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Introduction

This paper discusses our efforts at simulating large sys-
tems of bubbles in complex geometries, with specific ap-
plication to modeling cavitation instabilities. An impor-
tant unstable regime is the transition from sheet-to-cloud
cavitation (SCC). Experiments performed by Callenaere
et al. (2001) highlight the unsteady flow structures of
SCC, which is characterized by unstable regions of va-
por bubbles that suddenly appear near the leading edge
of a hydrofoil. These bubble “clouds” violently collapse
as the free-stream pressure increases downstream of in-
ception. This collapse leads to unsteady loading and em-
anates intense acoustic waves. Also, experiments by Cec-
cio (personal communication) will investigate drag reduc-
tion in marine applications by injecting an air jet from the
face of a backward-facing step. The air jet is more stable
and therefore considered more effective at drag reduction
than a layer of micro-bubbles. This paper investigates two
methods to simulate and predict such flows: I. a one-way
coupled Lagrangian bubble model and II. the force cou-
pling method (Lomholt et al., 2002) which is extended
to account for bubble volume variation. In both methods,
the bubble dynamics are governed by the Rayleigh-Plesset
(RP) equation, which is integrated in time using a fourth-
order accurate Runge-Kutta solver (RK4) with adaptive
time stepping. The bubble models are coupled with a ro-
bust, unstructured, DNS carrier phase solver. This paper
describes our numerical approaches and compares results
between one-way and two-way coupling in channel flows.

One-way coupled Euler-Lagrangian ap-
proach

In the one-way coupled Euler-Lagrangian framework, the
bubbly flow is modeled as a dispersed phase, with indi-
vidual bubbles treated as point particles governed by an
equation for bubble motion, combined with a continu-
ous carrier phase described by DNS / LES Navier-Stokes
equations. To solve the Navier-Stokes equations for the
continuous phase, a finite-volume approach for unstruc-
tured grids (Mahesh et al., 2004) is used. This algo-

rithm assumes constant density of the carrier phase and
solves the incompressible Navier-Stokes equations using
a predictor-corrector approach. This algorithm is dis-
cretely energy conserving to ensure robustness at high
Reynolds numbers. This method is able to simulate large
numbers of bubbles in complex flows. Each bubble is
tracked individually and is characterized by its instanta-
neous position, velocity and size. Assuming the bubble
size is much smaller than the length scales of motion in
the carrier phase, the bubbles are approximated as spheri-
cal nuclei.

Various forces from the carrier fluid act upon the
bubble. These are applied to the bubble’s center of mass.
The bubble Reynolds number is assumed to be small.
Also, due to the bubble’s small size and dilute concen-
tration, it does not exert an appreciable force on the car-
rier fluid or other bubbles. This is the one-way coupling
regime. Under these assumptions, Maxey & Riley (1983)
derived an equation for small, rigid spheres. However,
as a bubble encounters pressure variations in the flow it
will respond by changing it volume. The Rayleigh-Plesset
equation is used to determine the instantaneous bubble ra-
dius as a function of pressure in the carrier fluid. A fourth-
order Runge-Kutta solver with adaptive time-stepping is
used to ensure accurate and efficient integration of the
Rayleigh-Plesset equation. To account for volume vari-
ation effects on the bubble trajectory, an additional term
by Johnson & Hsieh (1966) is added to the Maxey & Ri-
ley formulation to obtain
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with the Stokes relaxation time defined as
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To advance the bubble position in time, a 2nd-
order Adams-Bashforth time integrator is used. The bub-
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Figure 1: Unstructured mesh generated for simulation of
gas nuclei flowing over a blunt body.

ble is advanced in time for every update of the bubble ra-
dius. The material derivative of the fluid velocity is ob-
tained (Eqn. 3) at the bubble center with a tri-linear in-
terpolation in space and linear interpolation in time. The
fluid velocity, pressure and vorticity are also interpolated
to the instantaneous bubble location using the tri-linear
method.
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This approach can simulate flows with large
numbers of bubbles in complex geometries and over a
wide range of Reynolds numbers. By using the Rayleigh-
Plesset equation to describe the radial response of the
bubble, this model can be extended to flows with large
pressure fluctuations (such as cavitating flows). Including
the Rayleigh-Plesset ordinary differential equation pro-
vides some numerical challenges, especially when solv-
ing systems with large numbers of bubbles since it must
be solved for each individual bubble. The bubble os-
cillation timescales can become much smaller than the
timescales of the carrier fluid. To solve the RP equation,
a variable-timestep 4th order accurate (in time) Runge-
Kutta integration scheme is applied. This allows reso-
lution of the small bubble timescales during oscillations
with small, accurate timesteps and also boosts efficiency
by increasing the timestep when the bubble is near equi-
librium (Babu, 2007).

Gas nuclei trajectories over a blunt body
Johnson & Hsieh (1966) numerically studied gas nuclei
traversing a two-dimensional blunt body. Assuming po-
tential flow for the fluid, Johnson & Hsieh obtained an
analytical solution for fluid velocity and pressure. A La-
grangian equation for bubble dynamics was derived and
coupled with the fluid phase to obtain an ordinary differ-
ential equation for the bubble motion.

Using the Euler-Lagrangian model coupled with
the single-phase Navier-Stokes solver, similar results are
obtained while not assuming potential flow. The bubbles
are assumed to be small and spherical, with a radius that
can vary due to pressure fluctuations. Bubbles are injected
upstream of the blunt body. They then travel downstream
and around the obstacle in response to the pressure gradi-
ent and drag forces. In an Euler-Lagrangian framework,
the bubble velocity is given in Johnson & Hsieh (1966) as
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The first term on the right hand side in Eqn. 4
is the pressure gradient term. The bubbles are repulsed
from areas of increasing pressure and attracted by favor-
able pressure gradients. The second term includes volume
variation effects. For this problem, the volume variation
term is neglected, as in Johnson & Hsieh (1966). The last
term includes the bubble drag. An empirical relation for
the drag coefficient of small, spherical particles by Haber-
man & Morton (1953) is used.

CD =
24
R

(
1 + 0.197Reb

0.63 + 2.6×10−4Reb
1.38
)
(5)

Note that as Reb→ 0 then the drag relation ap-
proaches the Stokes limit of CD = 24/R. The bubble
Reynolds number (Reb), fluid Reynolds number (Ref ),
Weber number (We) and the vapor cavitation number
(σv) are defined as
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R |ui − Vi|
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with h defined as the width of the blunt body, and
Uo as the freestream velocity value. Simulating the
Reynolds number given by Johnson & Hsieh (Ref =
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Figure 2: Comparison of bubble trajectories to Johnson &
Hsieh, with σv = 0.4. The data by Johnson & Hsieh is
given in (a) by the filled circles, with yo/h = 0.05 (•),
yo/h = 0.1 (•) & yo/h = 0.2 (•). Figure (b) plots bubble
trajectories along with pressure color contours and veloc-
ity streamlines. Red represents high pressure and blue low
pressure.

238, 095) requires resolving the very thin laminar bound-
ary layer. To reduce the computational requirements, the
fluid Reynolds number was reduced to a level that is rea-
sonable to resolve but still achieves good agreement with
the analytic velocity field.

After progressively increasing the Reynolds
number, results showed that a Reynolds number ofRe∗ =
104 provides good agreement for the flow field. The bub-
ble velocity equation and Reb still retain the original vis-
cosity term. Also, the vapor cavitation number (σv) is 0.4
and the Weber number is 976. The vapor pressure pv is
assumed to be negligible, so the reference pressure term
becomes po = σvρfUo

2/2.
The grid contains 261, 600 hexagonal control

volumes, with an initial wall-normal distance of 0.005h.
The grid extends from −25 ≤ x/h ≤ 50 and −25 ≤
y/h ≤ 25. Three control volumes resolve the space be-
tween the periodic faces (in the z-direction). Figure 1 de-
picts the resolution of the mesh. Figure 1a shows the grid

in its entirety, while Figure 1b shows the boundary layer
resolution.

Three bubbles are introduced at a streamwise
distance of xo/h = −10, and injected at three differ-
ent vertical positions (yo/h = 0.2, 0.1 & 0.05). The bub-
bles follow the streamlines until they approach the blunt
body. The bubbles are then repelled from the blunt body
by the adverse pressure gradient and no longer follow
the fluid streamlines. Also, the bubble radii are decreas-
ing in the high pressure regions as the bubble attempts
to achieve pressure equilibrium. Eventually the bubble
trajectory brings it around the bluff body into the low-
pressure region, where the bubble grows. Figure 2a plots
the bubble trajectories and demonstrates good agreement
between the Euler-Lagrangian simulation (black dots) and
the Johnson & Hsieh results (large colored dots). The col-
ors represent the initial injection position, with red dots
for yo/h = 0.05, blue dots for yo/h = 0.1 and green
dots for yo/h = 0.2. Fluid streamlines, pressure color
contours and bubble trajectories are given in Figure 2b.
The color contour gives the relative pressure magnitude,
over a scale from high (red) to low (blue). In compar-
ing to the numerical investigation by Johnson & Hsieh,
the Euler-Lagrangian method coupled with the Rayleigh-
Plesset equation accurately reproduces results for the flow
of gas nuclei about a blunt body.

Force coupling method

An alternative to the Euler-Lagrangian approach is the ap-
proximate force coupling method (FCM). This method
has been developed and tested recently by Maxey et al.
(1997), Maxey & Dent (1998), Dent (1999), Lomholt
(2000), Maxey & Patel (2001) and Lomholt et al. (2002).
It extends the Euler-Lagrangian formulation from one-
-way coupling to two-way coupling without needing to
resolve the smallest scales of the flow near the bubbles.
As in the one-way coupled Euler-Lagrangian framework,
the bubbly flow is modeled as a dispersed phase, with
individual bubbles treated as point particles governed by
an equation for bubble motion, combined with a continu-
ous carrier phase described by DNS / LES Navier-Stokes
equations. To solve the Navier-Stokes equations for the
continuous phase, the finite-volume approach by Mahesh
et al. (2004) is used. Each bubble is tracked individually
and is characterized by its instantaneous position, velocity
and size.

ConsideringN number of spherical particles, the
coupling is implemented as a source term in the momen-
tum equation. The force and/or torque exerted by each
bubble on the carrier phase can be described by a force
monopole (Fi) and a force dipole (Fij) and act as an equal
and opposite force and/or torque on the bubble itself. The
entire domain, including the volume occupied by the par-
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Figure 3: Comparison of bubble trajectories and veloci-
ties with experiment. The simulation quantities are repre-
sented by small black square (�) and experimental quan-
tities are represented by larger red squares (�). Figure
(a) plots the advance of the particle position, while figures
(b) and (c) plot the particle streamwise and stream-normal
velocities vs. y-position, respectively.

ticles, is considered an incompressible fluid and governed
by
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The fluid velocity is given as u, fluid density as
ρf , fluid pressure as p and µ denotes the fluid dynamic
viscosity. As a first approximation, fluid torque and strain
acting from the fluid on the bubble are ignored and the
force dipole term is neglected. The force monopole term
is integrated over the entire domain and normalized by the
Gaussian envelope function
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which decreases exponentially as the distance from the
bubble centroid increases. The Gaussian term (σ) is re-
lated to the bubble radius by

σ =
√
π

R
≈ 1.77

R
. (9)

The force monopole is equal and opposite to the body
force from the fluid applied to the bubble. In general, this
force is
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)
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where Vp denotes the bubble volume, ρb the bubble den-
sity, ρf the fluid-phase density and ~g the gravitational ac-
celeration. An extra forcing term, not included in this iter-
ation, may be included to restrict bubbles from occupying
the same volume. For this paper it is assume that buoy-
ancy dominates the inertial forces, and only the gravity
term is used. The bubble velocity ~V n is obtained through
localized averaging of the fluid velocity and given by

Vi
n (t) = ũi =

∫
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(
~x− ~Y n

)
d3~x. (11)



Table 1: Experimental values

Case ρf (g/cm3) ρp(g/cm3) θ(◦) ν(mm2/s)
1 1.115 1.081 8.23 3.125

Table 2: Domain parameters

Case Lx × Ly × Lz Nx ×Ny ×Nz

1 10× 1× 4 512× 48× 96

For both the bubble velocities and force
monopole, the Gaussian envelope function is integrated
over the entire domain. To advance the bubble posi-
tion in time, a 2nd-order Adams-Bashforth time integra-
tor is used. The bubble position is integrated every fluid
timestep. The force coupling method thus efficiently mod-
els the two-way coupling between the bubble and the
fluid.

Single sphere rising in an inclined channel
The force coupling method is validated for a single solid
sphere rising in an inclined channel. A corresponding ex-
periment was performed by Lomholt et al. (2002), with
a setup composed of a rectangular channel with height
Lx = 150 mm, width Ly = 10 mm and depth Lz = 100
mm. A single particle is released near the center of the
channel and tracked using a standard CCD camera. From
the visual data, particle position and velocity can be de-
termined. The channel can be rotated about the spanwise
axis by an angle θ to achieve the desired configuration.
A mixture of glycerol and water was used for the fluid to
achieve the desired fluid properties. The particles were
polymid spheres with a uniform, known density and size.
The particle has a constant radius R/Ly = 0.1. Tables 1,
2 and 3 show the physical and computational parameters
used.

The computational grid is uniform and has Nx,
Ny and Nz control volumes in each respective spatial di-
mension. The grid is periodic in the spanwise and stream-
wise directions. Increasing mesh resolution or reducing
timestep was observed to have no effect on the simulation
results. The Reynolds number scaling based on the Stokes
setting velocity W is defined as
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Figure 4: Comparison of two modeling approaches for
Ref = 85.45. The force coupling method quanti-
ties are represented by black squares (�) and the Euler-
Lagrangian results are represented by red diamonds (♦).
Figure (a) plots the advance of the bubble position, while
figures (b) and (c) plot the bubble streamwise and stream-
normal velocities vs. y-position, respectively.



Table 3: Non-dimensional parameters

Case Ref = LyUo/ν Fr = |g|Ly/Uo
2 ReS

p

1 32.0 982.0 13.6

Figure 3 compares the computational results to
experiment. Computational results are depicted with
small black squares and experimental results are larger
red squares. Figure 3a plots the streamwise particle po-
sition versus wall-normal position, while Figures 3b and
3c plot the streamwise and wall-normal particle velocities,
respectively.

The experimental and computational results
show fair agreement. Due to buoyancy, the particle ini-
tially (y/Ly < 0.2) moves in the direction of the grav-
itational acceleration. For y/Ly < 0.2, the computed
particle follows the experimental trajectory, although the
streamwise velocity is somewhat lower. As the particle
approaches the wall, the rise velocity decreases. Here the
computed wall-normal velocity is first higher, then lower,
than the experimental values. This results in the slight tra-
jectory differences. As the particle continues to approach
the wall (y/Ly > 0.2) both the streamwise and wall-
normal velocities decrease. Eventually the particle comes
to rest as it contacts the wall. Including dipole forces in
the force coupling method formulation would better re-
solve the fluid stresses as the particle nears the wall and
lead to more accurate results (Lomholt et al., 2002). As a
first approximation, the monopole force coupling method
is reasonably accurate and efficient.

Comparing the FCM and EL approaches

The two approaches are compared for laminar flow. The
first computation simulates a single bubble rising in a uni-
form flow, and the second models the injection of a bub-
ble/air mixture in laminar channel flow. For these sim-
ulations, parameters were chosen to reflect laminar flow
of small bubbles in seawater. The dimensional values are
shown in Tables 4 and 5 and domain and non-dimensional
parameters are given in Tables 6 and 7. The single bubble
problem is listed in the tables as Case 1 and the laminar
injection problem as Case 2. In the injection problem, the

Table 4: Physical parameters

Case ρf (g/cm3) S(N/m) ν(mm2/s) h(mm)
1 1.03 0.00734 1.17 2
2 1.03 0.00734 1.17 2

Table 5: Physical parameters (ctd.)

Case Uo(m/s) po×10−5(Pa) R(mm)
1 0.1 1 0.05
2 0.1 1 0.05

Table 6: Domain parameters

Case Lx × Ly × Lz Nx×Ny×Nz

1 4×1×0.5 192×48×24
2 2×2×1 98×98×48

difficulties involve resolving high concentrations of bub-
bles and requires modeling bubble-fluid interactions. The
one-way coupled EL approach does not account for this
two-way coupling effect, while the FCM approach mod-
els the interaction to a reasonable accuracy. Due to the
effects of large bubble concentrations, we see differences
between the EL and FCM approaches.

Single bubble rising in a uniform flow

A single bubble rising in a channel with uniform stream-
wise velocity is simulated using both approaches. A slip
velocity of unity is implemented at the walls to ensure
uniform velocity near the boundaries. The bubble is intro-
duced near the inflow at x/h = 0.25 and y = z = 0. The
simulation is run with a constant timestep on a uniform
grid. The bubble radius is initialized as R/h = 0.05 and
remains constant for the duration of the simulation. Re-
fining the grid or reducing the timestep does not change
the results. The bubble travels downstream and rises due
to buoyancy. As the bubble approaches a constant ter-
minal velocity, the bubble Reynolds number, Reb, be-
comes small and we approach the Stokes flow regime. In
the Stokes regime, the bubble reaches a terminal veloc-
ity of (gdb

2)/(18ν) ≈ 0.92. Figure 4 plots results for
Ref = 85.45. Differences between the different models
can be seen in the position and Vy velocity plots, while
both exhibit equal streamwise velocities. The EL simula-
tion reaches terminal velocity much earlier than the FCM
simulation and also approaches the theoretical Stokes ter-

Table 7: Non-dimensional parameters

Case We Ref Fr ReS
p

1 0.07 85.45 1.964 0.8
2 0.07 85.45 1.964 0.8
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Figure 5: Fluid velocity color contours at a planar cut of
z/h = 0 in laminar channel flow. Bubble positions are
represented by circles.

minal velocity. In the FCM approach, the streamwise ve-
locity is resolved but the Vy component is less than the
Stokes limit. This is primarily due to the same feature
that can be seen in the FCM validation results. For a low
ReS

p , viscous stresses and strains become important and
the force dipole should be included in the general fluid
equation for FCM. Since the dipole and higher-order force
coupling terms are neglected, the stresses around the bub-
ble is not entirely resolved, resulting in a reduced termi-
nal velocity for the monopole results. This simulation was
also performed with Ref = 10 and Ref = 1 and no sig-
nificant improvement of differences between the EL and
FCM approaches were observed.

Bubble injection into laminar channel flow
This section compares the EL and FCM models for lam-
inar channel flow with high bubble concentration. Bub-
bles (at equilibrium) are introduced randomly into the bot-
tom half of the inflow of a laminar channel. The top
and bottom boundaries are zero-slip walls and the span-
wise boundaries are periodic. A zero-gradient boundary
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Figure 6: Fluid vorticity color contours at a planar cut of
z/h = 0 in laminar channel flow. Bubble positions are
represented by circles.

condition is applied for the outflow plane. The point-
particle Euler-Lagrangian and force coupling method are
run in tandem to compare results. Due to two-way cou-
pling effects, differences exist between the results of each
method.

The laminar channel is initialized with a
parabolic streamwise velocity profile. A parabolic Vx pro-
file is continuously specified at the inflow plane. A con-
stant timestep of ∆t = 0.0002 is used, and a bubble is
injected randomly into the bottom half of the inflow plane
every 15 timesteps. This simulation was run for 15000
timesteps. Figures 5-8 show the results from the force
coupling method results at timestep 15000. Each figure
represents a planar cut of the domain and the relevant fluid
parameter plotted using a color contour, along with the
position of bubbles within a distance of one radii from the
respective cut.

The bubbles rise as they are carried from left
to right by the streamwise momentum. For the bubbles,
the pressure changes are small and each bubble radius
remains nearly constant. Bubbles with low streamwise
velocity (near the bottom wall) accumulate near the wall
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Figure 7: Fluid velocity color contours at a planar cut of y/h = −0.25 in a laminar channel. Bubble positions are
represented by circles.
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Figure 8: Fluid vorticity color contours at a planar cut of
y/h=−0.25 in a laminar channel. Bubble positions are
represented by circles.

but eventually rise and become entrained into the higher-
speed flow. The fluid streamlines deviate from their initial
orientation (pointing directly downstream) due to the ris-
ing bubbles influencing the fluid flow. Figure 5 plots the
fluid velocities and Figure 6 plots the fluid vorticity in the
plane z/h = 0. The flow is clearly three-dimensional,
though the streamwise momentum still dominates the
flow. A small grouping of bubbles propel themselves up-
wards quite dramatically at (x/h, y/h) = (0.4,−0.55).
The close proximity of the bubbles creates an additive ef-
fect of each bubble in the force coupling to produce the
strong rise velocity.

In Figure 6 the x and z components of vortic-
ity are dominant, with ωz appearing “dipole-like” around
bubble clusters. For example, each bubble cluster has a lo-
cal maximum of ωz on its left-hand side, and a local min-
imum on its right-hand side. These are due to the strong
gradients in the Vy velocity, both in the streamwise and
spanwise directions. Figures 7-8 show results for an x−z
planar cut at y/h = −0.25. The flow is clearly three-
dimensional. Portions of the flow-field with grouping of
bubbles tend to have larger rise velocities than individual
bubbles themselves. The dominant x and z components
of vorticity are also observed here and due to the strong
gradients of Vy . In comparison, the one-way coupled EL
approach does not predict the three-dimensionality of the
flow since there is no mechanism for the bubble to act on
the fluid phase.

A comparison of results shows differences be-
tween the EL and FCM methods for the bubble behavior.
In general, both show the bubbles rising as they are carried
downstream. However, near the bottom wall at the injec-
tion plane, higher concentrations of EL bubbles reside and
persist for some distance downstream. The force coupling
method modifies the flow and causes the low-momentum
layer near the wall to grow towards midstream. This im-
plies that the FCM bubbles near the wall are more inclined
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Figure 9: Bubble velocities at a planar cut of y/h=−0.25
in laminar channel flow. Euler-Lagrangian results repre-
sented by red boxes (�), and the force coupling method
results by black boxes (�).
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Figure 10: Bubble velocities at a planar cut of y/h =
−0.5 in laminar channel flow. Euler-Lagrangian results
represented by red boxes (�), and the force coupling
method results by black squares (�).



to travel vertically than the EL bubbles.
The force coupling influence is also observed

when comparing the individual bubble velocities. Fig-
ures 9-10 plot bubble velocity along x in constant y−z
planes. Again, bubbles within a distance of one radii are
included. Figure 10 shows the bubble velocities near the
wall (y = −0.5). The streamwise velocities fluctuate
similarly for both methods. For Vy , the FCM approach
shows a wide variation between bubbles, while the EL
approach reveals that the bubbles reach a steady-state rise
velocity quite rapidly, which remains constant throughout
the domain. Also, the FCM bubbles have a some finite
but uncorrelated Vz with position, while the EL bubbles
have a zero spanwise velocity. Moving upwards in the y-
direction, the velocity maximums for the FCM approach
become more correlated with increasing streamwise po-
sition. For example, for the y/h = −0.25 plane, the Vy

maximum is at x=1.4, while at y=−0.5 plane the max-
imum velocities are withing the first half of the domain.
These peaks in velocity can be attributed to grouping of
bubbles rising en mass, as discussed above. This fea-
ture cannot be reproduced by the one-way coupled Euler-
Lagrangian approach.

Conclusion

Two numerical approaches are developed for modeling
large systems of bubbles in complex geometries on un-
structured grids, with application to modeling sheet-to-
cloud cavitation. Both the point-bubble Euler-Lagrangian
solver and the extended force coupling method were
tested and validated. The Euler-Lagrangian approach is
accurate in flows with low bubble concentration, while the
force coupling method is able to account for bubble-fluid
interactions at large bubble concentrations. As a method
to simulate flows with dense and unstable regions of bub-
ble clouds, such as sheet-to-cloud cavitation, the mod-
ified force coupling method appears promising. Future
work in our efforts towards simulating cavitating flow in-
cludes adding a force dipole term and including the gen-
eral monopole equation for the force coupling method and
developing a two-way coupled void-fraction extension to
the point-particle Lagrangian method.
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Nomenclature

Roman symbols

x, y, z Coordinate axes, coordinates
Re Reynolds number
We Weber number
Fr Froude number
~g Gravity vector
~x Eulerian position vector
R(t) Bubble/particle radius
d(t) Bubble/particle diameter
~Y (t) Bubble/particle position vector
~u(~x, t) Fluid velocity vector
~V (t) Bubble/particle velocity vector
p(~x, t) Fluid pressure
m Mass occupied by bubble/particle
CD Drag coefficient
U Reference velocity
S Surface tension
~F (~x, t) Force monopole

Greek symbols

ρ Density
µ Dynamic viscosity
ν Kinematic viscosity
σv Vapor cavitation number
σ Gaussian length scale
~ω(~x, t) Vorticity vector
∆t Timestep

Subscripts

( )f of the fluid, used as ρf

( )p of the particle, used as ρp

( )b of the bubble, used as τb
( )o of the freestream, used as Uo

( )v of the vapor, used as pv

Superscripts

( )n of a specific particle/bubble, used as Y n

Abbreviations

DNS Direct Numerical Simulation
EL Euler-Lagrangian
FCM Force Coupling Method
LES Large-Eddy Simulation
SCC Sheet-to-Cloud Cavitation
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