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ABSTRACT

Large eddy simulation (LES) using the dynamic
Smagorinsky model (DSM) (Germano et al., 1991)
and discretely kinetic energy conserving numerical
methods (Mahesh et al., 2004) has successfully pre-
dicted complex flows such as gas turbine combus-
tors and marine propulsor crashback (e.g. VySohlid
and Mahesh (2005); Chang et al. (2008); Jang and
Mahesh (2010, 2012); Verma et al. (2012)). This
paper discusses two developments towards reliably
using LES for inhomogeneous and attached flows:
(1) a dynamic Lagrangian model where a dynamic
procedure is proposed for the Lagangian timescale
and (2) a wall model where in addition to the
Germano-identity error, external Reynolds stress is
also imposed as a constraint on the ensemble-average
subgrid-scale stress. Both developments are for un-
structured grids.

INTRODUCTION

Many practical flows of engineering interest such as
flow past a submarine, ship wakes, etc. are high
Reynolds number (Re) flows. It has been estimated
that the grid requirement for a Direct Numerical
Simulation (DNS) scales with the Reynolds number
as Re?/ * High Reynolds number flows exhibit such
a large range of length and time scales that DNS are
rendered impossible for the foreseeable future. Large
eddy simulation (LES) is a viable analysis and design
tool for complex flows due to advances in massive
parallel computers and numerical techniques. LES is
essentially an under-resolved turbulence simulation
using a model for the subgrid-scale (SGS) stress to
account for the inter-scale interaction between the
resolved and the unresolved scales. The success of
LES relies on the dominance of the large, geometry
dependent, resolved scales in determining important
flow dynamics and statistics.

In LES, the large scales are directly accounted

for by the spatially filtered N-S equations and the
small scales are modeled. The spatially filtered in-
compressible Navier-Stokes equations are
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where z; denotes the spatial coordinates, u; is the
velocity field, p is the pressure, v is the kinematic
viscosity, () denotes the spatial filter at scale A and
Tij = Uw; — U;u; is the SGS stress.

It is generally assumed that small scales are
more universal and isotropic than large scales; eddy
viscosity type SGS models are therefore widely used
in LES. The original Smagorinsky model (Smagorin-
sky, 1963) is a simple model for the SGS stress in
terms of the local resolved flow
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where C is a global, adjustable, model coefficient,
A is the filter width, S;; is the strain rate tensor,
|S| = (25,;5:;)/? and v, = (CsA)?|S| is the eddy-
viscosity.

The Dynamic Smagorinsky model (DSM) (Ger-
mano et al., 1991) is a widely used model. Tt is based
on the Germano identity and dynamically computes
the model coefficient from the resolved flow and al-
lows it to vary in space and time. The dynamic
procedure to obtain the SGS model coefficient Cf
attempts to minimize the Germano-identity error

(GIE),
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where 6 denotes test filtering at scale A and is

usually taken to be A = 2A, deviatoric parts (de-
noted by ()¢) of 7;; and T;; are modeled by using



the Smagorinsky model at scales A and 37 M;; =
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Since €;;(Cs) = 0 is a tensor equation, Cj is
overdetermined. The original DSM due to Germano
et al. (1991) satisfies ¢;;5;; = 0 to obtain Cy. Lilly
(1992) found the equations to be better behaved
when minimizing €;; in a least-square sense, yield-
ing
(LijMij)

(C,A)? = (M, M) (4)

where (-) denotes averaging over homogeneous direc-
tion(s) and was required to regularize Cj.

However the requirement of averaging over at
least one homogeneous direction is impractical for
complex inhomogeneous flows. To enable averaging
in inhomogeneous flows, Meneveau et al. (1996) de-
veloped a Lagrangian version of DSM (LDSM) where
C; is averaged along fluid trajectories. Lagrangian
averaging is physically appealing considering the La-
grangian nature of the turbulence energy cascade
(Meneveau and Lund, 1994; Choi et al., 2004).

In essence, the Lagrangian DSM attempts to
minimize the pathline average of the local GIE
squared. The objective function to be minimized
is given by

E= €;j(z)ei;(z)dz
pathline
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where z is the trajectory of a fluid particle for earlier
times ¢’ < ¢t and W is a weighting function to control
the relative importance of events near time ¢, with
those at earlier times.

Choosing the time weighting function of the
form W(t—t') = T~ 'e~(t=1)/T yields two transport
equations for the Lagrangian average of the tensor
products L;;M;; and M;;M;; as Zry and Zprar re-
spectively:

= i = (LiM;: — T ’
Dt ot gy, = Ll —Tiv)
— . = — (M Mi; — Tasar)-
Dt ot U o, T( i1Mij = Tarn)
(6)
whose solutions yield
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Here T is a time scale which represents the ‘memory’
of the Lagrangian averaging. Meneveau et al. (1996)

proposed the following time scale:

T =0AZpnZyn) ™Y 0=15 (8)

This procedure for Lagrangian averaging has also
been extended to the scale-similar model by An-
derson and Meneveau (1999); Sarghini et al. (1999)
and the scale-dependent dynamic model by Stoll and
Porté-Agel (2006).

DYNAMIC LAGRANGIAN TIME SCALE

The time scale for Lagrangian averaging proposed
by Meneveau et al. (1996) (henceforth, 77, psas) con-
tains an adjustable parameter which is typically cho-
sen to be § = 1.5. This value was chosen based on
the autocorrelation of L;; M;; and M;; M;; from DNS
of forced isotropic turbulence. This arbitrariness is
acknowledged to be undesirable by the authors and
infact they document results of turbulent channel
flow at Re, = 650 to be marginally sensitive to the
value of 0, with 6 = 1.5 appearing to yield the best
results. You et al. (2007) tested three different values
of the relaxation factor # and concluded 17, psys was
‘reasonably robust’ to the choice of 8 for a Re, = 180
channel flow. Over the years, choosing a value for
f has demanded significant consideration by many
practitioners who have found the results to be sensi-
tive to 6, especially in complex flows (Inagaki et al.,
2002).

The extension of the Lagrangian averaging pro-
cedure to other models has also presented the same
dilemma. In simulations of turbulent channel flow
at Re;, = 1050 using a two-coefficient Lagrangian
mixed model, Anderson and Meneveau (1999) and
Sarghini et al. (1999) note that a different param-
eter in Trpsa might be required for averaging the
scale similar terms. Vasilyev et al. (2008) proposed
extensions to the Lagrangian dynamic model for a
wavelet based approach and used § = 0.75 for in-
compressible isotropic turbulence.

Park and Mahesh (2009) note that T psas has a
high dependence on the strain rate through the L;;
and M;; terms. They however show that the time
scale of the GIE near the wall and the channel cen-
terline are similar. Thereby they argue that strain
rate may not be the most appropriate quantity for
defining a time scale for Lagrangian averaging of the
GIE. It seems only natural that the averaging time
scale should be the time scale of the quantity being
averaged which in this case is the GIE. Park and
Mahesh (2009) therefore, proposed a dynamic time
scale Tsc, called “surrogate-correlation based time
scale” Tsc.



However the Park and Mahesh (2009) formu-
lation was in the context of a spectral structured
solver, and considered their dynamic Lagrangian
time scale model along with their proposed control-
based Corrected DSM. The present work considers
the dynamic Lagrangian time scale model in the ab-
sence of control-based corrections. This procedure
for computing a dynamic Lagrangian time scale is
extended to an unstructured grid framework.

Surrogate-correlation based time scale

Let us assuming knowledge of the local and instan-
taneous values of the GIE squared (€ = ¢;;¢;;) at
five consecutive events along a pathline:

&o = &(x,1), g+l = E(x + ult,t + At), 9)
EF? = £(x £ 2ut, t + 2At).

At each location, the following surrogate Lagrangian

correlations for three separation times (0, At, 2A¢)

can be defined by computing a running time average
upto the current time t,,:
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This leads to converged correlations after sufficiently
long times and is a consistent and general method
to compute the surrogate Lagrangian correlations.
These correlations are then normalized by the zero-
separation correlation C(0) to obtain

C(At) C(2At)
(A =25y o)
(11)
An osculating parabola can be constructed passing
through these three points and it can be described
by

p(0) =1, p(2At) =

p(6t) = a(6t)* + b(dt) + 1 (12)

where a,b can be written in terms of p(0) =
1, p(At), p(2At) and At. Note that p(dt) is an ap-
proximate correlation function (of separation time
ot) for the true Lagrangian correlation. Thus the
time scale based on the surrogate correlation Ts¢c is
defined as the time when p(dt) = 0 i.e. the positive

solution
—b—Vb%2 —4a
. (13)
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If the surrogate Lagrangian correlations C have
enough samples, 1 > p(At) > p(2At) is satisfied

Tsc =

which leads to a < 0. As a result Tsc is always
positive. In the initial stages of a simulation, there
are not enough time samples. 1 > p(At) > p(2At)
may not be satisfied and a could be positive. In such
cases, Ts¢ is obtained by constructing the osculating
parabola to be of the form 1 + a(6t)? and passing
through either of the two points p(At), p(2At):

dt 2dt
V1- ) V1 - p(2At)

The minimum of the time scales is chosen so that the
solution has lesser dependence on past values and
can evolve faster from the initial transient stage.

TSC = mm(

) (14)

Lagrangian approximation

The proposed dynamic time scale requires the values
of the Germano-identity error (GIE) squared &£ at
five events along a pathline. Rovelstad et al. (1994)
suggest the use of Hermite interpolation. Meneveau
et al. (1996) use multilinear interpolation to obtain
the values of Zy s and Zysp at a Lagrangian loca-
tion. Both Hermite and multilinear interpolation get
expensive in an unstructured grid setting. The use
of an expensive interpolation method just to com-
pute the time scale for Lagrangian averaging may be
unnecessary. As a result, a simple material deriva-
tive relation as proposed by Park and Mahesh (2009)
is used to approximate Lagrangian quantities in an
Eulerian framework :
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A simple first order in time and central second order
in space, finite-volume approximation for the con-
vective term is used to approximate values of £ in
eqn. 9 in terms of the local £(x,t) = £%" and
E(x,t — At) = £%"~1 The Green-Gauss theorem
is used to express the convective term in conserva-
tive form and evaluate it as a sum over the faces of
a computational volume.

NUMERICAL METHOD

Eq. 1 is solved by a numerical method developed
by Mahesh et al. (2004) for incompressible flows
on unstructured grids. The algorithm is derived to
be robust without numerical dissipation. It is a fi-
nite volume method where the Cartesian velocities
and pressure are stored at the centroids of the cells
and the face normal velocities are stored indepen-
dently at the centroids of the faces. A predictor-
corrector approach is used. The predicted velocities



LES
Case Re, N, x N, x N, Azt Azt Ay Ayeen/0
590c 590 64 x 64 x 64 o8 29 1.6 0.08
590tl 160 x 84 x (200, 100) 23.2 9.3,18.5 1.8 0.04
1ktl 1000 160 x 84 x (200, 100) 39.3 15.8,31.4 3.1 0.04
2ktl 2000 | 320 x 120 x (400,200,100) | 39.3 15.7,31.4,62.8 2.0 0.04
DNS
Moser et al. (1999) 587 384 x 257 x 384 9.7 4.8 - 0.012
del Alamo et al. (2004) 934 — X 385 x — 11 5.7 - -
Hoyas and Jimenez (2006) | 2003 — X633 x — 12 6.1 - -

Table 1: Grid parameters for turbulent channel flow.

at the control volume centroids are first obtained
and then interpolated to obtain the face normal ve-
locities. The predicted face normal velocity is pro-
jected so that the continuity equation in eq. 1 is
discretely satisfied. This yields a Poisson equation
for pressure which is solved iteratively using a multi-
grid approach. The pressure field is used to update
the Cartesian control volume velocities using a least-
square formulation. Time advancement is performed
using an implicit Crank-Nicolson scheme. The algo-
rithm has been validated for a variety of problems
over a range of Reynolds numbers (Mahesh et al.,
2004). To improve results on skewed grids, the vis-
cous terms and the pressure Poisson equation are
treated differently. The Generalized Improved De-
ferred Correction method by Jang (2011) is used to
calculate the viscous derivatives and the right-hand
side of the pressure Poisson equation.

RESULTS: LAGRANGIAN DSM

The performance of the Lagrangian DSM with dy-
namic time scale Tso (eq. 13) is evaluated by ap-
plying it to problems of increasing complexity: tur-
bulent channel flow, cylinder flow, and flow past a
marine propulsor attached to an upstream hull, op-
erating in an off-design condition.

Turbulent channel flow

LES of a turbulent channel flow is performed at three
Reynolds numbers; Re, = 590, 1000,2000 and dif-
ferent grid resolutions. Here Re, = u,d/v where u.,
denotes friction velocity, ¢ channel half-width and
v viscosity. Table 1 lists the Re, and grid distri-
bution for the various runs. All LES cases have a
domain of 27 x 26 x 274 and a uniform spacing in
x. The cases with ‘t]’ indicate that a 4 : 2 transi-
tion layer has been used in z along y. A transition

layer allows transition between two fixed edge ratio
computational elements. It allows a finer wall spac-
ing to coarsen to a fixed ratio coarser outer region
spacing. All other cases have a uniform spacing in z.
Our LES results are compared to the DNS of Moser
et al. (1999) for Re, = 590, del Alamo et al. (2004)
for Re; = 1000, and Hoyas and Jimenez (2006) for
Re,; = 2000 whose grid parameters are also included
in the table for comparison. Note that the LES have
employed noticeably coarse resolutions.

It will be shown that Lagrangian averaging us-
ing Tsc is able to predict better results and achieve
the regularization effect of plane averaging while re-
taining spatial localization. For a given problem,
as the grid becomes finer, the results obtained us-
ing different averaging schemes for DSM tend to be-
come indistinguishable from one another. On a fine
grid, the effect of averaging and Lagrangian averag-
ing time scale is small. Case 590c is a very coarse
grid and shows difference between the different av-
eraging schemes. Fig. 1(a) shows that the mean ve-
locity shows increasingly improving agreement with
DNS as the averaging scheme changes from aver-
aging along homogeneous directions (plane) to La-
grangian averaging using 17 psy and finally Tse.
Note that though 6 = 1.5 was chosen for T, psar,
using 6§ = 3.0 produced results only marginally dif-
ferent (not shown). This just re-affirms that T psas
is marginally sensitive to the choice of 6 for the
given problem. The fact that Lagrangian averag-
ing performs better than plane averaging has been
demonstrated by Meneveau et al. (1996) and Stoll
and Porté-Agel (2008). The present results show
that using Tsc as the time scale for Lagrangian av-
eraging yields as good as or even better results.

Stoll and Porté-Agel (2008) report that the La-
grangian averaged model using T, psys has approx-
imately 8% negative values for vy compared to 40%
for the locally smoothed (neighbor-averaged) model
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Figure 1: Comparison of time scales from case 590c:
(a) mean velocity, (b) percentage of negative eddy
viscosity.

Figure 2: Turbulent channel flow : Instantaneous
contours of Germano-identity error g = (GIE/u2)?,
YZ plane, contours vary as 0 < g < 3.
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Figure 3: Comparison of time scales from case 590c.

in their simulations of stable atmospheric boundary
layer. The percentage of time that v; is negative in
our computations is shown in fig. 3(a). Plane aver-
aged v; was never negative and hence is not plotted.
Clearly, 14 averaged using Tsc has the least number
of negative values up until 4™ ~ 100 (which contains
50% of the points). Even after y* ~ 100, v, averaged
using Tsc has lesser negative values than Trpgas
with 8 = 1.5. It is also observed that increasing 6
reduced the number of negative values, as expected
intuitively. Therefore, Tsc is able to achieve the
smoothing effect of plane averaging while retaining
spatial localization.

For this kind of relatively coarse near-wall res-
olution, GIE is expected to be high near the wall
(as shown in fig. 2) and in addition, remain corre-
lated longer because of the near-wall streaks. This
results in a high correlation of GIE near the wall
which leads to to a higher Lagrangian time scale.
Consistent with this, fig. 3(b) shows that Tsc is
much higher near the wall than T pgps. On closer
inspection, Tsc is actually found to overlap with
Trpsar, 0 = 3.0 for almost half the channel width.
For this particular computation, 8 = 3.0 is therefore
a preferable alternative to # = 1.5. This makes it en-
tirely reasonable to suppose that other flows might
prefer some other 6 than just 1.5. The dynamic pro-
cedure used in this paper alleviates this problem.

It must be noted that computing a dynamic Tsc
for Lagrangian averaging the DSM terms does not
incur a significant computational overhead. For case
590c, the total computational time required for com-
puting Tsc and then using it for Lagrangian aver-
aging of the DSM terms is just 2% more than that
when no averaging is performed.
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Figure 4: Turbulent channel flow : Case 590tl (a)
mean velocity, (b) rms velocity fluctuations.

A wall-resolved LES is performed using an un-
structured zonal grid, which has a transition layer in
Z along Y (case 590tl). Figs. 4(a)-(b) show that the
results are in good agreement. The statistics (fig.
4(b)) have a small kink around y* ~ 140 where the
grid transitions. This kink in the statistics is an ar-
tifact of numerical discretization and grid skewness
and is present even when no SGS model is used.

The proposed model (eq. 13) is applied to tur-
bulent channel flow at higher Reynolds numbers of
Re, = 1000 and Re, = 2000. The grid used for case
1ktl is the same as used for case 590t]l and hence the
resolution in wall units is almost twice as coarse, as
shown in table 1. The grid used for case 2ktl is based
on similar scaling principles as case 590tl, which is
to enable a wall-resolved LES. Hence, it has 2 tran-
sition layers to coarsen from a fine near-wall Az to
a coarser outer region Az. Fig. 5(a) shows good
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Figure 5: Turbulent channel flow : (a) mean velocity,
(b) Lagrangian time scales Tsc.

agreement for the mean velocity which indicates that
the wall stress is well predicted. Fig. 5(b) com-
pares the computed Lagrangian time scales for the
three cases - 590tl, 1ktl and 2ktl . With increasing
Reynolds number, the correlation of GIE increases
which results in increasing T'sc. Overall, the results
indicate that the Lagrangian DSM with Tsc works
well for high Reynolds number wall-bounded flows
on grids where non-orthogonal elements are present
and plane averaging is not straightforward.

Flow past a circular cylinder

The Lagrangian DSM with dynamic time scale Ts¢
(eq. 13) is applied to flow past a circular cylinder.
LES is performed in the turbulent regime at Rep =
3900 (based on freestream velocity Uy and cylin-
der diameter D). The computational domain and



<CD> O'(CL) St —Cpb 9‘8’61, Lrec/D
Tsc 1.01 0.139 | 0.210 | 1.00 | 88.0 1.40
TLosm 0.99 0.135 | 0.208 | 1.00 | 87.0 1.63
Kravchenko and Moin (2000) 1.04 - 0.210 | 0.94 | 88.0 1.35
Experiment (taken from Mahesh et al. (2004)) 0.99 - 0.215 - 86.0 1.40

Table 2: Flow parameters at Rep = 3900. Legend for symbols :
drag and lift coefficient (¢(Cp),o(Cr)), Strouhal number St and base pressure Cp,, separation angle ¢

recirculation length L,../D.
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Figure 6: Computational domain with boundary
conditions and grid for a cylinder.

boundary conditions used the simulation are shown
in fig. 6. The domain height is 40D, spanwise width
7D and extends 50D downstream and 20D upstream
of the center of the cylinder. An unstructured grid of
quadrilaterals is first generated in a plane, such that
computational volumes are clustered in the bound-
ary layer and the wake. This two-dimensional grid is
then extruded in the spanwise direction to generate
the three-dimensional grid; 80 spanwise planes are
used for both the simulations and periodic boundary
conditions imposed in those directions. Uniform flow
is specified at the inflow, and convective boundary
conditions are enforced at the outflow. The small-
est computational volume on any spanwise station
of the cylinder is of the size 2.0e72D x 5.2¢ 72D but
stretches to 3.9¢72D x 2.9¢2D at a downstream lo-
cation of 5D.

Fig. 7 shows that the instantaneous GIE also

mean drag coefficient <Cp>, rms of
o
sep?

Figure 7: Cylinder flow - Rep = 3900 : Instan-
taneous contours of Germano-identity error whose
contours vary as: 0 < (GIE/UZ)? < 0.001.

follows the pattern of the Karman vortex street.
The top shear layer can be seen to roll up (within
one diameter) to form the primary vortex. The
GIE is highest in the turbulent shear layers where
scales are smaller. Dowsntream, as the turbulence
becomes more developed and scales become bigger,
GIE diminishes. As the grid becomes coarser down-
stream, DSM plays a more dominant role, providing
a higher value of vy which reduces GIE. It appears
that GIE follows the dominant structures in the flow
and hence it is reasonable that Lagrangian averaging
uses a time scale based on a correlation of the GIE.

To compare performance of different Lagrangian
averaging based methods, results are computed us-
ing both the proposed surrogate correlation based
time scale T's¢ and the standard time scale T, psas.
Integral quantities using T's¢ show good agreement
with the B-spline computation of Kravchenko and
Moin (2000) and the experiments of Lourenco &
Shih (taken from Mahesh et al. (2004)) as shown
in table 2. Note that T, psas also shows good agree-
ment for the wall quantities; however, L,../D which
depends on the near-field flow, shows discrepancy.
This points towards a difference in the values of the
time scales away from the cylinder.

There have been numerous studies comparing
the time averaged statistics for flow over a cylin-
der. However different authors have used varying
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downstream of the cylinder at Rep = 3900.
Tsc; ———-— Trpsyv; ® : B-spline solution of
Kravchenko and Moin (2000).

time periods for averaging. Franke and Frank (2002)
studied this issue in detail and noted that more than
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Figure 9: Downstream evolution of the Lagrangian
time scale on the centerline of the cylinder wake at
RCD = 3900. o : Tsc; AN TLDSM-

40 shedding periods are required to obtain converged
mean flow statistics in the neighborhood of the cylin-
der. Tremblay et al. (2000) averaged over 60 shed-
ding cycles in their DNS using an immersed bound-
ary method. In the current work, statistics are ob-
tained over a total time of 404D /Uy (~ 85 shed-
ding periods) and then averaged over the spanwise
direction for more samples. Converged mean flow
and turbulence statistics using Tsc show good agree-
ment with the B-spline computations of Kravchenko
and Moin (2000) upto x/D = 2 as shown in figs.
8. Results using T psy are also shown for com-
parison. Difference in the statistics between the two
time scales seem to be significant in the near-wake.

These differences could be attributed to the con-
tribution of the SGS model. Differences in the com-
puted eddy viscosity arise due to different time scales
for Lagrangian averaging of the DSM terms. Both
Tsc and Trpsa are found to increase almost lin-
early downstream after /D > 5 as shown in fig. 9,
though for different reasons. Based on the surrogate
correlation of the GIE, increasing Ts¢ is consistent
with the flow structures becoming bigger as they ad-
vect downstream. Whereas, strong dependence of
Trpsy on the strain rate gives it a linear profile
both ahead of and behind the cylinder. It can be ar-
gued that perhaps a different value of the relaxation
factor @ would be more appropriate for this flow. In
fact, fig. 9 makes it apparent that if 7 pgas were to
be doubled, its value would be closer to that of Ts¢.
Again, it can be crudely estimated that scaling the
value of 6 by a factor of two or so (6 > 3.0) will result
in T psa being close to Tse after /D > 5. How-
ever, it is clear that T, pgas would still not show the
appropriate trend ahead of the cylinder and in the
recirculation region. Note that, as expected, Ts¢ is
high just behind the cylinder (/D ~ 1) in the re-
circulation region and low in the high acceleration
region ahead of the cylinder.



. 6.0D 80D .
—> —
sl tD 70D
— —
—
Inflow (U,.) Far Field (U,) Outflow

i

Figure 10: (a) Computational domain and boundary
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grid for propeller with hull.

Marine propeller in crashback

Propeller crashback is an off-design operating condi-
tion where the marine vessel is moving forward but
the propeller rotates in the reverse direction to slow
down or reverse the vessel. The crashback condition
is dominated by the interaction of the free stream
flow with the strong reverse flow from reverse pro-
peller rotation; this interaction forms an unsteady
vortex ring around the propeller. Crashback is char-
acterised by highly unsteady forces and moments on
the blades due to large flow separation and hence
is a very challenging flow for simulation. VySohlid
and Mahesh (2005, 2006) performed one of the first
LES of a marine propeller in crashback. Chang
et al. (2008) coupled the unsteady blade loads with
a structural solver to predict shear stress and bend-
ing moment on the propeller blades during crash-
back. Jang and Mahesh (2010, 2012) studied crash-
back at three advance ratios and proposed a flow
mechanism. Verma et al. (2011, 2012) explained the
effect of an upstream hull on a marine propeller in
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Figure 11: (a) Time history of unsteady thrust Kr
on the propeller blades, (b) Instantaneous axial ve-
locity .

crashback. These simulations were performed using
locally-regularized DSM.

In the current work, LES of a marine propeller,
attached to an upstream submarine hull is per-
formed using the Lagrangian averaged DSM with
the proposed dynamic time scale (eq. 13). Prelim-
inary results are shown at a Reynolds number of
Re = 480,000 and advance ratio of J = —0.7. Here

UD U
Re = — d J=——
e - an D
where U is the free-stream velocity, n is the pro-
peller rotational speed, and D is the diameter of the
propeller disk.

Simulations are performed in a frame of refer-
ence that rotates with the propeller with the abso-
lute velocity vector in the inertial frame. The com-
putational domain is a cylinder with diameter 7.0D
and length 14.0D as shown in fig. 10(a). Free-stream
velocity boundary conditions are specified at the in-
let and the lateral boundaries. Convective boundary
conditions are prescribed at the exit. Boundary con-
ditions on the rotor part, blades and hub are spec-
ified as v = w X r, where w = 27n and r is the
radial distance from the propeller center. No-slip
boundary conditions are imposed on the hull body.
An unstructured grid with 7.3 million cvs is used as
shown in fig. 10(b). The propeller surface is meshed
with quadrilaterial elements. Four layers of prisms



(Kr) | o(Kr) | (Kq) (Ks) o(Ks)
LES -0.358 | 0.113 | -0.067 0.046 0.024
Experiment (Bridges et al., 2008) | -0.340 | 0.085 | -0.060 | 0.044 - 0.048 | 0.019 - 0.021

Table 3: Propeller in crashback: Computed and experimental values of mean and rms of coefficient of thrust
K, torque K¢ and side-force Kg on propeller blades.

(a)

Tsc IO

0.075 0.12 0.165 0.21 0.255 0.3

Figure 12: J=-0.7. (a) Contours of time scale Ts¢
with streamlines, (b) Time averaged turbulent ki-
netic energy field with streamlines at a constant ra-
dial plane of r/R = 0.4.

are extruded from the surface with a minimum wall-
normal spacing of 0.0017D and a growth ratio of
1.05. A compact cylindrical region around the pro-
peller is meshed with tetrahedral volumes while the
rest of the domain is filled with hexahedral volumes.

The forces and moments are non-
dimensionalized by wusing propulsive scaling.
The time history of the coeflicient of thrust Kp
shows the unsteadiness of the predicted thrust
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(axial force) on the propeller blades due to the
highly unsteady flow field around the propeller
(fig. 11). Reverse rotation of the propeller induces
reverse flow into the propeller disk, which interacts
with the wake of the upstream hull, rolling up into
a vortex ring. The unsteadiness of the forces is
due to the fact that the propeller blades experience
highly separated flow and an unsteady vortex ring.

Time averaged statistics of flow field are com-
puted over 70 propeller rotations as a preliminary
result. Table 3 shows the predicted mean and rms
of the unsteady forces and moments on the blades to
be in reasonable agreement with the experiment of
Bridges et al. (2008). Fig. 12(a) shows an zy plane
slice cutting the center and along the length of the
hull. The time averaged contours of the Lagrangian
time scale Tsc along with streamlines are plotted.
The streamlines reveal a vortex ring, centered near
the blade tip. A small recirculation zone is formed
on the hull (x/R ~ —2) due to the interaction of the
wake of the hull with the reverse flow induced into
the propeller disk by the reverse rotation of the pro-
peller. Compared to J = —1.0 (Verma et al., 2012),
this recirculation zone is much smaller and located
further upstream of the blades. This is consistent
with a higher rotational rate of the propeller induc-
ing a higher reverse flow into the propeller disk.

The Lagrangian time scale Tgc is seen to be
physically consistent with the flow. It is high in
the low-momentum wake behind the propeller where
flow structures are expected to be more coherent.
Tsc is low in the unsteady vortex ring region around
the propeller blades. The cylindrical region around
the blades is where the grid transitions from tetrah-
dral to hexahedral volumes. Turbulent kinetic en-
ergy (k) is a measure of three-dimensional unsteadi-
ness and turbulence in the flow. Fig. 12(b) shows
the resolved turbulent kinetic energy within the
blade passage at a radial plane of r/R = 0.4. k is
highest near the leading edge of the blades, related
to the unsteadiness caused by the reverse flow sepa-
rating at the sharp leading edge. The performance
of Tsc for such complex flows is encouraging.



REYNOLDS
WALL MODEL

STRESS CONSTRAINED

The Lagrangian averaged DSM with a dynamic time
scale gives better results over existing averaged DSM
methods. However, it does not solve the wall mod-
eling problem. Fig. 13 shows that the GIE from
the 3 cases 590tl, 1ktl, and 2ktl (which use rela-
tively ‘wall-resolved’ grids) is still high in the near-
wall region; the error increases as the grid coarsens.
This is indicative of greater SGS modeling errors
near the wall, especially when coarser near-wall grids
are employed for LES. It is well known that LES
with simple eddy viscosity model works poorly for
wall-bounded flows (Piomelli et al., 1996; Temple-
ton et al., 2006; Park and Mahesh, 2008a). This
is primarily due to the fact that near the wall, flow
structures scale in viscous units. If the near-wall grid
is fashioned to resolve the large or integral length
scales of the flow, these near-wall structures remain
unresolved. Moreover, near-wall flow structures tend
to be anisotropic and simple SGS models fail to ac-
curately represent the turbulent stress near the wall.
It has been estimated that the grid requirement for
a wall-resolved LES scales as Re? (Baggett et al.,
1997); comparable to that for a DNS which scales as
Reg/ . In order to overcome this severe resolution
requirement, various wall modeling approaches have
been suggested and summarized in various review ar-
ticles (Piomelli and Balaras, 2002; Piomelli, 2008).
One such approach is that of hybridizing Reynolds
Averaged Navier-Stokes (RANS) and LES formula-
tions. The present study is motivated by (1) the
inherent limitations of the existing hybrid RANS-
LES methodologies and (2) the challenges in imple-
menting a robust hybrid RANS-LES framework for
complex flows on unstructured grids.

Detached-Eddy Simulation (DES) by Spalart
et al. (1997) is a widely used approach for high
Reynolds number flows. The idea behind DES is
to compute the boundary layer using RANS and use
LES away from the wall (in the ‘separated’ region).
Many hybrid RANS-LES type formulations also use
essentially what is a RANS-type eddy viscosity near
the wall and ‘blend’ it with LES eddy viscosity away
from the wall. The basic idea behind the present
work can be summarized as:

e Using a RANS model directly in the near-wall
region produces excessive dissipation (Park and
Mahesh, 2008b). A less dissipative “subgrid
scale model” is needed which leads solution to
a target quantity prescribed from external data
only in the mean sense. This target quantity
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may be the wall stress, Reynolds stress or mean
velocity.

e The intention is to perform LES in the whole
computational domain using a simple yet ro-
bust wall model. In general, LES is superior to
RANS even with coarse resolutions away from
the wall. The external Reynolds stress con-
straint should be imposed in a limited region
(near the wall) where LES is expected to be er-
roneous.

A hybrid dynamic SGS model constrained by
externally prescribed Reynolds stress is formulated
in the next section. The proposed model is then ap-
plied to turbulent channel flow at various Reynolds
numbers and grid distributions.

A CONSTRAINED DYNAMIC
MODEL

SGS

An advantage of the dynamic procedure is that var-
ious terms can be easily incorporated to form dy-
namic mixed models. Ghosal et al. (1995) pro-
posed a dynamic localization model by including
a non-negative constraint on the model coefficient.
Shi et al. (2008) imposed an energy dissipation
constraint on the dynamic mixed similarity model.
In the present work, Reynolds stress is considered
to be provided as an externally prescribed con-
straint. More particularly, only a time average of
the Reynolds stress needs to be provided and hence
it could be sourced from RANS, DNS, experimen-
tal statistics or even empirical closures/fits. A sim-
ple and efficient hybrid SGS model was first pro-



posed by Park and Mahesh (2008b) that combines
the dynamic Smagorinsky model (DSM) approach
and Reynolds stress constraints. However, they used
averaging along homogeneous directions in the con-
text of a spectral, structured solver. The current
work extends this formulation to unstructured grids
without averaging along homogeneous directions. A
Lagrangian averaged version of this formulation is
used to show improved results for turbulent channel
flow in the next section.

Formulation

For simplicity, let us assume that Reynolds stress
Rij = (uiuj) p — (u;) g (uj) 5 is given from an exter-
nal RANS solution. Here, (-), denotes an ensemble
average, which is equivalent to (), = time averaging.
The ensemble average of SGS stress satisfies

(Witij) p — (W) g (W) g + (Tij) g = Rij
——

resolved SGS

(16)
However, imposition of this condition on unsteady

simulations is not straightforward. Consider there-
fore, an instantaneous version of (16) with SGS

MRy, (17)

where 65-’ is the error (and R denotes RANS), and

S

|

is cumulative, ensemble—averaged velocity up to cur-
rent time 7. When 7 is sufficiently large, GE in (17)
represents deviation from (16) due to SGS modeling
error. Thus, the minimization of GE seems to be a
proper RANS constraint.

On the other hand, error from the Germano identity
is

ef; =Ty — i — Luj, (19)

where £ denotes ‘LES’. Then, cost function to be
minimized can take the form

7€) = [ hiekaxra® [ (), () dx, (20)

where we consider a one-parameter SGS model
Ti]}/[ = T%(CS), Q) is the domain, and w” is the
weight function for RANS constraints.

Then, the optimal Cj is given by

0
0T (Cs) = /Q 0. [efjefj + Wk <6Z§>T <EZ§ T} 5Cdx

(21)

which implies that

L L R/ R R
a0, [eijeij +w <e7;j >T <€ij>T} =0. (22)
Eq. (22) is a general relation that can be used for
complex flows and one—parameter SGS models.

Note that the above relation can be easily modified
to be applicable with the homogeneous averaged and
the Lagrangian averaged DSM (eq. 5). Let us con-
sider efj and 65 for the Smagorinsky model (SM)
(Smagorinsky, 1963)

1 -
Tij = g Thk = —2C,A%(5]S 4, (23)
where |S| = \/ﬁ
First, Germano identity error (GIE) is
¢ = C, (—282[5[S;; +24%55,;) - Ly

= CsMij — ng

(24)

Here, all tensors are inherently or made traceless.
Therefore, the first part in the bracket of Eq. (22)
is

eijel = C2Mi;Mij — 20 Lij Mij + LijLij, - (25)
which leads to

Befjefj
808 = QCsMijMij — QLZJM” (26)

Obviously, equating eq. (26) to zero results in the
standard DSM (Germano et al., 1991; Lilly, 1992).

Next, RANS Reynolds—stress reconstruction error
(eq. 17) is considered:

() (rij — 2C0°|81S55 — Rij) 1
= (rij)p — 28%Cs (|S]Si;)p — Rif27)
~ (rij)p — Rij — 2A2 <|§\§”>T Cy
Ay Bij
= A;; — B;;Cs.

where r;; = w;u; —U;U; and C; is assumed constant

in time. Similar to €, the second part of eq. (22) is
0 (ek er
<]6>)2'<J>T = 2C,B;;B;j — 2A;;B;;. (28)

Inserting eqs. (26) and (28) in eq. (22) yields C;s as

_ LijMij + w™ Ay By

Cs = .
M;; M;j 4 wR By Byj

(29)



LES
Case Re., N, x N, x N, L./§ x L./6 | Axt Azt Ayt Ayeen/S
590un 590 | 160 x 66 x (150,100) 2T X 23.2  12.4,18.5 3.5 0.05
1kun 1000 | 160 x 70 x (150, 100) 2r X mw 39.3 21,314 4 0.05
2kun 2000 | 160 x 74 x (150, 100) 2T X 78.5 42,63 4 0.05
DNS
Moser et al. (1999) 587 384 x 257 x 384 2 X T 9.7 4.8 - 0.012
del Alamo et al. (2004) 934 — X 385 x — 8 x 3w 11 5.7 - -
Hoyas and Jimenez (2006) | 2003 — X 633 x — 8m x 31 12 6.1 - -

Table 4: Grid parameters for turbulent channel flow.
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Figure 14: Turbulent channel flow: Germano-
identity error normalized by modeled subgrid stress.

Dynamic determination of w™

In principle, the above expression for Cs (eq. 29)
is applicable throughout the flow. However, as me-
nioned earlier, the intention is to apply the external
Reynolds stress constraint only in a limited region
where LES is expected to be erroneous. We propose
the Germano-identity error (eq. 19) as a measure
of accuracy of LES utilizing a dynamic Smagorin-
sky SGS model. Figs. 2 and 13 show respectively,
that the instantaneous and time-averaged GIE is
very high near the wall, so that the validity of the
Smagorinsky SGS model (eq. 23) in this region can
be questioned. The external Reynolds stress con-
straint should be active in such regions where the
GIE is deemed too high; to be determined by the
weight function w™. Note that, to transition from
RANS to LES, DES uses purely grid parameters
such as the wall distance and local grid spacing;
its variants incorporate some flow information. The
current proposal to use GIE is explicitly dependent
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on the flow and the underlying SGS model.

Let us denote & eﬁeﬁ / Ti];{Tin as the
Germano-identity error normalized by the modeled
SGS stress (fig. 14). The weight function w™ is then
proposed to be of the form,

wR = C max (£ — &,0), (30)
where C,, is a scaling coefficient and &; is the thresh-
old value. Nominally, w” is determined using C,, =
0.1 and & = 100 is chosen to impose the constraints
in the near-wall region.

Hence w™ # 0 implies the Reynolds stress con-
straint is active only in the region where the nor-
malized Germano-identity error £ exceeds a certain
threshold &. Fig. 14 shows that the constraint
would be active only in the near-wall region (for
cases 590un, lkun, and 2kun as described in table
4). Obviously, w® = 0 retrieves the standard DSM.

RESULTS: WALL MODEL

The goal of wall modeling is to relax the grid require-
ment scaling with Reynolds number. DES hopes
to achieve this by operating on a RANS near-wall
grid where the wall-parallel spacing is large com-
pared to the boundary-layer thickness (A > §) but
the wall-normal grid spacing requirement is stricter
(AT, ~ O(1)). Nikitin et al. (2000) followed this
guidéline for their DES of channel flow and showed
results with Ay = 0.16 and Ay} < 1. Further sav-
ings could be obtained by relaxing the wall-normal
grid spacing requirement. When the first off-wall
grid point is in the log layer, the filter width is
much larger than the local turbulent integral scales.
Hence, wall stress models are required to compensate
for the SGS modeling errors in this region. Nicoud
et al. (2001) and Templeton et al. (2005) use walls
stress models on coarse LES grids.




Our motivation is to perform LES at high
Reynolds numbers using no-slip boundary condi-
tions at the wall with a slightly relaxed near-wall
grid requirement. Results are shown with grids
where the first off-wall grid point is in the viscous
layer (Ay <5). In what follows, DSM denotes La-
grangian averaged Dynamic Smagorinsky Model and
CDSM denotes Constrained DSM (with Lagrangian
averaging for the DSM terms) which is the proposed
constrained model (eq. 29). CDSM is applied to
turbulent channel flow at three Reynolds numbers;
Re; = 590,1000,2000 to show improvement over
DSM. Table 4 lists the Re, and grid distribution for
the various runs. All LES cases have uniform spac-
ing in x; ‘un’ indicates that an unstructured grid has
been used near the wall in the spanwise direction (z)
to allow flexibility in the near-wall grid while main-
taining a fixed coarse outer-region grid. The LES
results are compared to DNS whose grid parameters
are also included in the table for comparison. The
numerical method used is the same as described ear-
lier.

Fig. 15 shows results for case 590un with param-
eters C, = 0.1, & = 100 and Reynolds shear stress
from the DNS of Moser et al. (1999) as the con-
straint. CDSM shows marginal improvement over
DSM for mean and rms streamwise velocity at this
grid resolution. With CDSM, resolved shear stress
(fig. 15(c)) reduces slightly near the wall but is com-
pensated by higher SGS stress such that the total
shear stress is closer to the DNS constraint. This
establishes that the constrained formulation CDSM
(1) is successful in constraining the total shear stress
to an externally provided constraint in the mean and
(ii) shows improvement over DSM.

However the improvement is significant when
the near-wall grid resolutions for the LES are coarse.
To this end, simulations are performed at Re, =
1000 using both DSM and CDSM with a coarser
Azt and Axz™. Fig. 16 shows results at Re, = 1000
from case 1kun with parameters C, = 0.1, & = 100.
The CDSM results for mean and rms u-velocity are
in good agreement with unfiltered DNS. As with
case 590un, fig. 16(c) shows that with CDSM, the
resolved shear stress reduces slightly near the wall
but is compensated by higher SGS stress; the to-
tal Reynolds shear stress computed is closer to the
imposed constraint especially near the wall which
is where the constraint is being activated due to
high GIE. CDSM predicts a higher near-wall SGS
stress due to higher eddy viscosity near the wall as
shown in fig. 17(a). The constrained minimization
of the GIE with an external constraint also reduces
the GIE near the wall (fig. 17(b), right side, red) for
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CDSM. It also shows that only a few points near the
wall have threshold & > 100 (left side, black). Thus
the constraint is active only at a few points near the
wall (y* < 100).

At higher Reynolds numbers, the target
Reynolds stress may not be easily available a pri-
ori from DNS, RANS or even experiments. A more
convenient alternative is to use a model for Reynolds
stress. Such models need only be reasonably ac-
curate in the near-wall region as the constraint is
only intended to be applied there. Results are
shown at Re, = 1000, 2000 with the Reynolds stress
constraint obtained using the method described by
Perry et al. (2002). Fig. 18 shows results at Re, =
2000 from case 2kun with parameters C, = 0.1,
& = 100. Note that the grid is almost the same as
cases 590un and lkun. This implies an even coarser
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Figure 18: Mean statistics from turbulent channel
flow at Re; = 2000 - Case 2kun: (a) mean velocity,
(b) rms velocity fluctuations.

AzT and Az for this higher Reynolds number (as
seen in table 4). The CDSM results for mean and
rms u-velocity are in good agreement with unfiltered
DNS. Though not shown here, DSM at such coarse
resolution is expected to show significant differences
with DNS.

Fig. 19 shows that skin-friction coefficient and
wall pressure fluctuations obtained from CDSM are
in reasonable agreement with the available DNS data
and empirical fits. The skin-friction coefficient is
based on the centerline velocity (Cf = 2/U}?).
The fit shown is extrapolated from the DNS of
Moser et al. (1999) by assuming U} = 21.26 +
log(Re;/587)/0.41. This is done following Nikitin
et al. (2000). Importantly, CDSM shows improve-
ment over DSM. This improvement is expected to
get very significant for LES at high Reynolds num-
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Figure 19: Comparison of (a) skin-friction coefficient
Cy, and (b) wall pressure fluctuations o(p)/7,, from
cases 590un, lkun, 2kun.

ber on very coarse near-wall grids (such as for case
2kun). CDSM also predicts reasonable wall pressure
fluctuations o(p)/7, when compared to unfiltered
DNS. The fit shown is taken from Bull (1996). It is
encouraging that CDSM predicts unsteady behavior
down to the wall along with quantities of engineer-
ing interest such as skin friction and wall pressure
fluctuations.

CONCLUSION

This paper discusses two developments towards re-
liably using LES for attached high Reynolds num-
ber flows: (1) a dynamic Lagrangian model where
a dynamic procedure is proposed for the Lagangian
timescale and (2) a wall model where in addition to
the Germano-identity error, external Reynolds stress



is also imposed as a constraint on the ensemble-
average subgrid-scale stress. Both developments are
towards performing LES of complex flows on un-
structured grids. They are in the context of the Dy-
namic Smagorinsky model (DSM) (Germano et al.,
1991; Lilly, 1992) and exploit the Germano-identity
€error.

A dynamic Lagrangian averaging approach is
developed for the dynamic subgrid scale model.
The standard Lagrangian dynamic model (Mene-
veau et al., 1996) uses a Lagrangian time scale
T, psy which contains an adjustable parameter 6.
We propose to use a dynamic time scale Tsco based
on a “surrogate-correlation” of the Germano-identity
error (GIE) (Park and Mahesh, 2009). The pro-
posed model is applied to LES of turbulent chan-
nel flow at moderately high Reynolds numbers and
relatively coarse grid resolutions. Good agreement
is obtained with unfiltered DNS data. Improvement
is observed when compared to other averaging pro-
cedures for the dynamic Smagorinsky model, espe-
cially at coarse resolutions. The model is also ap-
plied to flow over a cylinder at a high Reynolds num-
ber. Tsc shows good agreement of turbulence statis-
tics with previous computations and experiments,
and is shown to outperform 77, pgas. It is established
that Tsc is physically consistent with flow struc-
tures and hence a more apt choice for Lagrangian
averaging. Tsc reduces the number of times ad-
hoc clipping operations need to be performed on the
computed eddy viscosity. Finally, the extra com-
putational overhead incurred by the proposed La-
grangian averaging is negligible compared to when
no averaging is used.

The strong scaling of the computing cost of LES
with Reynolds number is an impediment to LES be-
ing applied to attached wall-bounded flows. How-
ever LES for wall-bounded flows offers the advantage
of computing fluctuating quantities on the wall such
as wall pressure fluctuations. A wall model (CDSM)
is proposed to enable LES at coarse near-wall grid
resolutions. The proposed model approaches the
mean modeled behavior of RANS through a con-
straint on what is essentially an SGS model. Primar-
ily, it allows hybridization of the LES methodology
with a desired or expected mean target quantity; ex-
ternal Reynolds stress constraints are incorporated
into the Dynamic Smagorinsky model. Secondly,
this target quantity may be imposed in a small re-
gion near the wall for wall-bounded flows where SGS
modeling errors are expected to be large; normal-
ized Germano-identity error is used as a measure of
SGS modeling errors and hence as a weight for the
constraint. CDSM is applied to turbulent channel
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flows at various Reynolds numbers and grid resolu-
tions. CDSM outperforms DSM and this improve-
ment becomes more significant as the near-wall grid
coarsens. CDSM achieves better predictions than
DSM by constraining the total Reynolds stress to an
a priori imposed target. It has been shown that this
target Reynolds stress can be obtained from DNS
and approximate near-wall models. Imposition of
the Reynolds stress constraint in a small region near
the wall increases the eddy viscosity and reduces the
Germano-identity error near the wall. Importantly,
this procedure does not force the instantaneous flow
to a mean quantity but only constrains the mean
behavior. Hence CDSM predicts unsteady behav-
ior down to the wall and is a reliable tool to pre-
dict quantities of engineering interest such as skin
friction and wall pressure fluctuations. For future
work, CDSM will be applied to complex geometries
and separated flows.
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