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Streamwise velocity profile behavior in a hypersonic laminar boundary layer in the 

presence of an isolated roughness element is presented for an edge Mach number of 8.2. Two 

different roughness element types are considered: a 2-mm tall, 4-mm diameter cylinder, and 

a 2-mm radius hemisphere. Measurements of the streamwise velocity behavior using nitric 

oxide (NO) planar laser-induced fluorescence (PLIF) molecular tagging velocimetry (MTV) 

have been performed on a 20-degree wedge model. The top surface of this model acts as a 

flat-plate and is oriented at 5 degrees with respect to the freestream flow. Computations 

using direct numerical simulation (DNS) of these flows have been performed and are 

compared to the measured velocity profiles. Particular attention is given to the 

characteristics of velocity profiles immediately upstream and downstream of the roughness 

elements. In these regions, the streamwise flow can experience strong deceleration or 

acceleration. An analysis in which experimentally measured MTV profile displacements are 

compared with DNS particle displacements is performed to determine if the assumption of 

constant velocity over the duration of the MTV measurement is valid. This assumption is 

typically made when reporting MTV-measured velocity profiles, and may result in 

significant errors when comparing MTV measurements to computations in regions with 

strong deceleration or acceleration. The DNS computations with the cylindrical roughness 

element presented in this paper were performed with and without air injection from a 

rectangular slot upstream of the cylinder. This was done to determine the extent to which 

gas seeding in the MTV measurements perturbs the boundary layer flowfield. 

Nomenclature 

d = isolated roughness diameter, mm 

dx, dz = streamwise and spanwise computational grid spacing, mm 

Δx = streamwise displacement, mm 
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CFD = computational fluid dynamics 

D = differential operator, 𝜕 𝜕𝑦  

DNS = direct numerical simulation 

H  = computational domain height 

LD = downstream computational domain distance 

LU1 = computational inflow distance 

LU = upstream computational domain distance 

Lz = spanwise computational domain extent 

Me = edge Mach number (Mach number at y = δL) 

MTV = molecular tagging velocimetry 

NO = nitric oxide 

k = isolated roughness height, mm 

Pe, Pw = edge and wall pressures, Pa 

PLIF = planar laser-induced fluorescence 

Rek = isolated roughness Reynolds number 

t = time, s 

Δt = effective time delay, s 

Te, Tw = edge and wall temperatures, K 

U = streamwise velocity, m/s 

Ue = edge streamwise velocity, m/s 

x = streamwise position, mm 

xinj = streamwise mass injection location, mm 

xr = streamwise location of isolated roughness element, mm 

xtrans = streamwise transition-to-turbulence location in the absence of an isolated roughness element, mm 

xtrans,k = streamwise transition-to-turbulence location with an isolated roughness element present, mm 

y = wall-normal position, mm 

z = spanwise position, mm 

δL = laminar velocity boundary layer thickness, mm 

μ = dynamic viscosity, m
2
/s 

ρ = density, kg/m
3
 

I. Introduction 

HE presence of a three-dimensional isolated roughness element in a hypersonic laminar boundary layer can 

influence the stability and transition-to-turbulence behavior of boundary layer flow. Typically, as the height of 

the roughness, k, relative to the thickness of the laminar velocity boundary layer, δL, increases, the transition location 

moves further upstream. There is a particular height-to-thickness ratio for which the streamwise location of 

transition-to-turbulence, xtrans,k, begins to deviate from the distance, xtrans, at which transition would occur in the 

absence of such an element.
1
 The roughness size is deemed to be critical at the smallest k/δL for which |xtrans - xtrans,k| 

> 0. As k/δL is further increased beyond its critical value, xtrans,k rapidly moves upstream towards the streamwise 

location of the roughness element itself, xr. Low-speed
2
 and high-speed

3
 examples of this critical and super-critical 

behavior can be found in the literature. As k/δL is increased, there is a point at which further increase to this ratio has 

no additional effect on xtrans,k. At this point, the roughness is deemed to be fully effective. Beyond this effective 

roughness size, increasing k/δL may only increase the magnitude of the disturbance imparted to the boundary layer.
1
 

A common metric used to correlate transition location with roughness size is the roughness Reynolds 

number, 𝑅𝑒𝑘 = 𝜌𝑘𝑈𝑘𝑘/𝜇𝑘 , where density (𝜌), streamwise velocity (𝑈), and dynamic viscosity (𝜇) are evaluated at k. 

For most applications, 𝑅𝑒𝑘 < 25 represents a bound for which a roughness element has no influence on transition-

to-turbulence and is therefore sub-critical.
1,2,4

 However, this is a semi-empirical relation, and roughness Reynolds 

numbers less than 25 have been shown to induce instability.
1
 No universal physics-based theory exists that relates 

roughness Reynolds number and critical roughness for all roughness geometries and flow conditions.
5
 The same 

may be said of the relation between Rek and effective roughness. 

 In the absence of any roughness element, the laminar high-speed flow over a flat plate is susceptible to instability 

if its velocity profile contains a generalized inflection point, defined as a vertical location y > y0 for 

which 𝐷 𝜌𝐷𝑈 = 0. Here, 𝐷 is the differential operator, 𝐷 ≡ 𝜕 𝜕𝑦 , and y0 corresponds to the height in the 

boundary layer where the velocity relative to the edge velocity has the value 𝑈 𝑈𝑒 = 1 −  𝑀𝑒 
−1. For an adiabatic 
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wall, there is at least one point within the boundary layer satisfying this condition,
6-8 

and for a cold wall there can be 

two points that satisfy this condition.
7,8

  

 When an isolated roughness element is present, it can introduce instability into the boundary layer through 

several mechanisms. For isolated roughness elements of 𝑅𝑒𝑘 < 10, streamwise vorticity may be generated.
1
 This 

can result in disturbance amplification via interaction with a stationary crossflow instability or Görtler vortices,
1
 

which are associated with eigenmode growth for low disturbance environments.
9,10 

Included in this eigenmode 

instability growth family are the 1
st
 and 2

nd
 modes described by Mack.

7,11
 Growth of eigenmode disturbances is 

exponential, and transition estimates can be performed using methods such as the e
N
 method.

12
 As Rek is increased, 

the magnitudes of the disturbances generated by the roughness element increase, and instability growth via the 

transient growth mechanism occurs.
4
 Growth of instabilities occurring via this mechanism is algebraic in nature

9,13
 

and is greatest for stationary streamwise disturbances
12

 such as stationary streamwise vortices.
4
 This instability 

mechanism then provides a higher amplitude disturbance to the eigenmode growth mechanism.
9,10 

As Rek is further 

increased, the transient growth mechanism continues to play a role, but the eigenmode growth mechanism is 

bypassed.
12

 Up to this value of Rek, in addition to generating streamwise vorticity, an isolated roughness element 

will generate a shear layer in its wake. This shear layer may be convectively unstable, such that the instabilities grow 

as they progress downstream, in which case it may be the dominant instability mechanism leading to transition.
14

 

However, for higher Mach number flows, a shear layer becomes more stable, and the convective instability 

mechanism may be suppressed.
1
 For roughness elements with sufficiently large values of Rek and with k ≈ δL, a 

significant wake region and shear layer is generated along with streamwise vorticity originating from a separation 

region upstream of the element. Experiments and computations of a cylindrical roughness element in a Me = 6 

boundary layer have shown that for Rek > 6x10
4
 and k/δL > 1, the wake region is subject to an absolute instability 

resulting from oscillation of horseshoe vortices in the separation region ahead of the roughness element and an 

unstable shear layer.
14

 Computations of a k/δL = 2.54 hemispherical roughness element in a Me = 3.37 boundary 

layer also showed unsteady behavior in the separation region ahead of the element and the breakdown of streamwise 

vortices accompanied by the formation of hairpin vortices in the wake of the element, followed by the onset of 

transition.
15,16

 The formation of hairpin vortices was also affected by the interaction between an unsteady shear layer 

(emanating from the top of the trip) and the streamwise vortices along the centerline in the wake of the 

roughness.
17,18

 

 For a large, isolated roughness element where k/δL approaches unity, the applicability of linear stability methods 

comes into question.
15,19

 While some computations and experiments have been performed to gain insight into the 

transition-to-turbulence mechanism for these elements, it remains unclear as to what conditions lead to an element 

being sub-critical, critical, or effective and what role convective and absolute instabilities play.
1,20

 However, it does 

appear that the separation region just upstream of the roughness element and the shear layer play important roles in 

large-roughness-induced transition-to-turbulence, and an improved understanding of these flowfield features is 

required. 

 Qualitative flow visualization and quantitative velocimetry experiments have been performed at NASA Langley 

Research Center with the goal of improving the understanding of the flow physics associated with both 

hemispherical and cylindrical isolated roughness elements in hypersonic laminar boundary layers. Flow 

visualization experiments with hemispherical
21

 and cylindrical
22-24

 isolated roughness elements using nitric oxide 

(NO) planar laser-induced fluorescence (PLIF) imaging have been used in qualitative comparisons with 

computational studies of hemispheres
17

 and cylinders.
25

 Quantitative streamwise velocity measurements
26

 using NO 

molecular tagging velocimetry (MTV) have been used to validate direct numerical simulation (DNS) results in a 

Mach 8 hypersonic boundary layer along the centerline of a flat surface with a cylindrical roughness element for 

k/δL = 0.64.
15 

In that comparison of NO MTV data with DNS results, relatively good agreement between experiment 

and computation was obtained at streamwise locations away from the roughness element. Both the experiment and 

computation showed that the boundary layer in the wake of the cylindrical roughness element remained laminar and 

the centerline shear layer emanating from the top of the roughness element gradually recovered to a Blasius-like 

profile with increasing streamwise distance. At streamwise locations ahead of the roughness element and 

immediately behind the roughness element, significant discrepancies between experimentally measured and 

computed streamwise velocities were observed.  

One hypothesis for these discrepancies observed in Ref. 15 involves the influence an adverse pressure gradient 

ahead of the roughness element had on the MTV measurement. This pressure gradient is responsible for the 

separation region and a system of horseshoe vortices ahead of the roughness. The presence of an adverse pressure 

gradient would result in a local deceleration of the flow. Since the MTV technique is a time-of-flight technique, the 

velocity corresponding to the initial streamwise location of the tagged molecules is inferred by measuring their 

displacement imaged at two sequential times ~500 ns apart. If instantaneous streamwise velocity of the tagged 
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molecules is higher in the first image than in the second because of flow deceleration, the measurement will be 

biased towards lower velocities. In other words, the measurement does not strictly give the velocity at the initial 

location, but rather yields the weighted average of the changing velocity along the path traversed by the tagged 

molecule during the ~500 ns measurement period. An analogous hypothesis can be made in regions with a favorable 

pressure gradient. 

Another hypothesis for the discrepancies in Ref. 15 is that the injection of NO gas into the boundary layer at a 

location ahead of the isolated roughness element distorts the flowfield immediately downstream of the injection 

location. This injection of NO, which occurs at a location xinj downstream of the leading edge, is necessary because 

NO serves as the tracer species for MTV measurements. Computations
27

 performed for a Mach 8 laminar boundary 

layer with an injection rate of 3 mg/s of NO showed that, at a location corresponding to x/xinj ≈ 3.6, fairly small 

deviations in velocity and temperature were observed relative to a computation where no injection occurred. An 

analysis in Ref. 21, based on an injection study in Ref. 28, also suggested that such low blowing rates would have 

minimal influence on boundary layer transition-to-turbulence. However, it is unclear from these studies how the 

boundary layer flow just downstream of the injection location but ahead of the roughness element may be affected 

by such injection. 

 This paper has three objectives: (1) determine what influence NO mass injection may have on streamwise 

velocity (2) compare experimental streamwise velocity measurements with DNS computations to examine the 

influence of isolated hemispherical and cylindrical roughness elements  on a Me = 8 hypersonic laminar boundary 

layer; and (3) use DNS to identify potential systematic measurement errors resulting from velocity gradients and/or 

orthogonal velocity components. 

II. Experimental Setup 

A. Wind Tunnel Facility 

The experiments described in this paper were performed in the 31-inch Mach 10 Air blowdown wind tunnel 

facility at NASA Langley Research Center. The facility is described in Ref. 29 and a brief description is provided 

here. Air for the facility is supplied from a centralized bottle field to a pressurized chamber containing a 12.5 MW 

electrical resistance heater. For the experiments described in this paper, the nominal stagnation pressure and 

stagnation temperature inside the chamber were 2.41 MPa (350 psia) and 1000 K (1800 °R), respectively. The air 

passes through a settling chamber and filter prior to passing through a converging-diverging contoured nozzle with a 

1.07-inch square throat. The flow is accelerated to a nominal Mach number of 10 as it expands through the nozzle 

into a 31-inch square test section. The stated pressure fluctuations within the inviscid core flow are ±1.0%.
29

 Three 

large UV-transmitting windows are mounted flush to the top, side, and bottom interior walls of the test section. 

These windows are capable of transmitting light down to a wavelength of 190 nm. The fourth sidewall contains a 

sliding door that separates the wind tunnel test section from the housing for the model injection system. Once the 

Mach 10 flow is established within the test section, this door is opened, and the wind tunnel model is injected into 

the flow via a hydraulic injection system. The sting used to support the wind tunnel model is mounted to an 

aerodynamic strut, which is capable of providing automated angle-of-attack control and manually adjusted yaw 

control. 

B. Wind Tunnel Model 

 A 10-degree half-angle wedge model with a sharp leading edge was used in this experiment. The leading edge 

radius is less than 0.024±0.005 mm. The upper surface of the wedge model, over which the NO MTV measurements 

and PLIF flow visualizations were made, was a stainless steel flat surface that was 127.0 mm (5 inches) wide and 

162.5 mm (6.4 inches) long. The top surface was painted with a flat black high temperature paint to minimize laser 

scatter. The model pitch angle was oriented such that the upper flat surface was angled at 5-degrees with respect to 

the freestream. One of two different isolated roughness elements was positioned along the streamwise symmetry 

plane and centered at 75.4 mm downstream of the leading edge. The isolated roughness elements consisted of a 2-

mm tall, 4-mm diameter stainless steel cylinder and a 2-mm radius stainless steel hemisphere. Pure NO was seeded 

into the laminar boundary layer from an 11-mm-long, 0.81-mm-wide slot centered on the streamwise symmetry 

plane and 29.4-mm downstream of the leading edge. The nominal mass flowrate supplied through this slot was 3 

mg/s (150 standard cubic centimeters per minute, SCCM). The surface pressure was monitored by a Druck pressure 

gauge, model PDCR 4060, 0.04% accuracy up to 5 psia. A thermocouple was attached to the underside of the 

model’s 1/5-inch-thick stainless steel surface with Kapton® tape to measure the plate temperature. The placement of 
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the thermocouple provided only an estimate of the true plate temperature. The temperature measurement did not 

account for heat transfer effects occurring through the thickness of the plate. 

C. Laser and Imaging System 

 The 532-nm output from a pulsed Spectra Physics Pro-230 Nd:YAG laser was used to pump a Sirah Cobra 

Stretch dye laser to achieve a 622-nm output beam.  This output was mixed with 355-nm light from the Nd:YAG in 

a Sirah Frequency Conversion Unit to produce 226 nm output. This beam was directed to sheet-forming optics 

mounted above the tunnel test section. The duration of the pulse at this wavelength was approximately 9.5 ns. 

 To form a laser sheet, the collimated 226 nm beam was passed through a cylindrical lens, which focused and 

then diverged the beam, expanding it in one direction while leaving it collimated in the other. A 1-m focal length 

spherical lens then collimated the diverging axis of the beam and focused the other axis into a thin sheet 

approximately 75-mm wide by 0.5-mm thick. To tag multiple lines of NO in the test section for a velocimetry 

measurement, a 50-mm-long, LaserOptik GmbH diffusion-welded lens array of 25 1-m focal length cylindrical 

lenses focused the laser sheet into 25 lines. The lens array had an anti-reflection coating.  

 Two different laser orientation and camera views were used to obtain the MTV images. In both cases, the camera 

was perpendicular to the plane containing the laser lines. The camera was first oriented such that axial velocity 

measurements were performed along a series of lines perpendicular to the plate and aligned with the centerline. This 

view is hereafter referred to as the side-view orientation. The second orientation was with the laser lines running 

parallel to the model surface in the spanwise direction. This view is hereafter referred to as the top-view orientation. 

 To image the tagged lines in both tests, a Cooke DiCAM-PRO camera, utilizing an intensified 1280x1024 pixel 

array interline progressive scan CCD, was used. The camera was fitted with a 100-mm focal length, F/2 Bernhard 

Halle Nachfolger GmbH lens. When used in double shutter mode, the camera is capable of acquiring an image pair 

with a minimum 500 ns delay between the end of the first gate and the beginning of the second. Each gate has a 

minimum duration of 20 ns, with delay settings and durations set in increments of 20 ns. A detailed discussion of the 

timing sequence methodology used in the NO PLIF experiments is provided in Refs. 26 and 30. 

D. Experimental and Image Processing Details 

Table 1 lists the experimental conditions used for the MTV hypersonic boundary layer measurements. Over the 

course of each run, small physical downward displacements of the model were observed. Presumably, the 

displacement is a result of non-uniform mechanical and thermal loading on the sting, which causes it to bend 

downward. Additionally for side view runs, the plate surface was at a slight angle (< 0.25°) relative to the horizontal 

alignment of the camera's CCD array. For side-view runs, the raw images were translated upward and rotated using 

the function imwarp in MATLAB® with a cubic interpolation method to correct for model displacement and 

rotation. For the top-view run, this post-processing was not performed. As a result, the laser sheet position reported 

in Table 1 for the top-view run is estimated to be within ±0.13 mm of the reported y-position. 

Prior to plotting the experimental MTV velocity and displacement profile data presented in this paper, an effort 

was made to remove data points that appeared to be affected by laser scatter or reflections from the model surface. 

Data points near the boundary layer edge that had low signal-to-noise levels were also removed. This process of data 

Table 1: Experimental conditions. 

Test-Run View Roughness Te (K) Pe (Pa) Tw (K) Pw (Pa) Laser Sheet (mm) NO Flow Rate  

462-18 Side 
Cylinder 
k = 2 mm 

d = 4 mm 

73.4 200.5 301.8 262.4 z = 0.0 mm 
100 % Pure NO 

150 SCCM 

(3.05 mg/s) 

462-25 Top 
Cylinder 
k = 2 mm 

d = 4 mm 

73.7 200.7 

295.7 

304.1 

300.5 

255.3 

y = 0.0 mm 

y = 2.2 mm 

y = 3.4 mm 

100 % Pure NO 

150 SCCM 

(3.05 mg/s) 

477-5 Side 
Hemisphere 

k = 2 mm 

d = 4 mm 

73.6 200.9 

305.7 

309.7 

314.1 

318.5 
324.4 

269.2 

z = -1.42 mm 
z = -0.41 mm 

z = 0.57 mm 

z = 1.58 mm 
z = 2.58 mm 

100 % Pure NO 

154.0 SCCM 
± 0.4 SCCM 

(3.13 mg/s) 

         

Table 2: Details of computational domain. 

Simulation Condition LU / d LD / d Lz / d H / d 

Cylindrical roughness 10.0 22.0 10.0 10.0 

Cylindrical roughness with upstream injection 17.5 22.0 10.0 10.0 

Hemispherical roughness 10.0 40.0 20.0 20.0 
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point removal was done on a profile-by-profile basis by 

the first author. 

III. Computational Procedure 

A. Numerical Details 

 The simulations use an algorithm developed by Park 

and Mahesh
31

 for solving the compressible Navier-Stokes 

equations on unstructured grids. The governing equations 

are discretized using a cell-centered finite volume scheme. 

The simulations employ a modified least-square method 

for face reconstruction, which is more accurate than a 

simple symmetric reconstruction, and more stable than a least-square reconstruction. The algorithm uses a novel 

characteristic-based filter shock-capturing scheme that localizes numerical dissipation to the vicinity of flow 

discontinuities. The solution is advanced in time using a second-order explicit Adams-Bashforth scheme. Additional 

information on the DNS methods used for the computations in this paper can be found in Refs. 15-18. 

 The numerical method has been used to study transition-to-turbulence induced by distributed roughness in a 

Mach 2.9 boundary layer
32

 and transition to turbulence using blowing and suction at Mach 2.25 where the turbulent 

statistics showed good agreement with experimental data under similar conditions.
33

 The algorithm has also been 

used to study the interaction of a supersonic jet with a subsonic cross-flow and a sonic jet with a supersonic cross-

flow,
34

 where a comparison of mean velocity profiles showed good agreement with experiments. Also, DNS 

of shock-turbulence interaction at Mach 2.9 in a compression corner
35

 was studied using the current methodology. 

B. Computational Details 

 A schematic of the computational 

domain is shown in Fig. 1, taken from 

Ref. 16. LU1 is the distance of the inflow 

of the computational domain from the 

leading edge of the flat plate.  LU, LD, 

Lz, and H are the upstream, 

downstream, spanwise and vertical 

extents of the domain and are listed in 

Table 2 for the different simulations 

performed. The wall is maintained at a 

constant temperature of 300 K. A 

compressible self-similar boundary 

layer solution is prescribed at the 

inflow. Non-reflecting sponge layer 

boundary conditions are used for the 

inflow, outflow, top, and side walls. 

 For the cylindrical roughness 

simulation with upstream injection, air 

is injected with a velocity of 73 m/s, 

pressure of 400 Pa, and density of 

0.0048 kg/m
3
. This corresponds to a 

mass flow rate of 3.12 mg/s. This 

injection occurred
 
through a rectangular 

slot whose dimensions and location 

match those of the experiment (Section 

II.B). Although NO is injected in the 

experiment, we use air in the simulation 

to assess the effect of mass injection on 

the velocity profiles. The effects of NO-

air chemistry were not considered in 

this simulation, however previous 

 
Fig. 1. Schematic of the computational domain. Taken 

from Ref. 16. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. (a) Top-view of the grid for the cylindrical roughness with 

injection case. (b) Note the grid in the vicinity of the roughness and (c) in 

the vicinity of the slot for injection. 
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computational work
36

 has suggested that such effects are negligible for the time scales of this flowfield. 

 A top view of the grid used for the cylindrical roughness case with injection is shown in Fig. 2. Note that the grid 

is fine in the vicinity of the roughness and coarsens in the laminar regions of the flow. There are 480 grid points in 

the circumference of the roughness and 30×100 points in the rectangular slot injection region. Downstream of the 

roughness, the grid spacing is approximately dx ~ 0.066 mm and dz ~ 0.07 mm. There are approximately 25 points 

in the wall-normal y-direction within the height of the roughness with a minimum wall spacing of 0.04 mm. The grid 

contains roughly 16 million grid points for all three cases simulated. 

IV. Results 

A. Effect of Upstream Injection on Boundary Layer Flowfield with Cylindrical Roughness 

 To assess the effect of upstream injection in the experiment, we compare the velocity profiles obtained from the 

simulations with and without injection. The air injection is imposed as a boundary condition in the simulation to 

match the flow rate (~3 mg/s) and physical properties of NO from the experiment. Figure 3a shows the 

instantaneous vertical velocity contours, normalized by Ue, in the symmetry plane for the cylindrical roughness case 

with upstream injection. Note the shock produced upstream of the roughness element and at the location of injection. 

 Figure 3b shows instantaneous streamwise velocity contours, normalized by the edge velocity, Ue, in a wall-

parallel plane close to the wall. The wake behind the injection region is clearly visible and is indicated by a region of 

low velocity. Downstream of the roughness element, high-speed velocity streaks can be observed which are due to 

the streamwise vortices generated by the roughness element. 

 Figure 4a shows the side-view comparison of computed streamwise velocity profiles with (solid blue lines) and 

without (solid green lines) air injection in a plane located at z = 0.0 mm, corresponding to Test-Run 462-18 in Table 

1. The measured streamwise velocity profiles are also shown (black data points) from the MTV experiment. The 

width of the experimental data points corresponds to the uncertainty in the mean streamwise velocity. The vertical 

red lines correspond to the streamwise x-location where the velocity profiles were initially tagged in the experiment.  

The error in the profile x-locations is estimated to be ±0.17 mm. The light-gray rectangle in Fig. 4a corresponds to 

the spanwise projection of the isolated cylindrical roughness element. 

 In Fig. 4a, the simulated upstream air injection causes a significant increase in the boundary layer thickness, as 

can be observed at all streamwise locations. To confirm that the laminar boundary layer thickness at the inflow of 

the computational domain was prescribed correctly, we compare the velocity profiles at z = 40.0 mm for the 

injection case (far from the injection slot) with the symmetry plane profiles for the case without injection in Fig. 5. 

At x = 50.1 mm and x = 59.3 mm, which is upstream of the roughness element, we see that the profiles with and 

without injection are nearly identical, indicating that the laminar boundary layer thickness at the inflow of the 

computational domain was prescribed correctly. It should be noted that the injection is prescribed as a steady 

boundary condition in the simulation. The 

injection slot mass flow rate has also 

been prescribed as a uniform 3.12 mg/s, 

which neglects viscous effects that would 

otherwise result in a parabolic-like mass 

flow rate distribution. These two factors 

could potentially contribute to some 

differences in the boundary layer 

thickness observed with and without 

injection, although it is reasonable to 

expect that the boundary layer thickness 

would increase due to the injection. 

 In Fig. 4a, both the measurement and 

simulation show that a shear layer 

develops downstream of the cylindrical 

roughness element at y = k = 2.0 mm. 

This shear layer recovers to a Blasius-like 

shape approximately 10 roughness 

diameters downstream of the roughness 

element. The magnitude of this shear 

layer is greater for the simulated case 

without air injection. 

 
(a) 

 
(b) 

Fig. 3: (a) Symmetry plane (z = 0.0 mm) wall-normal velocity contours 

normalized by Ue for cylindrical roughness with upstream injection. (b) 

Wall-parallel plane streamwise velocity contours normalized by edge 

velocity for cylindrical roughness with upstream injection. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 4: (a) Comparison of measured (black data points) and computed streamwise velocity profiles (solid blue lines – with air injection, solid green lines – 

without gas injection) in the x-y plane with a cylindrical roughness element at a spanwise position of z = 0.0 mm. Comparison of measured (black data points) 

and computed (lines) streamwise displacement profiles in x-y plane at streamwise positions of x = (b) 52.9 mm, (c) 72.2 mm, (d) 78.6 mm, and (e) 116.2 mm. 

Measured displacements (right image – green line) relative to initially tagged profiles (left image – red line) at respective streamwise positions shown below 

displacement plots using an arbitrary intensity scale. 
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 The simulation results presented in Fig. 4a indicate that the upstream injection of air could potentially cause a 

significant increase in the boundary layer thickness. When comparing the respective streamwise velocity profiles 

scaled by their respective local boundary layer thickness, computed as δL = y(U = 0.99·Ue), we see that the scaled 

profiles are nearly identical, as shown in Fig. 6. This suggests that the streamwise velocity distribution may scale 

with the upstream gas injection rate. However, comparison of the computed streamwise velocity profiles with the 

MTV measurements shows that the best general agreement between simulation and experiment occurs when 

considering the computed case without air injection. A similar result is observed when comparing simulation results 

without air injection with the MTV measurements in the top-view orientation in Figs. 7, 8a, and 9a. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5: Comparison of velocity profiles with upstream injection at z = 40.0 mm (solid red line) to velocity profiles 

without upstream injection (solid green line) along the z = 0.0 mm symmetry plane. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 6: Symmetry plane (z = 0.0 mm) streamwise velocity profiles with (solid red lines) and without (solid green 

lines) upstream air injection. Profiles are scaled by the local boundary layer thickness, δL, at the respective 

streamwise x-locations. 
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Fig. 7: Comparison of measured (black data points) and computed streamwise velocity profiles (solid blue lines – with air injection, solid green lines – without 

gas injection) in the x-z plane with a cylindrical roughness element at an approximate wall-normal position of y = 0.3 mm. 

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IN
N

E
SO

T
A

 o
n 

M
ar

ch
 1

0,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
02

36
 



 

 

American Institute of Aeronautics and Astronautics 
 

 

11 

 
(a) 

 

 
             (b)                                           (c)                                                     (d)                                                       (e) 

Fig. 8: (a) Comparison of measured (black data points) and computed streamwise velocity profiles (solid blue lines – with air injection, solid green lines – 

without gas injection) in the x-z plane with a cylindrical roughness element at a wall-normal position of y = 2.2 mm. (b) Measured displacement (right image – 

green line) relative to initially tagged profile (left image – red line) at streamwise position of x = 73.0 mm. Comparison of measured (black data points) and 

computed (lines) of streamwise displacement profiles in x-z plane at streamwise positions of x = (c) 73.0 mm, (d) 77.4 mm, and (e) 116.2 mm. 
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(a) 

 

 
      (b)                                                         (c)                                                        (d) 

Fig. 9: (a) Comparison of measured (black data points) and computed streamwise velocity profiles (solid blue lines – with air injection, solid green lines – 

without gas injection) in the x-z plane with a cylindrical roughness element at a wall-normal position of y = 3.4 mm. Comparison of measured (black data points) 

and computed (lines) of streamwise displacement profiles in x-z plane at streamwise positions of x = (b) 73.0 mm, (c) 77.4 mm, and (d) 116.2 mm. 
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 In Fig. 7, the discrepancy between the predicted streamwise velocity profiles and the MTV measurements is 

greater than at the other wall-normal locations. For the measurements presented in this figure, the error in the profile 

x-locations is estimated to be ±0.31 mm. The light-gray circle corresponds to the wall-normal projection of the 

isolated cylindrical roughness element. As in Fig. 4a, the mean velocity is indicated by the center of black horizontal 

data points, with the width corresponding to the uncertainty in the mean. The simulated streamwise velocity profiles 

shown in this figure were obtained from an x-z plane at a position of y = 0.3 mm. The measurements of streamwise 

velocity at this wall-normal location are consistently higher than those predicted by the simulation. Prior to 

processing the image set corresponding to this y-location, any images where significant laser scatter from the model 

surface was observed were discarded from the set, which would otherwise result in measurement errors. Similarly, 

images in which the laser lines were blocked by the model surface were also discarded. These undesirable 

occurrences were a consequence of facility vibration causing the wall-normal location of the laser lines to oscillate 

with respect to the nominal desired position of y = 0.0 mm (in some cases recessing below the model surface). Due 

to this vibration and subsequent image rejection process, the remaining images result in streamwise velocity 

measurements for which the laser lines do not intersect the model surface. Considering that the focused laser lines 

are approximately 0.7 mm in diameter, a more appropriate comparison would be for simulated streamwise profiles 

at y = 0.35 mm. 

 In the remaining streamwise velocity comparisons between simulation and experiment for the cylindrical 

roughness element (Figs. 4a, 8a, and 9a), the agreement between the simulation case without air injection and the 

MTV measurements is generally good away from the roughness element. In Figs. 8a and 9a, the error in the profile 

x-locations is estimated to be ±0.35 mm and ±0.10 mm, respectively. Near the cylindrical roughness element, 

however, significant discrepancies between the simulation results and the MTV measurements are observed in the 

regions immediately adjacent to the roughness element. In the following section, several possible causes for these 

discrepancies are examined. 

B. Analysis of MTV Profile Motion with Cylindrical Roughness Element 

 Two key assumptions were made when reporting streamwise velocities obtained from the MTV experiments. 

The first assumption is that the tagged gas translates in a direction perpendicular to the initially tagged profile. 

However, if a significant velocity component exists that is parallel to the tagged profile, an error in the reported 

streamwise velocity component will be incurred. This error is described graphically in Fig. 10a, which is adapted 

from Fig. 7 in Ref. 37, Fig. 2 in Ref. 38, and Fig. 2 in Ref. 39. In this figure and during the MTV measurement after 

the first exposure has closed, a point (𝑥0, 𝑧0) along the profile will transit to a new point at (𝑥0 + ∆𝑥,  𝑧0 + ∆𝑧), at 

which time the second exposure opens. The cross-correlation is then performed between the intensity profile 

centered at (𝑥0, 𝑧0) in the first exposure and intensity profile centered at (𝑥0 +  ∆𝑥𝑚 , 𝑧0) in the second exposure, 

where the subscript m refers to the measured displacement. 

 
(a) 

 
(b) 

Fig. 10: (a) Velocity error resulting from velocity component parallel to tagged profile. Modeled after figures 

taken from Refs. 37, 38, and 39. (b) Influence of velocity gradient on measured streamwise velocity. 
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 In Fig. 10a, the vertical violet line corresponds to the profile imaged in the first camera exposure and the curved 

violet profile corresponds to the profile imaged in the second camera exposure. A spanwise velocity component, 𝑉, 

results in a measured streamwise velocity of  𝑈𝑚 = ∆𝑥𝑚 ∆𝑡  while the true streamwise velocity is 𝑈 = ∆𝑥 ∆𝑡 . 

 The error in the streamwise displacement measurement incurred from the presence of the 𝑉 component of 

velocity, similar to the derivation in Refs. 37 and 39, is: 

 

  ∆𝑥 − ∆𝑥𝑚 =
𝜕𝑈0

𝜕𝑧
∙ 𝑉 ∙ ∆𝑡2 (1) 

 

Computational results in Fig. 3a show the presence of significant wall-normal velocity components in the immediate 

vicinity of the cylindrical roughness element.  

 The second key assumption made when performing the MTV experiments is that the measured streamwise 

velocity component, U, is constant over the duration of the measurement period, ∆𝑡. Put another way, the measured 

profile displacement relative to the point at which the NO gas is initially tagged, (𝑥0, 𝑦0), is given by the simple 

relation: 

 

  ∆𝑥𝑚 ,𝑈0=𝑐𝑜𝑛𝑠𝑡 = 𝑈0 ∙ ∆𝑡 (2) 

 

where U0 is the true streamwise velocity magnitude at (𝑥0, 𝑦0). However, if a streamwise velocity gradient exists 

across the measurement region, an error in the reported streamwise velocity component will be incurred. Such 

gradients result from the presence of adverse or favorable pressure gradients. This error is described graphically in 

Fig. 10b. In this figure, the molecules are initially tagged and imaged at a location (𝑥0, 𝑦0) having a local streamwise 

velocity corresponding to U0. During the measurement period ∆𝑡, the tagged molecules proceed downstream in the 

presence of the negative velocity gradient and experience a deceleration. After ∆𝑡, the tagged molecules, now at a 

location (x5, y5), are traveling at the local streamwise velocity U5 < U0. Since the reported streamwise velocity at 

(𝑥0, 𝑦0) is inferred from the measured displacement of the tagged molecules, ∆𝑥𝑚 , observed over ∆𝑡, the velocity 

measurement error is approximately  ∆𝑈 =   𝑈5 − 𝑈0 2 . Computational results in Fig. 3b show the presence of 

significant streamwise velocity gradients in the immediate vicinity of the cylindrical roughness element. 

 To determine if the disagreement between the measured streamwise velocity profiles and the simulated 

streamwise velocity profiles is a consequence of either of the error sources described in Fig. 10, the experimentally 

measured displacement profiles are compared to several variants of simulated displacement profiles. These 

comparisons are shown in Figs. 4b - 4e for the side-view orientation and Figs. 8c - 8e and Figs. 9b - 9d for the top-

view orientation at measurement plane positions of y = 2.2 mm and y = 3.4 mm, respectively, for the cylindrical 

roughness experiment. 

 In these figures, the black data points correspond to experimentally measured displacements, ∆𝑥𝑚 . The solid 

green and solid purple lines in Figs. 4b - 4e correspond to simulated streamwise (∆𝑥) and wall-normal (∆𝑦) 

displacements obtained by time-integrating flowfield streamlines. The dotted blue line in Figs. 4b - 4e corresponds 

to a simulated simple displacement profile obtained by assuming constant streamwise velocity over the 

measurement period given in Eq. 2. The red dash-dot line in Figs. 4b - 4e corresponds to the simulated displacement 

profile, ∆𝑥, obtained via time-integration of streamlines, but reported at a wall-normal position of 𝑦 = 𝑦0 − ∆𝑦. This 

path-adjusted displacement profile replicates any measurement error associated with a wall-normal velocity 

component as shown in Fig. 10a. The orange dash-dot line in Figs. 4b - 4e was obtained by using the simulation 

results and the relation in Eq. 1 (also described by Hammer et al. in Ref. 39) to compute an estimate for the 

measured displacement profile: 

 

  ∆𝑥𝑚 ,𝑒𝑠𝑡 = ∆𝑥 −
𝜕𝑈0

𝜕𝑦
∙ 𝑉 ∙ ∆𝑡2 (3) 

 

In Eq. 3, a central difference method was applied to the simulated streamwise velocity profiles to obtain the 

derivative term, 𝜕𝑈0 𝜕𝑦 . For the top-view displacement comparisons in Figs. 8c - 8e and Figs. 9b - 9d, the 

Table 3: Displacement profile integration times. 

Case Integration Time, ∆𝒕 (ns) 

Cylindrical roughness, side-view 652.1 

Cylindrical roughness, top-view 552.1 

Hemispherical roughness, side-view 550.8 
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displacements and derivatives are all with respect to the spanwise coordinate, z, rather than the wall-normal 

coordinate, y, as in Figs. 4b - 4e. Table 3 lists the integration times, ∆𝑡, used to compute the simulated 

displacements.  

 The simulated displacement profiles farthest from the cylindrical roughness element in the side-view symmetry 

plane (z = 0.0 mm) shown in Figs. 4b and 4e are nearly indistinguishable from one another. This is expected as the 

wall-normal velocities and streamwise velocity gradients are negligible at these streamwise locations (x = 52.9 mm 

and x = 113.7 mm, respectively). The simulated displacement profiles immediately upstream (x = 72.2 mm, Fig. 4c) 

and downstream (x = 78.6 mm, Fig. 4d) of the cylindrical roughness element, where the disagreement with the 

experimental displacement profiles is greatest, are nearly indistinguishable. At these streamwise locations, only the 

path-adjusted simulated displacement profiles show slightly better agreement with the measurement, but the 

improvement is still not nearly enough to account for the discrepancy between the measured and simulated profiles. 

 One concern when analyzing the image data to obtain streamwise velocity and displacement data was that laser 

scatter from the model surface and the cylindrical roughness element would result in measurement errors. To ensure 

that such scatter did not contribute to the disagreement between the simulation and experimental results, the 

displacement profiles were plotted on top of the raw images. These plots are shown below the displacement profile 

plots in Fig. 4. In these plots, the solid red lines correspond to the location of the initially tagged profile and the solid 

green lines correspond to the measured displacement relative to the red lines. For each streamwise location shown, 

the measured displacements show qualitative agreement with the raw image data. 

 As with the side-view results in Fig. 4, the simulated displacement profiles for the top-view orientations in Figs. 

8 and 9 are nearly indistinguishable from one another. The only exception occurs along the profile at x = 73.0 mm in 

the y = 2.2 mm plane in Fig. 8c. In this figure, the simple displacement profile (dotted blue line) computed using Eq. 

2 shows noticeable disagreement with the remaining simulated displacement profiles near z = 0.0 mm. This suggests 

that the velocity gradient immediately upstream of the cylindrical roughness element has an influence on the MTV 

velocity measurement. However, when comparing the experimental displacement profile with both the path-adjusted 

profile (red dash-dot) and the profile simulated using Eq. 3 (orange dash-dot), a significant discrepancy is still 

observed. As in Fig. 4, the measured displacement profile was compared with the raw image data in Fig. 8b to 

qualitatively determine if laser scatter had an effect on the experimental velocity and displacement measurement. 

Based on Fig. 8b, it appears that the velocity and displacement measurement agrees with the raw image data. These 

results suggest a negligible effect of the velocity gradients near the trip as a cause of the discrepancy between 

experiment and computations. 

C. Comparison of Measured and Simulated Streamwise Velocity Profiles with Hemispherical Roughness 

 Figures 11a - 11e show the measured streamwise velocity profiles (black data points) compared with simulated 

streamwise velocity profiles without air injection (solid green lines) with a side-view orientation at spanwise 

locations of z = -1.42 mm, z = -0.41 mm, z = 0.57 mm, z = 1.58 mm, and z = 2.58 mm, respectively. The error in 

the profile spanwise z-location is estimated to be ±0.4 mm. The light-gray half-circle represents the spanwise 

projection of the hemispherical roughness element. This projection of the hemisphere appears skewed because the 

vertical and horizontal axes are not equally spaced. For each of the streamwise velocity comparisons, a significant 

number of data points near the model surface were removed as a significant level of laser reflection and scatter was 

observed. For the remaining MTV streamwise velocity measurements, the general agreement with the simulated 

streamwise velocity profiles without air injection is relatively good. As with the side-view cylindrical roughness 

case in Fig. 4a, near the axis of symmetry (z = 0.0 mm), a shear layer develops downstream of the hemispherical 

roughness element at y = k = 2.0 mm. As in Fig. 4a, this shear layer recovers to a Blasius-like shape approximately 

10 roughness diameters downstream of the roughness element and is accurately captured by the CFD simulation. 

V. Conclusions 

This paper presented a comparison of measured streamwise velocity profiles in a Me = 8 hypersonic boundary 

layer obtained using the nitric-oxide (NO) molecular tagging velocimetry (MTV) technique with DNS simulations. 

Two flowfield types were considered in this comparison. The first was a flat-plate boundary layer flowfield with a 

cylindrical roughness element. Simulations of this flowfield were performed both with and without air injection 

from a rectangular slot upstream of the isolated roughness element. The simulated case with air injection was 

performed in an effort to model the injection of NO, which was necessary in the experimental MTV measurements. 

Comparison of the experimental streamwise velocity measurements with the simulation results showed that the 

simulated case without air injection agreed more closely with the MTV measurements. This result suggests that the 

NO injection in the MTV experiments has a relatively negligible effect on the hypersonic boundary layer flowfield 
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and that the DNS results overestimate the effect of air injection on the flowfield. For velocity profiles away from the 

cylindrical roughness element, it was determined that the CFD simulation without air injection accurately predicts 

the streamwise velocity field. For profiles in the immediate vicinity of the cylindrical roughness element, however, 

significant discrepancies were observed. These discrepancies were initially assumed to be a consequence of 

streamwise velocity gradients and velocity components parallel to the MTV profiles. A comparison of experimental 

and CFD simulated streamwise displacement profiles was performed to determine if such flow features did indeed 

result in the discrepancies observed between the experimental and CFD simulation results. Although streamwise 

velocity gradients were shown to account for some of the discrepancies—most noticeably in the case of  the top-

view profile located at x = 73.0 mm and y = 2.2 mm, upstream of the cylindrical roughness element—they generally 

had little effect on the simulated profiles, thus failing to account for the majority of the observed disagreement with 

the experimentally measured profiles. The influence of velocity components in the CFD simulation parallel to the 

MTV profiles on the disagreement between experiment and simulation was negligible. 

The second flowfield used for comparison of CFD simulation results with experimental MTV measurements was 

a flat-plate boundary layer flowfield with a hemispherical roughness element. As with the cylindrical roughness 

flowfield, the general agreement between the streamwise velocity profile simulation without upstream air injection 

and the MTV streamwise velocity profiles was relatively good. Unfortunately, laser scatter limited the proximity 

with which the experimental measurements could be made relative to the model surface. 

The reasons for the unexplained discrepancies between computed and measured displacement profiles could be 

experimental, computational, or both. Experimentally, potential effects of gradients in the local fluorescence-

quenching environment—which is largely a function of density—should be considered. Computationally, potential 

ways in which DNS might underestimate the influence of the abrupt perturbations to the flow caused by the tripping 

elements employed in this study should also be investigated. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 
Fig. 11: Measured (black data points) and computed (solid green lines, no gas injection) streamwise velocity profiles in the x-y plane with a hemispherical 

roughness element at spanwise positions of z = (a) -1.42 mm, (b) -0.41 mm, (c) 0.57 mm, (d) 1.58 mm, and (e) 2.58 mm. 
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