6032 (b) ω = 0.0531 ± i0.6063

−→

y

−→z−→x

(c) Wa,b (y-z)

−→

y

−→ z

(d) Wa,b (x-y)

−→

y

−→ x

Fig. 3 The R2 upstream shear-layer linear stability (a) and adjoint sensitivity analyses (b) eigenmodes along
with their associated wavemaker (c-d). Symmetry plane contours show the vertical velocity of the baseflow v.
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(a) ω = 0.0107 ± i0.7190

−→

y

−→z−→x

(b) ω = 0.0144 ± i0.7146

−→

y

−→z−→x

(c) Wa,b (y-z)

−→

y

−→ z

(d) Wa,b (x-y)

−→

y

−→ x

Fig. 4 Similar to figure 3, but for the R4 upstream shear-layer.

(a) ω = 0.0090 ± i0.3203 (b) ω = 0.0094 ± i0.3202 (c) Wa,b (y-z)

−→

y

−→ z

(d) Wa,b (x-y)

−→

y

−→ x

Fig. 5 Similar to figure 3, but for the R2 left-leaning asymmetric eigenmodes.

B. Asymmetries in the CVP
Smith and Mungal [2] studied the JICF experimentally, and determined that at high jet-to-cross-flow ratios (R > 10)

asymmetries may form in the time-averaged CVP. Getsinger et al. [34] have also observed asymmetric mean CVP
cross-sections in their experiments. They conclude that an absolutely unstable JICF (R2) is less likely to exhibit
asymmetric mean profiles when compared to the weaker, convectively unstable JICF (R4). The reason why the JICF
behaves asymmetrically is not fully understood; specifically the reason why there is a preferential direction in certain
configurations.

In the present work, we observe significant asymmetries in some eigenmodes. The direct (a) and adjoint (b)
eigenmodes in figure 5 for case R2, and figure 6 for case R4 are left-leaning and correspond to a wavemaker region
biased towards the left side. Conversely, additional eigenmodes (not shown) are mirrored across the symmetry plane,

(a) ω = 0.0018 ± i0.1559 (b) ω = 0.0071 ± i0.1588

−→

y

−→ z

(c) Wa,b (y-z)

−→

y

−→ z

(d) Wa,b (x-y)

−→

y

−→ x

Fig. 6 Similar to figure 3, but for the R4 left-leaning asymmetric eigenmodes.
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and are right-leaning. The adjoint eigenmodes (b) are most sensitive to vertical point momentum forcing in a similar
way as the upstream shear-layers, but with biases to each side. The wavemakers (c-d) are located along the CVP, directly
behind the collapse of the jet potential core. By animating the linear stability analysis eigenmodes (not shown) it is seen
that the eigenmodes for both cases rotate with the CVP.

Linear stability analysis results for case R2 originate much closer to the jet nozzle exit compared to case R4. The
adjoint modes provide valuable information regarding the sensitivity of these asymmetric instabilities to y-direction
point momentum forcing. Note the spatial and temporal length scales that characterize the regions where asymmetric
instabilities are most sensitive. For instance, adjoint sensitivity analysis results for case R2 (figure 5b) show much longer
length scales in the circumferential direction just below the jet nozzle exit when compared to case R4 (figure 6b). This
knowledge, in conjunction with the frequency information gathered from animating (not shown) the adjoint sensitivity
analysis eigenmodes, provide valuable information regarding the best location and frequencies to excite asymmetries.

Growth rates from the linear stability and adjoint sensitivity analyses are often discussed in terms of their relative
strength. We can compute the relative strength of the asymmetric eigenmodes for each case by comparing them to
the strength of their respective upstream shear-layer growth rates. The difference ∆ωR2 between the growth rates of
asymmetric eigenmodes and the upstream shear-layer eigenmodes for case R2 is in the range 0.042 ≤ ∆ωR2 ≤ 0.047.
However, for the R4 case, the difference ∆ωR4 is in the range 0.014 ≤ ∆ωR4 ≤ 0.009. Notice ∆ωR2 > ∆ωR4 over their
entire ranges, suggesting that asymmetric modes and sensitivity to experimental asymmetries are more significant for
R4 than R2; consistent with experimental results [2, 34].

V. Summary
The sensitivity of the upstream shear-layer mode to vertical point momentum forcing is largest along the upstream

side of the jet nozzle for both cases R2 and R4. Wavemaker results are consistent with the upstream shear-layer stability
transition. For case R2, the wavemaker is localized near the jet exit, but for case R4 the wavemaker is a large region
along the upstream shear-layer, and is consistent with the transition from absolute to convective instability.

Asymmetric linear stability and adjoint sensitivity eigenmodes are observed, with left-leaning and right-leaning
direct eigenmodes being most sensitive to vertical forcing on the left- and right-sides, respectively. Additionally, the
asymmetric direct modes reside on the CVP. By examining relative growth rates, it is suggested that the asymmetric
modes are more relevant to the overall dynamics for case R4. Additionally, the spatial length-scales of the adjoint modes
provide insight for control strategies.
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