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Particle Tracking Velocimetry (PTV) is a non-intrusive measurement technique that is
gaining increasing popularity in the experimental fluid mechanics community. The basic
working principle is to determine three-dimensional Lagrangian particle tracks via multiple
exposures separated by known time intervals as seen by at least three cameras. The practical
extension of PTV to three-dimensional tracks was enabled by the introduction of the Shake-
the-Box algorithm, which can accurately determine three-dimensional particle trajectories.
However, the selected timing strategy of the multi-pulse (i.e., four in this paper) technique is
not clearly defined a priori. The accuracy of the reconstructed pathline depends on the timing
strategy of the four pulses and the selected temporal interpolation/fitting methods. By examining
several canonical flows, this study aims to investigate the 𝑑𝑡 timing strategy, whether the pulses
should be symmetric or asymmetric with respect to the midpoint of the two middle pulses, and to
assess the uncertainty from different pathline reconstruction methods, i.e., quadratic and cubic
polynomial fitting and Radial Basis Functions (RBF). The results indicate that a symmetric
timing scheme is consistently better than an asymmetric timing scheme for a fixed total track
duration, and that RBF-based fitting is slightly better than polynomial fits because it provides a
good compromise between accuracy and error assessment. The error scaling associated with
the timing schemes is also quantified.

I. Introduction and motivation

Prior to Elsinga’s study on how to implement three-dimensional (3D) Tomographic Particle Image Velocimetry
(TOMO-PIV), the main ways of conducting PIV experiments were mainly 2-component and 3-component planar

PIV [1]. Two-component planar PIV allows for two orthogonal in-plane velocity components of the flow to be resolved.
A version from [2] called stereo-PIV, allowed for the third (out-of-plane) component of velocity to be resolved [2] with
the use of a second camera. However, in order to fully quantify and characterize complex flow phenomena, such as
turbulent flow structures, all velocity components have to be measured in a volume.

One way to capture the 3D flow behavior of flow fields is TOMO-PIV. This technique involves at least 3 cameras
acquiring particle images from different perspective views to resolve the 3 components of the flow velocity in a volume.
However, a 4-camera configuration has proven to be the de facto standard in such experiments [1]. While TOMO-PIV
is widely used in quantifying 3D velocity fields, it falls short of particle tracking. With the introduction of fluid
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trajectory correlation (FTC) [3], motion tracking enhanced (MTE), and sequential motion tracking enhanced (SMTE)
[4], TOMO-PIV has arguably migrated towards particle tracking. Progressing from these two previous techniques,
MTE and SMTE, a new method, Shake-the-Box (STB), was introduced, which allowed for accurate determination of
particle trajectories with seeding densities approaching that of TOMO-PIV [5].

The working principle of STB consists of identifying particles via iterative particle reconstruction (IPR) [6], using
TOMO-PIV as a way to predict the general direction of the flow, and then the ’shaking’ step, where the particles are
placed in different positions within a certain search radius (generally less than 1 pixel) and evaluated against residual
images for accurate particle placement [5]. This method/algorithm can be used to construct 𝑛-length particle tracks (𝑛
being the number of particle images). A feature in an 𝑛 = 4 pulse algorithm is that a cubic polynomial can be used to
represent the Lagrangian particle trajectory, which allows for calculating a time-varying acceleration. The limitations in
the accuracy of this technique are similar to TOMO-PIV: calibration, image pre-processing, volume reconstruction, etc.
However, a main limitation in STB is the amount of time (𝑑𝑡) between each particle image pair. If the 𝑑𝑡 between each
particle image pair is too small, or the particular regional velocity is too low, it will result in major particle overlap, and
STB cannot distinguish the particle between the images [7]. On the other hand, if the 𝑑𝑡 is too large, the longer track
duration will lead to increasing tracking error. Therefore, for both total track yield and acceptable uncertainty, proper
selection of the 𝑑𝑡 is needed [7, 8].

A particular subset of STB is multi-pulse (MP)-STB where double-exposed, dual-frame PIV cameras are used to
determine particle trajectories. The MP-STB technique is similar to STB, but the main difference is in the variable time
separation between each particle image pairs. For a typical MP-STB system using two double-pulse Nd:YAG lasers,
four particle images are taken, separated by three 𝑑𝑡. These 𝑑𝑡 can vary and 𝑑𝑡1 need not be identical to 𝑑𝑡3; their value
will depend on the type of flow being examined [7]. Using MP-STB with a flow measurement software, e.g., LaVision
DaVis, the general tracking scheme is as follows and illustrated in Figure 1.

1) Capture four particle images separated by three 𝑑𝑡.
2) Perform a cross-correlation between the second and third particle images to locate the particles.
3) Extrapolate using the velocity from the previous step to estimate the 1st and 4th particle locations.
4) Iteratively ‘shake’ the first and fourth particles to accurately find their locations.
5) Fit a polynomial (2𝑛𝑑 or 3𝑟𝑑 order) to the 4-particle track.

Fig. 1 Example MP-STB particle tracking and pathline reconstruction [9].

MP-STB excels when dealing with high speed subsonic flows (> 40 m/s), where the hardware is limited in the
number of images it can acquire, thereby limiting the track length [7]. The light source (typically two double-pulse
lasers) timing strategy seeks to select the optimal 𝑑𝑡. Since the tracks have a length spanning 4 particle positions, there
are three 𝑑𝑡 that have to be set to separate each pulse. This leads to an expression for the track duration 𝑇 as the sum of
the three 𝑑𝑡

𝑇 = 𝑑𝑡1 + 𝑑𝑡2 + 𝑑𝑡3 (1)
Since the middle 𝑑𝑡 (𝑑𝑡2) is determined by standard PIV considerations, it can be used as a time scale for

nondimensionalizing the equation, which allows for studying the effects of changing the size of 𝑑𝑡1 and 𝑑𝑡3. Note that
𝑑𝑡1∗ equals 𝑑𝑡3∗ for symmetric timing schemes.

𝑇

𝑑𝑡2
=

𝑑𝑡1
𝑑𝑡2

+ 1 + 𝑑𝑡3
𝑑𝑡2

(2)

𝑇∗ = 𝑑𝑡1∗ + 1 + 𝑑𝑡3∗ (3)
Studies that have utilized this technique, but have used a generally accepted long-short-long timing strategy, include
boundary layer flow investigation [7], higher speed flows over a curved geometry [10], and flow over a laminar wing
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[11]. This study aims to investigate the effects of the timing strategy based on the type of flow being examined, such as
oscillatory flow, rotational flow, and turbulent flow, etc. Then, the optimization of the timing strategy is obtained from
this study.

II. Methodologies
To assess the timing strategy and pathline reconstruction methods, ‘ground truth’ answers are needed. Therefore,

three exact solutions are used for assessment: Stokes’s oscillating plate, a synthetic jet DNS, and a turbulent channel flow
DNS. Three different pathline fitting methods: 2𝑛𝑑 and 3𝑟𝑑 order polynomials, and radial basis function (RBF)-based
fits, are used and compared to evaluate the errors by comparing the computed tracks with the ‘ground truth’. The error
associated with each pathline fitting method will be evaluated in each flow case.

A. Polynomial Fitting
The first fitting method is the 2𝑛𝑑 order polynomial:

𝒙(𝑡) = 𝐴𝑡2

2
+ 𝐵𝑡 + 𝐶 (4)

¤𝒙(𝑡) = 𝐴𝑡 + 𝐵 (5)

¥𝒙(𝑡) = 𝐴 (6)

The second temporal derivative of the 2𝑛𝑑 order polynomial is a constant in Equation 6, which indicates a constant
acceleration. For a given pathline, a constant acceleration may not be accurate, especially when considering pathlines of
highly unsteady flows. The next fitting method is the 3𝑟𝑑 order polynomial:

𝒙(𝑡) = 𝐴𝑡3

3
+ 𝐵𝑡2

2
+ 𝐶𝑡 + 𝐷 (7)

¤𝒙(𝑡) = 𝐴𝑡2 + 𝐵𝑡 + 𝐶 (8)

¥𝒙(𝑡) = 2𝐴𝑡 + 𝐵 (9)

The second temporal derivative of the 3𝑟𝑑 order polynomial is time dependent in Equation 9, meaning a time
dependent acceleration, which likely provides a more accurate representation of the acceleration for a given pathline.

Apart from the acceleration, quantifying the error associated with the fitting methods is also critical. For each of
these fitting methods, the computed pathline uses 4 points from the MP-STB data. For a 2𝑛𝑑 order polynomial, the
computed pathline does not pass through all 4 points, which means that a regression error can be used to estimate the
uncertainty. However, for the 3𝑟𝑑 order polynomial, the computed pathline passes through all 4 points exactly, which
means the uncertainty cannot be quantified via a regression error.

B. RBF-QR
RBF is a meshless algorithm. It uses the Euclidean norm as an independent variable to approximate scattered data.

It can have infinite smoothness and be extended to higher dimensions (2 or 3 dimensions in the current study). In the
domain, the particle positions 𝒙𝑐

𝑖
∈ R are given at 𝑁 scattered snapshot time 𝑡𝑐

𝑖
∈ R, where 𝑖 = 1, 2, . . . , 𝑁 (𝑁 = 4 in

the current study). The classic RBF, also known as the RBF-Direct in some literature [12–14], has its approximation
function 𝑥(𝑡):

𝑥(𝑡) =
𝑁∑︁
𝑖=1

_𝑖𝜙(𝜖,
𝑡 − 𝑡𝑐𝑖

) = 𝚽𝚲, (10)

where 𝜙(𝜖,
𝑡 − 𝑡𝑐

𝑖

) is an RBF kernel such as the Gaussian kernel 𝜙 = exp(−𝜖2
𝑡 − 𝑡𝑐

𝑖

2) with 𝚽 being the matrix form,
𝜖 is the shape factor that controls the flatness of radial basis, _𝑖 is the expansion coefficient that controls the weight of
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basis functions with 𝚲 being the matrix form. The expansion coefficient _𝑖 can be calculated by forcing 𝑥 = 𝑥𝑐
𝑗

when

𝑡 = 𝑡𝑐
𝑗
: 𝑥(𝑡𝑐

𝑗
) = ∑𝑁

𝑗=1 _𝑖𝜙(𝜖,
𝑡𝑐𝑗 − 𝑡𝑐

𝑖

), 𝑖, 𝑗 = 1, 2, ...𝑁 .
However, the shape factor 𝜖 needs to be carefully chosen to provide both an accurate approximation to the function

and well-conditioning of a matrix system in the RBF-Direct. A small 𝜖 , corresponding to the flat radial basis, can
potentially have high-accuracy approximation; however, it often leads to an ill-conditioned matrix. On the contrary, a
large 𝜖 , corresponding to a sharp radial basis, has a well-conditioned matrix but often leads to inaccurate approximation
results. The relations between the Gaussian RBF-Direct kernel and the shape factor are shown in Figure 2. To balance
these deficiencies, a stable RBF algorithm, i.e., the RBF-QR is adapted. The RBF-QR converts the RBF-Direct basis
Φ to a stable RBF-QR basis Ψ, which permits small shape factors. More details about the RBF-QR can be found in
[12, 13].

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Fig. 2 Gaussian RBF-Direct kernel with different shape factor 𝜖 .

Similar to polynomial fitting, the reconstructed pathline from RBF can either go through all particle locations (like
the 3𝑟𝑑 order polynomial fitting) or closely pass by all particle locations with a least square fitting error (like the 2𝑛𝑑
order polynomial fitting). In the case of an analytical solution without added noise, the pathlines are supposed to go
through all particle locations. On the other hand, with added noise or measurement error associated with experimental
data, the pathlines are not required to go through all particle locations since there are uncertainties associated with
the particle locations. To impose the least squares algorithm, we first reconstruct the RBF-QR system matrix 𝚿 using
𝑀 reference snapshot time 𝒕ref along tracks and 𝑁 measured snapshot time 𝒕𝑐. The system matrix 𝚿 has the entries:
Ψ𝑖 𝑗 = 𝜓

(
𝜖,

𝒕𝑐𝑖 − 𝒕ref
𝑗

) , where 𝑖 = 1, 2, ..., 𝑁 , 𝑗 = 1, 2, ..., 𝑀. The ratio of the number of the snapshots between the
given snapshot time and the reference snapshot time is the over-sampling ratio 𝛽 = 𝑁/𝑀 [15]. 𝛽 > 1 is required to
formulate an over-determined mapping to fit data, instead of interpolation. The evaluation matrix E is formulated to
map between 𝑁eval evaluation snapshot time 𝒕eval and reference snapshot time 𝒕ref: 𝐸𝑘 𝑗 = 𝜓

(
𝜖,

𝒕eval
𝑘

− 𝒕ref
𝑗

) , where
𝑗 = 1, 2, ..., 𝑀 , 𝑘 = 1, 2, ..., 𝑁eval. Then we are able to establish the least squares RBF-QR approximation in 𝑥 direction
as:

𝑥(𝑡) = E𝚿+𝒙𝑐 . (11)

Invoking that the system matrix 𝚿 is non-square, generalized inverse 𝚿+ = (𝚿𝑇𝚿)−1𝚿𝑇 is needed to solve the least
squares problem.

For the velocity and acceleration evaluation, the RBF-QR system matrix 𝚿 remains unchanged but the evaluation
matrix becomes E𝑡 =

𝑑E
𝑑𝑡

and E𝑡𝑡 =
𝑑2E
𝑑𝑡2 , respectively. The velocity and acceleration functions reconstructed by the

RBF-QR have infinite smoothness. More details about the RBF-QR differentiation can be found in [13, 15].

C. Stokes’s Oscillating Plate
Starting with Stokes’s oscillating plate, there is an analytical solution for this 2D flow field:

𝑢 (𝑦, 𝑡) = 𝑈0 exp

(
−
√︂

Ω

2a
𝑦

)
cos

(
Ω𝑡 −

√︂
Ω

2a
𝑦

)
(12)
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where 𝑢 (𝑦, 𝑡) is the horizontal velocity, 𝑦 is the vertical distance from the oscillating plate, 𝑡 is the time elapsed in the
simulation in units of seconds, 𝑈0 is the velocity of the plate, Ω is the plate oscillation frequency, and a is the kinematic
viscosity of the fluid (air in the current case).

To provide nondimensional results, the 𝑥 and 𝑦 positions can be nondimensionalized by the diffusion length scale√︁
2a/Ω. Additionally, the time can be nondimensionalized as Ω𝑡.

𝑋 =
𝑥√︃
2a
Ω

and 𝑌 =
𝑦√︃
2a
Ω

(13)

𝜙 = Ω𝑡 (14)

The phase-locking timing scheme to mimic an MP-STB measurement is illustrated in Figure 3a, where the phase
instance is centered between the second and third pulses. In the current case, 16 equally spaced phases are sampled.
As an example, shown in Figure 3b, multiple tracks at different heights 𝑌 are shown, where the track closest to the
plate (black pathline) is used for error demonstration in this case. From this model, the values of 𝑑𝑡1∗ and 𝑑𝑡3∗ can be
varied to test the effects of the timing scheme on the error associated with different pathline computation: 2𝑛𝑑 order
polynomial, 3𝑟𝑑 order polynomial, and the RBF-QR.

(a) An example of a laser pulse timing scheme

0 /4 /2 3 /4 5 /4 3 /2 7 /4

200

300

400

500

600

700

800

(b) Pathlines of simulated particles at different heights

Fig. 3 Simulated phase-locking measurements of Stokes’s oscillating plate pathlines.

D. Synthetic Jet DNS
The second truth source to use for MP-STB simulations is the DNS of a synthetic jet. The DNS is performed using

the unstructured numerical method developed by Mahesh et al. [16] for solving the incompressible Navier-Stokes
equations using a predictor-corrector formulation. The algorithm emphasizes discrete kinetic energy conservation to
ensure robustness without added numerical dissipation, and has been validated for a variety of flows, including regular
jets [17] and steady and pulsed transverse jets [18–20]. The DNS is designed to model a physical experiment, in which
a synthetic jet (small speaker) is placed in a housing (i.e., cavity). When actuated, the air passes through an orifice
smaller than the speaker diameter, which can be seen in Figure 4 with the domain sizing and boundary conditions
labeled. The cavity volume and diameter match that of the experimental configuration, where the orifice diameter 𝐷 is
4.22 mm. The Reynolds number and Stokes number of the DNS are given as

𝑅𝑒 =
𝑈𝑚𝑒𝑎𝑛𝐷

a
= 1350, (15)

𝑆 =

√︂
𝜔𝐷2

a
= 26.7, (16)

where 𝜔 is the frequency of the jet oscillation and the inflow boundary condition is set such that the mean and phase
velocity at the jet exit plane are 𝑈𝑚𝑒𝑎𝑛 = 1 and 𝑈𝑝ℎ𝑎𝑠𝑒 =

𝜋
2 sin(𝜔𝑡). The computations are performed on a grid of 68

5

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IN
N

E
SO

T
A

 o
n 

Ja
nu

ar
y 

26
, 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

3-
06

34
 



million control volumes partitioned across 1280 processors with 400 grid points distributed around the jet circumference.
The solution is advanced 12000 times per jet cycle using Crank-Nicolson implicit time-stepping.

To compute the pathlines of the seeding particles in the DNS, Lagrangian tracer probes are used to collect the
position of the particles. In the DNS, the tracer probes are initially seeded randomly in a subdomain around the jet
exit and their velocities are controlled by the equations below, where Equation 17 advects the probes and Equation 18
interpolates the velocity of the probes from the adjacent control volume (𝑐𝑣).

𝑥𝑘𝑖, 𝑝 = 𝑥𝑘−1
𝑖, 𝑝 +𝑉 𝑘−1

𝑖, 𝑝 Δ𝑡𝑝 (17)

𝑉𝑖, 𝑝 = 𝑢𝑖,𝑐𝑣 +
(
𝑥 𝑗 , 𝑝 − 𝑥 𝑗 ,𝑐𝑣

) (
𝜕𝑢𝑖

𝜕𝑥 𝑗

)
𝑐𝑣

(18)

Fig. 4 Synthetic jet DNS schematic

E. Johns Hopkins University turbulent channel flow
Another simulated 3D turbulent flow field tested in the current study is from the Johns Hopkins Turbulence Databases.

The Reynolds number and time scale are defined below, where 𝑢𝜏 is the friction velocity, ℎ is the half-channel height,
and a is the viscosity of air.

𝑅𝑒𝜏 =
𝑢𝜏ℎ

a
= 1000, (19)

𝑡∗ =
𝑡

ℎ
𝑢𝜏

. (20)

The channel flow is produced from DNS of wall bounded channel flow with periodic boundary conditions in the
longitudinal and transverse directions, and no-slip conditions at the top and bottom walls. The channel flow has a
domian size of 8𝜋 × 2 × 3𝜋, using 2048 × 512 × 1536 nodes. The incompressible N-S equations are solved using the
pseudo-spectral (Fourier-Galerkin) method in wall-parallel planes, and the 7th-order B-spline collocation method in the
wall-normal direction. More details regarding the simulation are referred to the database [21].

III. Results and Discussions

A. Stokes’s Oscillating Plate
To evaluate the error of the reconstructed pathline for different timing schemes, 𝑑𝑡1∗ and 𝑑𝑡3∗ are varied from 1 to 6

while 𝑑𝑡2 is kept constant as 𝜋
32 (seconds). An example is illustrated in Figure 5 for different timing schemes at the

6

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IN
N

E
SO

T
A

 o
n 

Ja
nu

ar
y 

26
, 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

3-
06

34
 



targeted phase 𝜙 = 3𝜋
8 , in which the red marker represents the measured phase and four blue markers represent the

4 pulses. Figure 5a shows a short 𝑑𝑡1∗, while Figure 5b shows a long 𝑑𝑡1∗ such that the track duration 𝑇 spans the
neighboring phases.

  0

  /8

  /4

  3 /8
  /2  5 /8

  3 /4

  7 /8

  

  9 /8

  5 /4

  11 /8   3 /2
  13 /8

  7 /4

  15 /8

(a) Laser-pulse timing, 𝑑𝑡1∗ = 𝑑𝑡3∗ = 1

  0

  /8

  /4

  3 /8
  /2  5 /8

  3 /4

  7 /8

  

  9 /8

  5 /4

  11 /8   3 /2
  13 /8

  7 /4

  15 /8

(b) Laser-pulse timing, 𝑑𝑡1∗ = 𝑑𝑡3∗ = 6

Fig. 5 Simulated MP-STB laser-pulse timing

In reference to the unit circle, phase 𝜙 = 3𝜋
8 is used to demonstrate the quantitative fitting error of the computed

pathlines compared to the true pathlines. Figure 6a provides the comparison of the computed pathlines to the reference
pathline, while Figure 6b shows a zoomed in view such that the differences between the reconstructed pathlines and
reference pathline (dotted black line) are noticeable. It is clear that the 2𝑛𝑑 order polynomial fitting is incorrect, while
the other two methods provide a close match.

/8 /4 3 /8 /2 5 /8

500

550

600

650

700

750

800

(a) Pathline fitting comparison, 𝑑𝑡1∗ = 𝑑𝑡3∗ = 6

3 /8 /2

750

755

760

765

770

775

(b) Pathline fitting comparison, zoomed in view

Fig. 6 Pathline fit comparisons at phase 3𝜋
8 . Red marker indicates the measured phase, four magenta markers

indicate 4 pulse instances. — 2𝑛𝑑 order; — 3𝑟𝑑 order; - - RBF-QR; · · · analytical solution.

The RMS error and the maximum error of the track fitting are calculated to assess the error. The computation for
the RMS error is as follows:

1) Compute the Euclidean error (Δ𝑠𝑖 between the computed pathline and the true pathline at discrete time instances
(𝑡𝑖)

Δ𝑠𝑖 =

√︃
(𝑥fit (𝑡𝑖) − 𝑥true (𝑡𝑖))2 + (𝑦fit (𝑡𝑖) − 𝑦true (𝑡𝑖))2 + (𝑧fit (𝑡𝑖) − 𝑧true (𝑡𝑖))2, (21)

2) Compute the RMS of the Euclidean error (Δ𝑠𝑖) and normalize by the diffusion length scale (this metric is now a
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function of the phase angle 𝜙)

𝑒𝜙𝑛
=

𝑅𝑀𝑆 (Δ𝑠𝑖)√︃
2a
Ω

, (22)

3) Compute the RMS of 𝑒𝜙𝑛
over all phase angles (this is now the error for individual pathlines)

𝑒𝑝 = 𝑅𝑀𝑆
(
𝑒𝜙𝑛

)
, (23)

4) Compute the RMS of 𝑒𝑝 over the whole domain (this is now the error for the entire flow domain)

𝑒𝑟 = 𝑅𝑀𝑆
(
𝑒𝑝

)
. (24)

The maximum error is taken as the maximum value of the Euclidean errors for all phases and pathlines, and the
calculation is given below:

𝑒𝜙𝑛𝑚𝑎𝑥
=

max (Δ𝑠𝑖)√︃
2a
Ω

(25)

𝑒𝑝𝑚𝑎𝑥
= max

(
𝑒𝜙𝑛𝑚𝑎𝑥

)
(26)

𝑒𝑟𝑚𝑎𝑥
= max

(
𝑒𝑝𝑚𝑎𝑥

)
(27)

In the simulated MP-STB measurements, 𝑑𝑡1∗ and 𝑑𝑡3∗ are varied independent of each other from 1 to 6, meaning
both symmetric and asymmetric timing schemes are considered. The subsequent plots show the results of the RMS
and maximum error computations for each type of pathline fitting method. The results are compared in Figures 7
and 8. Note that the color bar range for the 2𝑛𝑑 order polynomial fitting is one order magnitude larger than the 3𝑟𝑑
order polynomial fitting and RBF-QR in the contour plots. For all three methods, combination of smaller 𝑑𝑡1∗ and
𝑑𝑡3∗ results in smaller (both RMS and maximum) errors in the reconstructed pathlines. For a fixed track duration (i.e.,
𝑑𝑡1∗ + 𝑑𝑡3∗ is a constant), the asymmetric 𝑑𝑡 scheme appears to be worse than the symmetric timing scheme in this case.
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(a) 2𝑛𝑑 order polynomial
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(b) 3𝑟𝑑 order polynomial
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(c) RBF-QR

Fig. 7 Contour of 𝑒𝑟 for different 𝑑𝑡1∗ and 𝑑𝑡3∗ for Stokes’s oscillating plate. Dashed line indicates the symmetric
timing scheme.
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(a) 2𝑛𝑑 order polynomial
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(b) 3𝑟𝑑 order polynomial
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(c) RBF-QR

Fig. 8 Contour of 𝑒𝑟𝑚𝑎𝑥
for different 𝑑𝑡1∗ and 𝑑𝑡3∗ for Stokes’s oscillating plate. Dashed line indicates the

symmetric timing scheme.

In order to obtain a scaling law of the error matrices, the error values from the symmetric timing scheme are extracted.
Applying a power law fitting with least-square-error, the error vs. 𝑑𝑡1∗ for different methods are compared in Figure 9
using logarithmic scales. In Figure 9a, the error of 2𝑛𝑑 order polynomial fitting follows a trend of 𝑒𝑟 ≈ (𝑑𝑡1∗)2.54, while
the error trends of the other two are approximately (𝑑𝑡1∗)3.42. For this type of flow, the maximum errors in Figure 9b all
follow very similar trends as in Figure 9a. From the comparisons, it is clear the 2𝑛𝑑 order polynomial fitting is worse
than the other two, while the other two are comparable.

0 0.5 1 1.5 2
-10

-8

-6

-4

-2

0

2nd order

3rd order

RBF

2.54

3.42

(a) 𝑒𝑟 power scaling

0 0.5 1 1.5 2
-8

-6

-4
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0

2

2nd order

3rd order

RBF

2.54

3.42

(b) 𝑒𝑟𝑚𝑎𝑥
power scaling

Fig. 9 Power scaling relationships for RMS and maximum errors for symmetric timing schemes for the case of
Stokes’s oscillating plate. The power factors are given in the plots.

B. DNS of a synthetic jet
In the DNS, a total number of 21620 particles are randomly seeded into the simulation domain, see Figure 10a.

Only a subset of 2162 particles are used for the MP-STB simulations. For this 3D turbulent case, an example track from
DNS is projected in the 𝑥 − 𝑦 plane, see Figure 10b, where the orifice diameter 𝐷 is used as the characteristic length in
this study. Unfortunately, the simulation records are only saved to phase 13𝜋/8. Therefore, the records are divided into
14 phases with an increment of 𝜋/8. The jet cycle period is 10 ms. The entire simulation cycle was meant for 12000
snapshots, which is equivalent to a time step between each snapshot of 0.83 `s. For the MP-STB simulations, 𝑑𝑡2 is set
as 25 `s (30 simulation time steps). Therefore, a 𝑑𝑡1∗ or a 𝑑𝑡3∗ = 6 is equivalent to a 150 `𝑠 pulse separation physically.
In Figure 10b, the red markers indicate the 14 time instances for the simulated phase-locking measurements along the
track.
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(a) All particle tracks in the domain (b) Example track with 14 phases along the track

Fig. 10 Particle tracks in the synthetic jet DNS. The red profile represents the synthetic jet cavity.

To quantify the accuracy of the timing scheme using different fitting methods, the errors are calculated similar
to the previous Stokes’s oscillating plate (Equations 21 to 24). The errors are first calculated at each phase for each
pathline in the domain, then the RMS and maximum errors are calculated. The results of the RMS error and maximum
error are given in the Figures 11 and 12. Note that the values along the diagonals are the symmetric timing schemes
(𝑑𝑡1∗ = 𝑑𝑡3∗). In the RMS error plots, the contour patterns are almost symmetric about the diagonals. It is clear that
the 2𝑛𝑑 order polynomial is the worst, while the other two are comparable for symmetric timing schemes. Also, the
symmetric timing scheme is better than asymmetric timing schemes for a given track duration for all methods. It is
interesting that the 2𝑛𝑑 order polynomial fitting can be slightly better than the other two for some asymmetric timing
schemes, for example, when 𝑑𝑡1∗ = 1, 𝑑𝑡3∗ = 6 or 𝑑𝑡1∗ = 6, 𝑑𝑡3∗ = 1. For the maximum errors, the biggest difference
is that the error contour patterns are no longer diagonal symmetric. The 2𝑛𝑑 order polynomial is generally worse than
the other two. Again, symmetric timing schemes are suggested to obtain a smaller maximum error.
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(a) 2𝑛𝑑 order polynomial
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(b) 3𝑟𝑑 order polynomial
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(c) RBF-QR

Fig. 11 Contour of 𝑒𝑟 for different 𝑑𝑡1∗ and 𝑑𝑡3∗ combinations for synthetic jet DNS. Dashed line indicates the
symmetric timing scheme.
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(a) 2𝑛𝑑 order polynomial
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(b) 3𝑟𝑑 order polynomial
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Fig. 12 Contour of 𝑒𝑟𝑚𝑎𝑥
for different 𝑑𝑡1∗ and 𝑑𝑡3∗ combinations for synthetic jet DNS. Dashed line indicates

the symmetric timing scheme.

Similar to the previous Stokes’s oscillating plate, the errors of the symmetric timing schemes are fitted using power
law and are compared in Figure 13. For the RMS error, the error of all three methods nicely follow the power law trend.
The 2𝑛𝑑 order polynomial has a trend of 𝑒𝑟 ≈ (𝑑𝑡1∗)1.56, while the other two have 𝑒𝑟 ≈ (𝑑𝑡1∗)1.65. Again, the 2𝑛𝑑 order
polynomial fitting appears to be worse than the other two in Figure 13a. However, for the maximum errors in Figure
13b, all three methods have comparable performance at the small 𝑑𝑡1∗ initially, and then the 2𝑛𝑑 order polynomial
fitting becomes worse as 𝑑𝑡1∗ increases. Therefore, the 2𝑛𝑑 order polynomial is only slightly worse than the other two
methods considering both the RMS and maximum errors.
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(a) 𝑒𝑟 power scaling
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(b) 𝑒𝑟𝑚𝑎𝑥
power scaling

Fig. 13 Power scaling relationships for RMS and maximum errors for symmetric timing schemes for synthetic
jet DNS. The power factors are given in the plots.

C. Turbulent Channel Flow DNS
Unlike the previous two cases, the stationary channel flow has no periodicity, which means there is no phase locking.

Therefore, to systematically sample points along the particle trajectories, particles are sampled at evenly distributed
time instances. For example, the nondimensional time domain for the DNS is 𝑡∗ = [0, 26], and the measurement time
instances are percentages of the total time (e.g., 26 × [0, 0.1, 0.2, ..., 1]). In this example, the time interval is 10% of the
total simulation time. The information before time 𝑡∗ = 0 and after 𝑡∗ = 26 of the simulation is unknown; thus, those
points cannot be used. Therefore, 9 targeting times instances are used to perform the MP-STB simulations for each
particle track. Figure 14a shows all particle tracks in the domain, while Figure 14b illustrates a single track with the
nominal sample times indicated. Note that in the real experiments, a subdomain (the green box) is selected to improve
the spatial resolution. In the current study, to obtain converged statistics, a total number of 324 seeding particles in the
whole domain from the database are collected in the MP-STB simulations. The particles are distributed across the
whole simulation domain, which includes the near wall regions of the channel. Each particle is spatially and temporally
interpolated by the JHU DNS database query system for every time interval, i.e., 𝑡∗

𝑖
to 𝑡∗

𝑖+1. Again, the combinations
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of 𝑑𝑡1∗ and 𝑑𝑡3∗ from 1 to 6 are tested. The 𝑑𝑡2 is kept as 17.2 seconds (twice the simulation 𝑑𝑡), where the total
dimensional simulation time is about 1700 seconds.

(a) Channel Flow with subregion containing example track (b) Track within subregion (measurement points shown in red)

Fig. 14 Particle tracks in the turbulent channel flow DNS.

To assess the accuracy of the path-fitting methods, the same error computations as in the previous cases are adopted
here. First looking at the RMS error contours in Figure 15, as also seen in the cases of Stokes’s oscillating plate and
synthetic jet DNS, there is a diagonal symmetry shown in the contour plots. Looking more closely at 𝑑𝑡1∗ = 1 and
𝑑𝑡3∗ = 6 or vice versa, the 2𝑛𝑑 order polynomial is slightly better than the 3𝑟𝑑 order polynomial and the RBF-QR, this
may be due to the 3𝑟𝑑 order polynomial and RBF-QR over-fitting the tracks. For the maximum error, the 2𝑛𝑑 order
polynomial appears better for a majority of values for 𝑑𝑡1∗ and 𝑑𝑡3∗. This implies that the 3𝑟𝑑 and RBF-QR fittings
may perform worse (over-fitting) at certain locations using an asymmetric timing scheme. In both RMS and maximum
errors, the symmetric timing scheme results in higher accuracy for a fixed track duration.

The errors of the symmetric timing scheme are further scaled and compared in Figure 17. For the RMS error, the
error of all three methods nicely follow the power law trend. The 2𝑛𝑑 order polynomial has a trend of 𝑒𝑟 ≈ (𝑑𝑡1∗)1.49,
while the other two have 𝑒𝑟 ≈ (𝑑𝑡1∗)1.80. For the maximum errors, the markers deviate a little from the trend lines. In
general, the 2𝑛𝑑 order polynomial is still worse than the other two methods at small 𝑑𝑡1∗ but becomes comparable as
𝑑𝑡1∗ increases.
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(a) 2𝑛𝑑 order polynomial
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(b) 3𝑟𝑑 order polynomial
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(c) RBF-QR

Fig. 15 Contour of 𝑒𝑟 for different 𝑑𝑡1∗ and 𝑑𝑡3∗ combinations for the channel flow DNS. Dashed line indicates
the symmetric timing scheme.
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(a) 2𝑛𝑑 order polynomial
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(b) 3𝑟𝑑 order polynomial

1 2 3 4 5 6
1

2

3

4

5

6

0.05

0.1

0.15

0.2

0.25

(c) RBF-QR

Fig. 16 Contour of 𝑒𝑟𝑚𝑎𝑥
for different 𝑑𝑡1∗ and 𝑑𝑡3∗ combinations for the channel flow DNS. Dashed line

indicates the symmetric timing scheme.
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(a) 𝑒𝑟 power scaling
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Fig. 17 Power scaling relationships for RMS and maximum errors for symmetric timing schemes for the channel
flow DNS. The power factors are given in the plots.

IV. Conclusions and future work
This study assesses the effects of timing schemes on the reconstruction of pathlines using three different methods in

simulated MP-STB measurements. The pathlines are determined by the particle locations at 4 time instances, which
correspond to the 4 laser-pulse instances. The time between the center two pulses is constrained by the small 𝑑𝑡2
PIV requirement; therefore, it is not treated as a variable in the current study. The 𝑑𝑡1 and 𝑑𝑡3 are thus normalized
by 𝑑𝑡2, and both symmetric and asymmetric timing schemes are evaluated. In general, a shorter total time duration
(𝑑𝑡1 + 𝑑𝑡2 + 𝑑𝑡3) results in higher accuracy in the pathline reconstruction regardless of the methods as expected. For
the flow fields tested in the current study, i.e., Stokes’s oscillating plate, synthetic jet, and channel flow, the 2𝑛𝑑 order
polynomial appears to be the worst fitting method for most timing strategies in terms of the RMS and maximum errors,
while the 3𝑟𝑑 order polynomial and RBF-QR methods are comparable. Among the timing strategy combinations, the
symmetric timing scheme is consistently better than an asymmetric timing scheme for a fixed total track duration.
Therefore, a symmetric timing scheme is recommended in the real MP-STB experiments. In addition, the RMS errors
appear to have a power law trend with 𝑑𝑡1∗ for all test cases and all fitting methods. The maximum errors generally
follow a power law trend; however, the maximum errors deviate a little from the trend line in the case of turbulent
channel flow.

It should be noted that there are uncertainties associated with the measurements in the real MP-STB measurements,
which are not considered in the current study. The optimal timing strategy corresponds to the shorted total track duration.
However, proper assessment of uncertainty may allow for longer track durations with acceptable uncertainty. The
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current results indicate that the errors will be flow and Reynolds number dependent, so a careful assessment of the
particle location uncertainty and its propagation through subsequent calculations is required for future work.
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