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ABSTRACT

Direct numerical simulation (DNS) is performed for
a turbulent channel flow at Reτ = 400. A realistic
rough surface, corresponding to the experiments of Flack
et al. (2019) is used on the bottom wall, while the top
wall is smooth. The skin-friction coefficient matches
the experimental results of Flack et al. (2019) for the
same rough surface. A double-averaging methodology
is used to investigate the roughness effects on the mean
flow, including the double-averaged flow field in the
rough layer, dispersive stresses compared to Reynolds
stresses, and pressure fluctuations. It is found that the
magnitude of dispersive stresses is smaller than that of
Reynolds stresses. The pressure fluctuations are enhanced
in the near-wall region, due to the peaky structures
of the roughness elements. The investigation of the
dominant mean-shear and turbulence-turbulence source
terms of the Poisson’s equation suggest that the shear
layer induced by roughness protrusions, the streamwise
vortices and secondary flow interactions among the
roughness elements contribute to the increased pressure
fluctuations in the rough-wall flows. For the smooth
wall case, we analyze the sources of wall-pressure
fluctuations using a novel framework that combines the
DNS data, Green’s function formulation and spectral
Proper Orthogonal Decomposition (POD). The sources
responsible for the premultiplied peak in the power
spectra at ω+ ≈ 0.35 peak in the buffer region for
Reτ = 180 and 400. Spectral POD supports the case
that the wall-pressure fluctuation sources can be classified
into two decorrelated parts - active and inactive. We
further investigate the active component of the source
by examining the obtained spectral POD modes. To
analyze the effectiveness of the rough surface to sustain
an interface, we use a recently developed level set
methodology based on energy minimization. The
algorithm gives equilibrium interface shapes over a wide

variety of rough surfaces for different static pressures.
The method is applied to user defined roughness and
realistic roughness obtained from surface scans.

INTRODUCTION

Surface roughness plays an important role in the operation
and performance of fluidic engineering devices. Realistic
rough surfaces are being studied in recent years both
experimentally and computationally. Compared to the
regular roughness patterns, the turbulence effects are more
complex and less understood for realistic surfaces.

Jiménez (2004) summarised roughness effects
on turbulent flows and highlighted that when the
roughness scales are sufficiently small, the effects are
limited to a near-wall layer, i.e. roughness sublayer, while
the turbulent statistics of the outer layer remain the same
as smooth-wall flows. Since three-dimensional rough
surfaces can produce inhomogeneous flow fields in the
roughness sublayer, the double-averaging decomposition
is applied to investigate the spatial heterogeneity in
time-averaged flow variables. This methodology was
introduced by Raupach and Shaw (1982) to examine
the ”wake production” term within vegetation canopies.
Many studies on regular rough surfaces have investigated
dispersive stresses. Cheng and Castro (2002) conducted
measurements over urban roughness and found that
the dispersive stresses in the roughness sublayer are
negligible compared to the spatially averaged Reynolds
stresses. Coceal et al. (2007) used DNS to investigate
the spatial heterogeneity within regular cube arrays and
found that the dispersive stress is mostly concentrated
in the wake regions. Studies in the context of irregular
rough surfaces were carried out recently to investigate
double-averaged (DA) statistics. A numerical study
was conducted by Forooghi et al. (2018) for turbulent
channel flows over random roughness with high slopes
to investigate the effects of surface statistics on the



Reynolds and dispersive stresses. Yuan and Jouybari
(2018) performed DNS to contrast two realistic surfaces
with different range of scales in terms of the momentum
transfer and energy production. Jelly and Busse (2019)
provided a detailed analysis on the Reynolds number
dependence of Reynolds and dispersive stresses for
irregular near-Gaussian roughness.

The wall-pressure fluctuations are of importance
for both smooth and rough walls. They excite flexible
structures thereby resulting in far-field sound radiation.
Also, the pressure fluctuations are a global quantity
because it satisfies a Poisson equation. Thus arguments
that are based on local length and velocity scales that have
worked reasonably well for velocity, might not work very
well to analyze pressure fluctuations. We will sometimes
refer wall-pressure fluctuations as just wall-pressure for
brevity.

We now discuss some previous works on
analyzing sources of smooth wall-pressure fluctuations
in wall-bounded flows. Farabee and Casarella
(1991) measured the power spectral density (PSD)
of wall-pressure under a turbulent boundary layer for
different freestream velocities. They used scaling
arguments to decipher the location of sources of
wall-pressure for different frequency ranges. Based
on the collapse of the PSD, they hypothesized that
the dominant contribution to the low (ωδ/uτ < 5),
mid (5 < ωδ/uτ < 100) and high frequency regions
(ωδ/uτ > 0.3Reτ ) of the wall-pressure PSD to be
from the unsteady potential region (above the boundary
layer), outer region and inner region of the boundary
layer, respectively. Chang III et al. (1999) analyzed the
contribution of sources in viscous, buffer, logarithmic
and outer region to wall-pressure wavenumber spectra by
computing partial pressures. Overall, they found that the
buffer region is the dominant source of wall-pressures
for both low and high wavenumbers. Panton et al.
(2017) studied wall-pressure using turbulent channel
flow DNS data at Reτ ranging from 180− 5200. The
premultiplied wall-pressure streamwise wavenumber
spectra showed a peak around λ

+
1 ≈ 200− 300 for all

Reτ . For Reτ > 1000, Panton et al. (2017) observed a
non-negligible contribution from the low-wavenumber
range to the RMS wall-pressure. This contribution
grew and separated from the high wavenumber peak at
λ
+
l with increasing Reynolds numbers. Since, the low

wavenumber peak did not scale in inner units, the sources
responsible for this peak were believed to be in the outer
region.

Realistic rough surfaces are also of great interest
to the superhydrophobic community due to their impact
on skin friction and pressure drag which can modify
near-wall flow structures in turbulent flows. The
wetted condition is known as the Wenzel state (Wenzel,

1936). The ability for the roughness to entrap gas
within the microtexture when submerged in water is
known as the Cassie-Baxter state (Cassie and Baxter,
1944). This is relevant to superhydrophobicity and
wall nucleation due to its impact on drag reduction and
cavitation. The multiphase aspect of the simulations is
to examine the distribution of the liquid-gas interface
over a realistic rough surface which is difficult to
measure experimentally. Bottiglione and Carbone
(2012) investigated the effect of statistical properties of
the surface roughness using an analytical approach to
minimize the Gibbs free energy of a liquid-air interface
over a 1D roughness; an extension to a higher dimension
was not examined. Alamé et al. (2019) proposed a
level set methodology without reinitialization based on
energy minimization to obtain the liquid-gas interface
over arbitrary realistic roughness at equilibrium.

In this paper, we perform DNS of turbulent
channel flow over realistic surfaces and explore the
roughness effects on the mean flow and turbulent
statistics using the double-averaging decomposition.
We investigate the pressure fluctuations in rough-wall
flows and take the first steps towards examining the
role of Poisson’s equation contributors to the pressure
fluctuations in the roughness sublayer. For smooth
walls, we discuss a novel framework (Anantharamu
and Mahesh, 2020) to analyze sources of wall-pressure
fluctuations at Reτ = 180 and 400. The methodology
combines Direct Numerical Simulation (DNS) data,
Green’s function formulation and spectral POD. We are
currently extending the framework to analyze sources
of rough-wall wall-pressure fluctuations. Finally, using
Gibbs free energy minimization, we investigate the effect
of external pressure on the liquid-air interface equilibrium
location over a wide variety of surfaces.

SIMULATION DETAILS

The governing equations are solved using the finite
volume algorithm developed by Mahesh et al. (2004)
for the incompressible Navier-Stokes equations. The
governing equations for the momentum and continuity
equations are given by the Navier-Stokes equations:

∂ui

∂ t
+

∂

∂x j
(uiu j) =−

∂ p
∂xi

+ν
∂ 2ui

∂xix j
+Ki, (1)

∂ui

∂xi
= 0, (2)

where ui and xi are the i-th (1-streamwise, 2-wall-normal,
3-spanwise) component of the velocity and position
vectors respectively, p denotes pressure, ν is the
kinematic viscosity of the fluid and Ki is a constant
pressure gradient (divided by density). The algorithm
is robust and emphasizes discrete kinetic energy



conservation in the inviscid limit. This enables simulation
of high-Re flows without adding numerical dissipation.
A predictor-corrector methodology is used where the
velocities are first predicted using the momentum
equation, and then corrected using the pressure gradient
obtained from the Poisson equation yielded by the
continuity equation. The Poisson equation is solved using
a multigrid pre-conditioned conjugate gradient method
(CGM) using the Trilinos libraries (Sandia National
Labs). The Crank-Nicholson discretization with a
linearization of the convective terms and a successive
over relaxation (SOR) method is used for implicit time
advancement.

The surface is represented by obstacle cells
which are masked out. We ensure that the p.d.fs, statistics,
and spectra of the masked surface agree acceptably with
the experimental scan (Ma et al., 2021). The wetted
masked cells (cells that share a face between a fluid and
obstacle cell) enforce a zero face-normal velocity. No-slip
Dirichlet boundary conditions are enforced on the face
velocities of the rough surface in the computations.

In the context of the Gibbs free energy
minimization, a different approach is taken. Instead of
solving the Navier-Stokes equations, we begin by defining
a total energy of the system E (φ) = EB(φ) + EI (φ) +
Rp(φ) that is the sum of the bulk energy EB(φ) (due
to an external pressure), surface energy EI (φ) (due to
surface tension) and Rp(φ) the penalty function that
keeps the level set a signed distance function. By taking
the Fréchet derivative of the energy functional, we obtain
a steepest descent minimization in the form of a level set
advection-diffusion equation given by:

∂φ(x, t)
∂ t

= α∇ ·
(

dp
(
|∇φ(x, t)|

)
∇φ(x, t)

)
+δ
(
φ(x, t)

)[
∇ ·
(

τ(x)
∇φ(x, t)
|∇φ(x, t)|

)
+∆pH(−ψ(x))+µH(ψ(x))

]
. (3)

The signed distance functions (SDF) φ(x) and ψ(x)
are level sets that track the two fluids and the solid
surface respectively. φ(x) > 0 in the liquid region,
φ(x) < 0 in the air region, and φ(x) = 0 at the liquid-air
interface. Similarly for ψ(x) which denotes the solid
region. H(·) is the Heaviside function and δ (·) is the
Dirac delta function. The first term on the right hand
side is the level set regularization term which enforces
the level set to remain an SDF ; this removes the need
to reinitialize every time-step. The premultiplier α is
a weighting coefficient for regularization. The second
term is the surface tension-curvature product where τ(x)

is the surface tension and ∇ ·
(

∇φ(x,t)
|∇φ(x,t)|

)
is the curvature

κ . The third term ∆p is the external pressure which
is only active outside the solid region. The Lagrange
multiplier µ satisfies the no-penetration constraint (i.e.
the interface level set φ(x) does not intersect and penetrate
the solid level set ψ(x)). At equilibrium, the surface
tension term balances with the pressure term. This results
in the Young-Laplace equation ∆p = τκ , while the other
terms go to zero. Further details into the numerical
implementation of the method and how the Lagrange
multipliers are computed can be found in Alamé et al.
(2019).

COMPUTATIONAL SETUP

Surface generation

The rough surface is processed from the
experimental scans provided by Flack and Schultz
(personal communication). Each tile is a rectangular
patch of roughness with krms ≈ 88µm, which is
interpolated into the grids size based on the streamwise
and spanwise resolution in the simulation. Several rough
tiles are then tiled in random rotations to minimize
the directional bias and achieve a larger domain size.
The simulation domain size of 2πδ × πδ , where δ is
the channel half-height, is then extracted from the tiled
surface. The length, width of the rough surface and the
roughness height are all scaled by δ .

At the beginning of a simulation run, the values
of the roughness height are read and interpolated to the
cell centres. Any obstacle cell which shares an edge
with a fluid cell is tagged as a boundary cell. Boundary
cells can either be an edge cell (if the boundary cell
borders exactly one fluid cell) or a corner cell (if the
boundary cell shares a corner with two or more fluid
cells). The momentum equations are solved inside the
fluid domain while the pressure is solved in both fluid and
solid domains. No-slip boundary conditions are applied at
the edge cells and a weighted average of the neighbouring
cells is applied at the corners. This does not affect the
pressure equation since we use collocated grids where the
face-normal velocities are set to zero at the boundaries
independent of the cell centre value. This ensures a proper
pressure jump recovery at the obstacle walls.

The surface statistics of the rough surface before
scaling are shown in table 1. Figure 1 visualises the
rough surface. Figure 2 shows a direct comparison of a
cross section of the surface profile between the original
experimental scan and the processed surface. Note that
the small scales are smoothed out but the profile remains
a reasonable approximation.



Table 1: Surface statistics of the processed realistic rough
surface

Parameter Description k/δ k+

ka Average Roughness Height 0.006 2.4

krms RMS Roughness Height 0.007 2.8

kt Maximum Peak to Valley Height 0.06 24

Sk Skewness −0.053

Ku Kurtosis 2.933

ESx Effective Slope of Roughness in x 0.265

ESz Effective Slope of Roughness in z 0.265
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Figure 1: Illustration of the rough surface. The
contour legend describes the height of the surface profile
normalized by δ .
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Figure 2: Comparison of a cross section of the
computational surface to the experimental scan. The solid
black line shows the experimental surface, and the dashed
red line shows the computational rough surface for Case
krms ≈ 88µm.

Problem description
Simulations are performed for a turbulent

channel flow at Reτ = uτ δ/ν = 400, where the rough

surface is applied on the bottom wall only. A smooth
turbulent channel flow at the same Reτ is performed for
comparison. No-slip boundary conditions are used on
both the top and bottom walls with periodicity in the
streamwise (x) and spanwise (z) directions. Non-uniform
grids are used in the wall-normal (y) direction with grids
clustering near the surface region. k+s is equal to 6.4 for
the rough case. The case names, domains and grid details
are shown in table 2 and 3. For further information of
the rough surface, the validations of our flow solver and
the grid convergence study, we refer the reader to Ma
et al. (2021). The streamwise, spanwise, and wall-normal
resolutions adhere to the criteria suggested by Busse et al.
(2015). The smallest roughness feature, estimated by the
smallest wavelength λmin, is resolved by 14 grid points.

Table 2: Domains and meshes of simulation cases.

Case Lx×Ly×Lz Nx×Ny×Nz

Smooth 2πδ ×2δ ×πδ 768×320×384

krms ≈ 88µm 2πδ ×2.03δ ×πδ 768×320×384

Table 3: Grid resolution of simulation cases.

Case ∆x+ ∆z+ ∆y+min ∆y+max λmin/∆x

Smooth 3.27 3.27 0.85 5.48 -

krms ≈ 88µm 3.27 3.27 0.85 5.64 14

A constant pressure gradient is set to drive the
channel flow, thus the average friction velocity uτ is given
by uτ = (δK1)

1/2. For Case krms ≈ 88µm, since the top
wall is smooth and the bottom wall is rough, the shear
stress over the smooth wall, τ t

w, is calculated by averaging
µ(∂u/∂y)|y=Ly over the wall. The rough-wall shear stress
τb

w is then computed from the force balance between the
drag of the walls and the driven force. The bottom wall
friction velocity is then calculated by ub

τ = (τb
w/ρ)1/2.

Double-averaging methodology
Since the roughness leads to spatial

heterogeneity of the time-averaged variables, the
double-averaging decomposition (Raupach and Shaw
(1982)) is applied to separate the spatial variation in the
homogeneous and non-homogeneous directions from the
time-averaged quantities,

θ(x,y,z, t) = 〈θ〉(y)+ θ̃(x,y,z)+θ
′(x,y,z, t). (4)

θ represents any instantaneous flow variable. θ is
the time-averaged variable. The instantaneous turbulent
fluctuation θ ′ is thus obtained by extracting the temporal



average from the instantaneous variable, i.e. θ ′ = θ −θ .
The bracket is the spatial-averaging operator,

〈θ〉(y) = 1/A f

∫ ∫
A f

θ(x,y,z)dxdz, (5)

where A f is the fluid-occupied area. The form-induced
dispersive component, θ̃ , is defined as θ̃ = θ−〈θ〉, which
presents the spatial variation of the time-averaged flow
variables.

According to the decomposition in equation 4,
the Reynolds stress tensor is defined as

u′iu
′
j = (ui−ui)(u j−u j), (6)

and the dispersive stress tensor is defined as

ũiũ j = (ui−〈ui〉)(u j−〈u j〉). (7)

Surface scans as a solid boundary for Gibbs energy
minimization

In order to represent the surface in the Gibbs
energy minimization, the solid has to be defined as a
continuous implicit function (i.e. a level set). The original
algorithm presented in Alamé et al. (2019) relied on a user
defined input where the solid level set is known a priori
and is supplied as an initial condition. Here the algorithm
is extended such that a level set can be reconstructed
from a point cloud data of a real surface scan without
any knowledge of its surface properties (e.g. surface
normals), all that is needed is a height distribution over
the streamwise and spanwise dimensions. This is done in
a 3 step process after reading in the height map:

1. Reconstruct a signed distance field from the
point cloud data, this is done by solving the
Eikonal equation |∇d(x)|where d(x) is the distance
function. A Gauss-Seidel iterative method is used.

2. Initialize a level set for the solid at an offset from
d(x), then solve a minimization problem between
the gradient of the distance field and the gradient
of the level set. This is given by φt = δ (φ)(∇d ·
∇φ). This leads to a level set reconstruction of the
roughness.

3. Use the generated level set from the previous step
as be read by the Gibbs free energy minimizer
algorithm that initializes the above level set to a
solid interface.

The surface data used is obtained from a real surface
manufactured at UT Dallas (courtesy Professor Wonjae
Choi), with a 3D surface profile measurement using a 50X
objective lens obtained from MIT (courtesy Professor
Gareth McKinley). The sample is made of aluminum
6061 sandblasted using 150 grit, etched for 25 seconds,

boehmetized for 30 minutes, and hydrophobised using
Ultra Ever Dry top coat in isopropanol. Figure 3
shows three different reconstructions with varying grid
resolutions, Nx×Ny×Nz = 128× 26× 128, 256× 52×
256, and 512×106×512 respectively.

Figure 3: Real surface scanned data reconstructed as
a level set for three different resolutions ranging from
coarse, medium to a fine grid. Note the level of detail
the reconstruction if able to provide.

The reconstruction algorithm is able to capture
the smallest variations in the roughness, providing a
powerful tool to reconstruct realistic surfaces for the
energy minimization algorithm.

RESULTS AND DISCUSSION

Skin-friction coefficient

The skin-friction coefficient C f = τb
w/(

1
2 ρU2

b ) is
computed, where Ub is the bulk velocity of the channel
flow. The C f value of Case krms ≈ 88µm is 0.00734,
while the C f from the experimental results of Flack et al.
(2019) is 0.00740. The error of the simulation relative
to experiment is 0.8%, which constitutes reasonable
agreement.



DA statistics
The DA velocity of Case krms ≈ 88µm is

presented in the inner coordinate, and compared to the
smooth case in figure 4. The velocity is normalized by
ub

τ in the rough case and uτ in the smooth case. The
wall-normal distance y+ in the rough case is equal to
(y−y0)ub

τ/ν , where y0 is the virtual origin, taken to be the
arithmetic mean elevation of the rough surface. The rough
case shows a slip velocity at the wall and a velocity deficit
in the viscous wall region. The inset shows the profile
in semi-log coordinate. The dotted line shows the peak
location of the rough surface, corresponding to y+ = 12.
In the rough region (y+ ≤ 12), the velocity profile shows a
gradual increase due to the drag effects of roughness. As
y+ extends beyond the rough region, the velocity displays
a more constant offset from the smooth-wall profile and
conforms to the log-law in the log-law region.
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Figure 4: Mean velocity against wall-normal distance in
the inner coordinate. The inset is shown on a semi-log
scale.

To investigate the spatial variation of the
time-averaged flow field in the rough region, the
form-induced velocity field at y+ = 3 is examined. Figure
5(a) shows that large positive and negative ũ occurs in
the large trough region between the roughness asperities,
and the wake region behind the roughness elements,
respectively. The distribution of ṽ in figure 5(b) is more
sparse compared to ũ, but the high-magnitude positive
ṽ occurs mostly in front of the roughness. Looking
into the same region of the distribution of w̃ in figure
5(c), the pairs of the high magnitude of positive w̃ (red
region) and negative w̃ (blue region) are observed in
front of the roughness crests. This correlation indicates
that the impulsive upward velocity produces the pairs of

streamwise vortices. This has been suggested by Muppidi
and Mahesh (2012) in their investigation of a regular
rough-wall boundary layer. Here, we observe the same
feature. However, unlike the regular rough wall case,
the distribution and strength of the streamwise vortices
depend on the irregular roughness geometry.
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Figure 5: Form-induced velocity (a) ũ+, (b) ṽ+, and (c)
w̃+ at y+ = 3.

The pressure perturbation at the same y+

location is shown in figure 6. Large positive p̃ (red region)
is found to occur in front of the roughness asperities,
while large negative p̃ (blue region) occurs behind the
rough elements. The form drag is computed in two
regions separately: one is the ‘peak’ region above the
mean roughness height, the other is the ‘valley’ region
below the mean height. The results show that the form
drag in the ‘peak’ region contributes 73.8% of the total
form drag. This suggests that the peaky structures of the
rough surface contribute a large percentage of the form
drag.
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Figure 6: Form-induced pressure p̃+ at y+ = 3.

The spatially-averaged Reynolds stresses and
dispersive stresses are shown in figure 7, scaled by
(ub

τ)
2. The profiles of Reynolds stresses are compared

to the smooth case in the near-wall region. The peak of
〈u′u′〉+ is decreased in the rough case while the outer
part collapses well with the smooth case. The other
components 〈v′v′〉+, 〈w′w′〉+ and 〈u′v′〉+ do not show as
much difference as 〈u′u′〉+ since the flow is at the onset of
the transitionally rough regime. Obviously, the magnitude
of dispersive stresses is much smaller than the Reynolds
stresses, and are negligible above the rough region.
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Figure 7: Reynolds and dispersive stresses in the
near-wall region.
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Figure 8: Normal and shear components of dispersive
stress tensor.

Figure 8 shows a closer view of the components
of dispersive stress tensor. The levels of dispersive stress
are less than those of the irregular roughness investigated
by Jelly and Busse (2019), which is related to the smaller
roughness Reynolds number of Case krms ≈ 88µm. The
profile of 〈ũũ〉+ reaches maximum at y+ = 6 and drops
to zero at y+ = 30, underlining the spatial inhomogeneity
near the rough-wall region. The profiles of 〈ṽṽ〉+, 〈w̃w̃〉+
and 〈ũṽ〉+ have the similar trend as 〈ũũ〉+, but smaller
magnitudes.

Rough wall-pressure fluctuations

Next, we investigate the mean-square pressure
fluctuations 〈p′p′〉+ of Case krms ≈ 88µm. In figure 9, the
profile of 〈p′p′〉+ of Case krms ≈ 88µm as well as that in
the smooth channel flow at three different Reτ are shown.
As Reτ increases, the level of pressure fluctuations is
increased before decreasing into the logarithmic matching
law fitted by Panton et al. (2017).

〈p′p′〉+cp(y/δ ) =−2.5625ln(y/δ )+0.2703 (8)

For Case krms≈ 88µm, 〈p′p′〉+ shows a higher level in the
roughness sublayer compared to Case Smooth at the same
Reτ before collapsing onto the logarithmic profile. To
further examine the large values of pressure fluctuations in
the rough region, the distribution of 〈p′p′〉+ is examined
at y+ = 3 in figure 10. The high pressure fluctuations
occurs in front of the roughness asperities, while the wake
regions behind the rough elements show a lower level of
pressure fluctuations.
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Figure 9: Mean-square pressure fluctuations against
wall-normal distance in the outer coordinate.
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Figure 10: Pressure fluctuation 〈p′p′〉+ at y+ = 3.

To better understand the pressure fluctuation in
the rough case, the contribution of the source terms in the
Poisson’s equation is investigated. The Poisson’s equation
for the fluctuating pressure obtained by subtracting the
mean from the instantaneous pressure is,

∂ 2 p′

∂xi∂xi
=−2

∂ 〈ui〉
∂x j

∂u′j
∂xi
− ∂ 2

∂xi∂x j
(u′iu

′
j−u′iu

′
j). (9)

The first term on the right-hand side is called the
mean-shear source term (MS) and the second term is
known as the turbulence-turbulence source term (TT).
In the smooth-wall channel flow, the contribution of
the mean-shear source term is the component, MS12 =

−2 ∂ 〈u〉
∂y

∂v′
∂x . Since this term is weighted by the temporal

and spatial-averaged streamwise velocity gradient, it
can present different distribution in the rough case.
Chang III et al. (1999) suggested that the dominant
turbulence-turbulence source term T T23 is related to
horseshoe vortices.

The mean velocity gradient, root-mean-square
(rms) MS12 and T T23 are examined in figure 11. For Case
Smooth, the mean velocity gradient shows maximum at
the wall, while MS12 presents its maximum at y+ = 11.
For Case krms ≈ 88µm, the rms of MS12 is enhanced in
the roughness layer, reaches the peak value at y+ = 5,
decreases and collapses onto the profile of the smooth
case. It is also found that the maximum of rms MS12 for
Case krms≈ 88µm is at the same peak location as the mean
velocity gradient. Compared to MS12, the increased level
of T T23 is smaller and mainly occurs in the roughness
layer.
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Figure 11: Profiles of the mean velocity gradient,
dominant mean-shear and turbulence-turbulence source
terms against the wall-normal distance.

The local variations of rms MS12 and T T23 in
the near-wall region are examined in figure 12(a) and
(b). The intense and high-magnitude MS12 occurs in
front of the roughness protrusions and on the crests.
The high-magnitude T T23 are identified in two regions,
labeled by A and B. At location A, T T23 is large in the
immediate vicinity upstream of the roughness protrusion.
Figure 12(c) and (d) show the time-averaged streamwise
vorticity at the same regions. A pair of streamwise
vortices is observed at the same location which is induced
by the upward velocity in front of the protrusions. A
pair of secondary vortices is observed below the induced
streamwise vortices, closely attaching to the bottom wall.
At location B, the high-magnitude streak is found to
be located in the valley where the streamwise vortices
occur. These observations show the high correlation
between T T23 and the quasi-streamwise vortices. It can
be concluded that the shear layer along with the ”roll-up”
motion generated at the upstream stagnation point of
the protrusion is a primary source of the larger pressure
fluctuations, while the streamwise vortices that occur in
front of the protrusion and in the troughs, generating
secondary vortical structures below the main vortices, also



make a contribution to the increased pressure fluctuations
in the rough-wall flows.

0 120 240 360 480
12

12

36

60

84

108

7000

6000

5000

4000

3000

2000

1000

0

y+

x+

MS+12,rms

(a)

0 200 400 600 800
400

500

600

700

800

3000

2500

2000

1500

1000

500

0

A

B

z+

x+

T T+
23,rms

(b)

500 550 600
12

0

12

24

30

20

10

0

10

20

30

A

y+

z+

ωx
+

(c)

550 600 650
12

0

12

24

30

20

10

0

10

20

30

B

y+

z+

ωx
+

(d)

Figure 12: (a) Spatial variation of rms MS12 at z+ =
628, (b) Spatial variation of rms T T23 at y+ = 3.
Time-averaged streamwise vorticity ωx normalised by
uτ/δ corresponding to (c) region A at x+ = 160, (d)
region B at x+ = 688. The dashed lines in (b) denote the
z+-y+ planes observed in (c) and (d). Note for the z+-y+

plane, the mean flow direction points out of the page.

Sources of smooth wall-pressure fluctuations
For the smooth-wall case, the wall pressure

fluctuations is from the spatially homogeneous fluid
sources alone. We investigate this further using a
novel framework (Anantharamu and Mahesh, 2020) that
combines the Green’s function solution to the pressure
fluctuation Poisson equation, DNS data and spectral POD
(Proper Orthogonal Decomposition).

The DNS data set used for the smooth
wall-pressure source investigation is from a separate set
of turbulent channel flow simulations at Reτ = 180 and
400. These simulations used a moving frame of reference
to reduce the dispersive errors, and a larger computational
box to include the contribution of large scale structures
to wall-pressure PSD (power spectral density). For
further details of these simulations, we refer the reader
to Anantharamu and Mahesh (2020).

The goal is to express the wall-pressure PSD as
a double wall-normal integral of a cross-spectral density
(CSD). The pressure fluctuation at a point (x,−δ ,z) on
the wall can be expressed as a wall-normal integral using
the Green’s function as

p(x,−δ ,z, t) =
∫ +δ

−δ

fG(x,y,z, t)dy,

fG(x,y,z, t) =
∫∫ +∞

−∞

G(−δ ,y,k1,k3) f̂ (k1,y,k3, t)ei(k1x+k3z)

dk1dk3,

(10)

where fG(x,y,z, t) is called the ‘net source’ function,
G(−δ ,y,k1,k3) and f̂ (k1,y,k3, t) is the Green’s function
at the bottom wall and the spatial Fourier transform
of the right hand side of the pressure fluctuation
Poisson equation, respectively. We can show that the
wall-pressure PSD φpp(ω) relates to the net source
fG(x,y,z, t) as

φpp(ω) =

+δ∫∫
−δ

Γ(r,s,ω)drds,

Γ(r,s,ω) =
1

2π

∫
∞

−∞

〈 f ∗G(x,r,z, t) fG(x,s,z, t + τ)〉e−iωτ dτ,

(11)

where Γ(r,s,ω) is the CSD of the net source fG(x,y,z, t).
Γ(r,s,ω) gives the contribution of each wall-parallel plane
pair (r,s) to the wall-pressure PSD as a function of
frequency. We can also show that Γ(r,s,ω) relates to the
four-dimensional CSD of the pressure Poisson fluctuation
source term f (x,y,z, t) as

Γ(r,s,ω) =

+∞∫∫
−∞

G∗(0,r,k1,k3)G(0,s,k1,k3)

ϕ f f (r,s,k1,k3,ω)dk1 dk3.

(12)



To obtain the contribution from a plane y = r to the
wall-pressure PSD, we integrate Γ along s and obtain,

φpp(ω) =
∫ +δ

−δ

Ψ(r,ω)dr, (13)

where

Ψ(r,ω) =
∫ +δ

−δ

Γ(r,s,ω)dr (14)

It can be shown that Ψ(r,ω) is the CSD of the
net source fG(x,y,z, t) and the wall-pressure fluctuation
p(x,−δ ,z, t), i.e.,

Ψ(r,ω) =
1

2π

∫
∞

−∞

〈 f ∗G(x,r,z, t)p(x,−δ ,z, t + τ)〉e−iωτ dτ.

(15)
Hence, we call Ψ(r,ω) as the wall-pressure - net

source CSD. We compute the net CSD Γ(r,s,ω) (equation
12) using the three-dimensional DNS data at Reτ =
180 and 400. For a streaming parallel implementation
procedure to compute Γ(r,s,ω), we refer the reader to
Anantharamu and Mahesh (2020). Further, we compute
the wall-pressure net source CSD Ψ(r,ω) from the
computed net source CSD Γ(r,s,ω) using equation 14.

We will first discuss the inner peak of the
premultiplied wall-pressure PSD. Then, we identify
the location and features of the dominant source that
contributes to this inner peak using the computed Ψ(r,ω)
(see equation 11).

Figure 13: Premultiplied wall-pressure PSD for Reτ =
180 and 400.

C1 C2

Figure 14: Real part of premultiplied wall-pressure-NS
CSD (y+ω+Re(Ψ(y+,ω+))/〈p2〉) for Reτ = 400 (black
solid lines with filled contours with colormap C1) and 180
(line contours with colormap C2). Contour lines are 20
equally spaced values between 4e-4 and 2e-1.

Figure 13 shows the premultiplied wall-pressure
PSD for Reτ = 180 and 400. At these low Reynolds
numbers, we clearly see the inner peak at ω+ ≈ 0.35
whose frequency scales in inner units. This peak has
been observed before by Hu et al. (2006) and Panton et al.
(2017) up to Reynolds numbers of Reτ ≈ 5000.

To identify the location of the dominant sources
that contribute to this inner peak, we plot the contours of
the real part of wall-pressure - net source CSD (Ψ(r,ω))
in premultiplied form in figure 14. The filled contours
with colormap C1 is for Reτ = 400 and the line contours
with colormap C2 is for Reτ = 180. The coordinates of the
peak value in the contours are (y+p ,ω

+
p ) of (16.5,0.35)

for Reτ = 180 and (18.4,0.35) for Reτ = 400. The
frequency coordinate of the peak contour value coincides
with the pre-multiplied PSD peak shown in figure 13.
The corresponding wall-normal peak coordinates lie in
the buffer layer and is approximately the same in inner
units. This quantitatively shows that the location of the
sources that contribute to the premultiplied PSD peak at
ω+ ≈ 0.35 is in the buffer layer. Further, one cannot
expect the wall-normal coordinates to completely scale
in inner units because the CSD Ψ(r,ω) has integrated
contribution from the sources in the outer region of the
channel also (see equation 14).

We obtain the phase difference between the
wall-pressure fluctuation and the dominant source using
the argument of Ψ(y+p ,ω

+). The phase difference is
0.013π for Reτ = 180 and 0.016π for Reτ = 400. The
values are very small indicating that the wall-pressure is
almost in-phase with these dominant sources.

We would like to mention that this location of
the dominant source at ω+ ≈ 0.35 could not be identified
using the net source PSD Γ(r,r,ω). The contours of
Γ(r,r,ω) did not show a distinct peak at ω+ = 0.35 that



approximately coincided in y+ for the two Reτ . This
points to the fact that the interference of the contribution
from different wall-normal regions plays a major role in
determining the peak wall-normal location.

(a)

(b)

Figure 15: Fractional contribution of each spectral POD
mode (γi(ω)) to the wall-pressure PSD for (a) Reτ = 180
and (b) Reτ = 400.

Next, we identify the decorrelated features of the
sources using spectral Proper Orthogonal Decomposition.
We will use the obtained spectral POD modes to further
examine the features of the dominant source. Using
spectral POD, we can decompose the net source CSD
Γ(r,s,ω) as

Γ(r,s,ω) =
∞

∑
i=1

λi(ω)Φi(r,ω)Φ∗i (s,ω). (16)

Here, {λi(ω)}∞
i=1 are the spectral POD eigenvalues and

{Φi(y,ω)}∞
i=1 are the spectral POD modes. To identify

the sources that are pertinent to the wall-pressure PSD,
we require the modes to be orthogonal in an inner
product with a symmetric positive definite kernel instead
of the commonly used L2 inner product. For details on

the spectral POD computation, we refer the reader to
Anantharamu and Mahesh (2020).

The contribution of each spectral POD mode to
wall-pressure PSD is γi(ω), i.e.,

φpp(ω) =
∞

∑
i=1

γi(ω). (17)

We can show that

γi(ω) = λi(ω)|
∫ +1

−1
Φi(r,ω)dr|2; i = 1, . . . ,∞, (18)

which can be simplified to yield

γi(ω) =λi(ω)(∫ +1

−1
|Φi(r,ω)|cos(∠Φi(r,ω)−∠Φ

n
i (ω))dr

)2

; i = 1, . . . ,∞,

(19)

where ∠Φn
i (ω) = ∠

(∫ +δ

−δ
Φi(y,ω)dy

)
. From the above

equation, we observe that the eigenvalue, magnitude
and phase of the spectral POD mode, all play a role
in determining its contribution to the wall-pressure
PSD. Fluid sources contained in wall-normal regions
with phase in the range |∠Φi(y,ω)− ∠Φn

i (ω)| < π/2
undergo destructive interference with the sources in
the region where π/2 < |∠Φi(y,ω) − ∠Φn

i (ω)| < π .
This interference of the fluid sources from different
wall-normal region plays an important role in determining
the net contribution of a spectral POD mode to the
wall-pressure PSD.

Figure 15 shows the fractional contribution
(γi(ω)) of each spectral POD mode to the wall-pressure
PSD for different frequencies. Figure 15a is for Reτ = 180
and figure 15b is for Reτ = 400. Clearly, we observe
that the identified dominant mode contributes to nearly
all the wall-pressure PSD. For the remaining modes, the
contribution from different wall-normal regions undergo
destructive interference yielding net zero contribution.
Therefore, the dominant mode is the active source that
constitutes the entire wall-pressure PSD. The remaining
modes are inactive, in the sense that they do not
contribute to the wall-pressure PSD due to the destructive
interference. Further, the active and inactive parts are
decorrelated because they stem from different spectral
POD modes. Next, we analyze the active contribution
further by examining the envelope and phase of the
dominant spectral POD mode.

Figure 16 shows the envelope of the dominant
spectral POD mode for the two Reτ . We show the
envelopes for the premultiplied peak frequency ω+ ≈
0.35 and a few other high frequencies (ω+ ≈ 0.5, 0.7,
and 1.08). The wall-normal distances in the two figures
are in inner units. The envelope’s shape indicates that



the sources are primarily confined near to the wall. The
intensities peak in the buffer region of the channel similar
to the wall-pressure - net source CSD Ψ(y,ω). With
increasing frequency, the peak moves closer to the wall
and the envelope’s width decreases. This further restricts
the sources to a smaller near-wall region. Further, the
peak locations and the envelope shapes are very similar
for the two Reynolds numbers. This supports the case
that at the premultiplied peak and higher frequencies, the
wall-pressure sources appear to scale better in inner units.

(a) (b)

Figure 16: Envelope (magnitude) of the dominant
spectral POD mode for (a) Reτ = 180 and (b) Reτ = 400
for different frequencies.

Figure 17 shows the phase of the dominant
spectral POD mode for the same frequencies plotted in
16. The phase primarily lies in the range |∠Φi−∠Φn

i | <
π/2 (between the two vertical black dashed lines).
Therefore, the contributions from different wall-normal
regions mainly undergo constructive interference (see
equation 19). This reinforcing mechanism is what plays
a significant role in making the dominant spectral POD
mode the major contributor to the wall-pressure PSD.

The slope of the wall-normal phase variation
in figure 17 is mainly negative. The negative slope is
indicative of a convecting coherent structure inclined in
the downstream direction. To establish this connection,
we construct a representative net source field f̃G(x,y,z, t)
at the premultiplied peak frequency ω+

o ≈ 0.35. We do so

by using the dominant spectral POD mode Φ1(y,ω) as

f̃G(x,y,z, t) = Re(α(x,z,ωo)e−i∠Φ1(y,ωo)|Φ1(y,ωo)|eiωot),
(20)

where α(x,z,ωo) is the coefficient. Intuitively, one can
expect the e−iωox/co(ωo) Fourier component of α(x,z,ωo)
to be the dominant one, where co(ωo) is the streamwise
convective velocity. Therefore, we set α(x,z,ωo) =
e−iωox/co(ωo). We use a convective velocity of c(ωo) =
ωo/kp(ωo), where kp(ωo) is the peak wavenumber
of the wall-pressure streamwise wavenumber frequency
spectrum at frequency ωo. We set time t to zero. Figure
18 shows the constructed net source field for the two Reτ .
The representative field resembles a coherent structure
inclined in the downstream direction.

(a) (b)

Figure 17: Phase of the dominant spectral POD mode for
(a) Reτ = 180 and (b) Reτ = 400 for different frequencies.

(a)

(b)

Figure 18: Representative net source field ( f̃G(x,y,z, t))
(γi(ω)) constructed using the dominant spectral POD
mode at the premultiplied peak frequency ω+ ≈ 0.35 for
(a) Reτ = 180 and (b) Reτ = 400.



Overall, the framework presented here
quantitatively identifies the contribution of different
wall-normal locations to the wall-pressure PSD as a
function of frequency. This is the first analysis that
accounts for the interference of the sources from different
wall-normal regions. The analysis supports the case
that the wall-pressure sources can be decomposed into
two decorrelated components - active and inactive.
The active portion composed of the dominant spectral
POD mode contributes to the entire PSD. The inactive
portion composed of the sub-optimal spectral POD
modes does not contribute to the PSD. This is due
to destructive interference of the contributions from
different wall-normal regions for the sub-optimal modes.
A representative reconstruction of the wall-pressure
source at the premultiplied peak frequency using the
dominant spectral POD mode resembles a downstream
inclined coherent structure. Currently, we are working on
extending the above analysis framework to rough walls.

Gibbs energy minimization results

In this section, the prediction of equilibrium
interfacial shapes over rough surfaces will be discussed.
Specifically, the robustness of the algorithm is
demonstrated for a variety of geometries such as a 3D
wavy substrate, longitudinal grooves, posts, randomly
generated roughness and a real surface scan.

3D Longitudinal Grooves

Figure 19: Equilibrium interface location for a 3D
grooved substrate where the gray isosurface represents the
rigid substrate, and the zero level set that represents the
interface is colored by the height isocontours.

(a)

(b)

Figure 20: Equilibrium interface location for post
geometries, the gray isosurface represents the rigid
substrate, the zero level set that represents the interface is
colored by the height isocontours. (a) Equilibrium shape
for ∆p = 0.5 and (b) interfacial failure at ∆p = 1 where
the liquid completely wets the cavities of the post.

Consider a rough substrate representing a 3D
longitudinal groove. The level set that represents the solid
is given by:

ψ(x) = (y−1)− sign
[
1,cos(2x)

]
. (21)

The domain extents are [Lx,Ly,Lz] = [2π,3,2π] and the
grid size is Nx ×Ny ×Nz = 128× 62× 128 for the 3D
case. The time-step is taken to be dt = 10−5 and α = 0.4.
The external pressure is ∆p = 1, and the non-dimensional
interfacial surface tension is τLA = 1. Young-Laplace
gives a radius of curvature Ranalytic = 1. Figure 19
shows the computed interface. The error in the radius of
curvature computed numerically is 0.7% when compared



to the analytic solution of Young-Laplace.

Grooved Posts
We make use of the Boolean operations in order

to represent the post geometry. Consider the level sets that
represent the solid:

ψ1(x) = (y−1)− sign
[
1,cos(2x)

]
. (22)

The above equation represents longitudinal grooves in the
x− y plane extending in the z−direction, and similarly in
the y− z plane extending in the x−direction, the level set
is given by:

ψ2(x) = (y−1)− sign
[
1,cos(2z)

]
. (23)

The intersection ψ = ψ1∩ψ2 defined such that

ψ(x) = max(ψ1,ψ2) (24)

gives the level set for posts. The domain extents are
[Lx,Ly,Lz] = [2π,3,2π] and the grid size is Nx × Ny ×
Nz = 128× 62× 128. The time-step is dt = 10−5 and
α = 0.4. The simulation is done at two different external
pressure values, ∆p = 0.5 and ∆p = 1. The aim is to
demonstrate the prediction of interfacial failure. At ∆p =
0.5 equilibrium is observed. However, when the value for
pressure is doubled, the interface is no longer pinned, the
interface fails and fills up the grooves. This process is
known as depinned recession.

3D Wavy Substrate

Figure 21: Equilibrium interface location for a 3D
cosine substrate. The gray isosurface represents the
rigid substrate, and the zero level set that represents the
interface is colored by the height isocontours.

Consider a three-dimensional wavy substrate
that is given by the following level set:

ψ(x) = (y−2hcr)−2hcr cos(x)cos(z) , (25)

where hcr = − tanθY and θY = 140◦ (Youngs contact
angle). The domain extents are [Lx,Ly,Lz] = [2π,3,2π]
and the grid size is Nx×Ny×Nz = 128× 62× 128. The
time-step is dt = 10−5 and α = 0.4. The interface level
set is initialized at a height of y = 2.5. The external
pressure prescribed is ∆p= 0.2. The interface evolves and
moves down towards the solid substrate, the Gibbs energy
is monitored until it reaches steady state indicating that
the solution is in equilibrium.

Random Roughness

Figure 22: Equilibrium interface location for a random
rough substrate for a loading condition of ∆p = 0.2. The
gray isosurface represents the rigid substrate. The zero
level set represents the interface and is colored by the
height isocontour.

The random rough surface is generated using a
fractal dimension β . A composition of many elementary
waves in the form of cos(k ·x+ϕ) is specified. A range of
amplitudes that tapers off based on a certain distribution
is given by:

hmn =
1

(m2 +n2)β/2 , (26)

where m and n are the wavenumbers. A Gaussian
distribution gmn is used to get a smooth random variation
in amplitude where the amplitude distribution is given by:

Amn = gmnhmn . (27)

The phase angle is also sampled from a Gaussian
distribution and is scaled such that it varies between−π/2
and π/2:

ϕmn =
π

2
gmn . (28)



By taking a double sum over the wavenumbers in both
spatial directions, the rough surface height distribution is
then given by:

h f (x) = ∑
m,n

Amn cos(kmn ·x+ϕmn) . (29)

The height distribution is scaled such that the maximum
height from peak to valley is 2hcr. Then the level set that
represents the solid is given by:

ψ(x) = (y−2hcr)−h f (x) (30)

For this simulation, N = 10 is taken for the spatial
frequency resolution, and β = 1.5 is chosen to represent
a peak dominant surface. The domain extents are
[Lx,Ly,Lz] = [2π,3,2π] and the grid size is Nx×Ny×Nz =
128× 62× 128. The time-step is dt = 10−5 and α =
0.4. The external pressure is ∆p = 0.2. This example
demonstrates the ability of the algorithm to handle rough
surfaces in a robust manner.

Real scanned roughness
The original surface scan was scaled in this

corresponding case such that the maximum peak to valley
is unity. The domain extents are [Lx,Ly,Lz] = [2π,1.3,2π]
and the grid size is Nx×Ny×Nz = 256× 52× 256. The
time-step is dt = 10−5 and α = 0.4. The external pressure
is ∆p = 0.1 and θY = 140◦. Figure 23 shows the obtained
equilibrium interface over the surface scan.

Figure 23: Equilibrium interface location for a real
surface scan. The gray isosurface represents the rigid
substrate, the zero level set shown in the cyan color
represents the interface.

The algorithm is able to handle complicated
geometries obtained from real surface scans in a robust
manner. This allows for a large parametric studies to
be explored for different rough surfaces under different
loading conditions. It also opens up the ability to compare
to experiments. The evolution of the interface as it goes to
equilibrium is shown in figure 24, the interface is colored
by the height isocontour as it evolves in time to reach its
equilibrium position.

Figure 24: Equilibrium interface location for a real
surface roughness obtained from a scan for a loading
condition of ∆p = 0.1. The gray isosurface represents the
rigid substrate. The zero level set represents the interface
and is colored by the height isocontour. The images are a
sequential motion as the interface evolves from the initial
condition to equilibrium.

SUMMARY

DNS of turbulent channel flow at Reτ = 400 is performed,
where the bottom wall is a realistically rough surface.
Simulations of turbulent smooth channel flow are also
performed as a baseline. Good agreement is obtained for
the skin friction coefficient between our simulation and
the experiments.

To investigate the spatial variation of
the time-average flow field, the double-averaging
decomposition is used. The mean velocity profile 〈u〉
shows a slip velocity at the wall and an offset from
the smooth-wall profile for the whole region. The



form-induced velocity field in the rough layer shows
that large positive ũ occurs in the comparatively larger
trough regions while large negative ũ occurs in the
wake regions behind the roughness elements. Large
positive ṽ is observed in front of the roughness asperities,
corresponding to the impulsive upward velocity of the
fluid due to the roughness peaks. The pairs of streamwise
vortices produced by this upward velocity can also be
found in front of the roughness elements in the contour
of w̃. The pressure field indicates that the form drag is
mainly generated by the roughness peaks.

The Reynolds and dispersive stresses are
examined for the realistic surface. The most significant
difference is that the peak of 〈u′u′〉 is smaller compared
to the smooth case when normalized by the local
friction velocity (ub

τ)
2. The magnitude of dispersive

stresses is much smaller than that of Reynolds stresses
and is almost negligible above the rough layer. The
mean-square pressure fluctuations are enhanced in the
near-wall region. The higher pressure fluctuations are
observed in front of the roughness asperities, indicating
that the roughness protrusions are an important source
of the increased pressure fluctuations. The dominant
mean-shear and turbulence-turbulence source terms of the
Poisson’s equation are examined. The results suggest
that the shear layer induced by roughness protrusions,
the streamwise vortices and secondary flow interactions
among the roughness elements make a contribution to the
increased pressure fluctuations in the rough-wall flows.

We analyse the smooth wall-pressure fluctuation
sources using a novel framework. The analysis reveals
the importance of buffer layer sources for both Reτ =
180 and 400 wall-pressure fluctuations. This result
has implications in the context of wall-modeled large
eddy simulations (LES) where the buffer layer is
not resolved. Thus, additional modeling specific to
wall-pressure fluctuation is essential in wall-modeled
LES. Spectral POD of the source terms reveals
the importance of constructive/destructive interference
of wall-normal sources to wall-pressure PSD. The
decomposition separates the sources into two categories
- active and inactive. The active component comprised by
the dominant contributes to the entire wall-pressure PSD.
The inactive components comprised by the remaining
sub-optimal modes do not contribute to the wall-pressure
PSD. Their contribution from different wall-normal
regions undergo destructive interference resulting in zero
net contribution. Further, representative net source
field constructed using the dominant spectral POD mode
resembles a coherent structure inclined in the downstream
direction.

In the context of energy minimization, the
original algorithm is shown to handle a wide range
of geometries that include structured surfaces, wavy

substrates, and random roughness. We extend the original
analysis to handle realistic roughness obtained from
surface scans. This adds a great deal of flexibility to
investigate a wide range of parameter space for predicting
the equilibrium positions of liquid-air interfaces. It also
allows for the comparison to experimental surface scan
measurements. The height isocontours can be overlayed
on the interface to show a height map of its equilibrium
location. This metric can be used as an indicator
to the largest Gibbs energy location, this would help
predict where the interface is most susceptible to failure.
Another application is coupling the gas fraction associated
with each equilibrium solution from different external
pressures to existing slip models.
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This study highlights the importance of Direct Numerical
Simulations over complex rough walls to provide detailed
turbulence results within the roughness canopy. The
authors are commended on their thorough analysis and
innovative techniques to study rough wall boundary
layers.

1. Many roughness studies have identified the
reduction (and destruction for fully rough flows)
of the near-wall peak of the streamwise Reynolds
stress. Is this balanced by the increase of dispersive
stresses near the wall? Do you anticipate that the
magnitude of the peak of the dispersive stress to
increase with increased Reynolds number and then
plateau for fully-rough conditions?

2. The near-wall results also indicate that surface
protrusions enhance pressure fluctuations. Is
this strictly a result of flow separation from the
roughness feature? Are a few sharp features
contributing a large percentage of the increase in
form drag?

3. An energy minimization technique is used to solve
for the equilibrium positions of liquid-air interfaces
over rough surfaces. The technique is demonstrated
over a range of surface geometries. Can the
methodology / results give insight to flow filling of
surface depression with a resulting slip velocity for
flows without an interface?
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Question 1: From our results, the reduction of the peak
of the streamwise Reynolds stress is not equivalent to the
increase of dispersive stresses for both the magnitude
and location. It is hard to say that there is a direct
correlation between these two quantities. We have
performed higher Reτ cases for the same rough surface
(Ma et al., 2021), the results show that the peak of
the dispersive stress increases with increased Reynolds
number for the transitionally-rough conditions. For the
fully-rough regime, further investigation is needed.

Question 2: To further investigate how the pressure
fluctuations are increased in the rough-wall flows, we

examine the contribution of two dominant Poisson’s
equation source terms to the fluctuating pressure. Please
see the section of rough-wall pressure fluctuations. It
is found that the shear layer along with the ”roll-up”
motion is generated at the upstream stagnation point of
the protrusion, and is a primary source of the larger
pressure fluctuations. Meanwhile, the dominant slow term
shows that the pressure fluctuations are also increased
in the regions where the streamwise vortices and the
secondary vortices occur, e.g., the region in front of
the protrusion and the valley region. The more intense
pressure fluctuations are not only due to the roll-up of
the attached shear layer, but also the vortical motions and
secondary flow interactions within the roughness layer.

We have computed the form drag in two regions
separately: one is the ‘peak’ region above the mean
roughness height, the other is the ‘valley’ region below
the mean height. The results show that the form drag
in the ‘peak’ region contributes 73.8% of the total form
drag. This suggests that the peaky structures of the rough
surface contribute a large percentage of the form drag.

Question 3: Since there is no flow field except for
an external pressure, it is not apparent if there is a
direct correlation between slip velocity and flow filling.
However, one possibility can be through correlating
existing slip models with the gas fraction obtained from
the equilibrium solution. For different external pressures
there is a corresponding equilibrium distribution which
results in a specific gas fraction, each value of gas fraction
gives a different slip velocity, ranging from a Cassie
state to a Wenzel state. The Wenzel state corresponds
to the flow filling surface depressions which will have an
associated slip velocity with it.
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