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ABSTRACT

Cavitation is investigated over a range of scales and
regimes for various flow configurations. At the
bubble scale level, a volume-of-fluid (VOF) based
incompressible flow solver is developed, and three
canonical bubble collapse problems are simulated for
validation. The results obtained from the VOF
model show good agreement with past experiments and
numerical simulations. The ability to study and track
multiple bubbles is also incorporated in the context of
the VOF model via a Lagrangian tagging algorithm. For
cavitation inception, we study a shear layer at Re; = 1500.
Joint-PDFs of the flow invariants are obtained along
the shear layer and the cores of the elongated vortices
are found to be the regions most likely to experience
inception. These regions have a rotation rate 4 x stronger
than the stretching rate. Lastly, a fully compressible
multi—scale method accounting for both the sheet cavities
and the micro-bubbles is developed and validated. This
model is applied to a case where both the unresolved and
resolved bubble coexist and the findings are discussed.

INTRODUCTION

Cavitation is usually triggered by imperfections in water
known as nuclei, that serve as the starting point for the
liquid breakdown. In marine applications (e.g. marine
propellers, hydrofoils), this phenomenon can occur at
different scales, starting from inception and ending
in developed cavitation, and are characterized by the
cavitation number o (defined as ¢ = 5’5;§ v, where p,,
Pv, P and u, are a reference pressure, the vai)or pressure,
the liquid density and a reference velocity, respectively).
Inception is the first occurrence and is defined by small
amounts of vapor production for brief periods at a relative
high 0. In certain problems where no cavitation is
expected, some intermittent and random inception events
can be observed. This usually occurs in problems where
the pressure fluctuations are extreme, such as in a shear
layer or during a vortex pair interaction.

Inception in shear flows has been investigated by past
work. Katz and O’Hern (1986) and O’Hern (1990) found
inception to occur in the stretched streamwise vortices

located between spanwise eddies. More recently, Agarwal
et al. (2020) showed that the Reynolds number has a
strong influence on the time the pressure remains below
vapor pressure inside the streamwise vortices. The LES
study of Brandao and Mahesh (2022) uses analysis of flow
topology to identify incipient structures. Their results
corroborate the findings of O’Hern (1990).

The commonly used models for simulating cavitating
flows are a) Homogeneous mixture model (HMM) and
b) Euler-Lagrangian model (EL). The homogeneous
mixture model represents the mixture of liquid and
vapor as a single entity, and they are assumed
to be in mechanical and thermodynamic equilibrium
(Gnanaskandan and Mahesh (2015), Bensow and Bark
(2010), Budich et al. (2018)). The Compressible HMM
has been used to study the re-entrant jet and bubbly shock
mechanisms during the sheet to cloud transition for a flow
over a wedge (Gnanaskandan and Mahesh, 2015; Bhatt
and Mahesh, 2020). However, in the incipient regime
where the small-scale vapor cavities are commonly found,
Bhatt and Mahesh (2020) observed noticeable differences
in mean vapor void fraction between the simulations and
the experiment.

The Euler-Lagrangian (EL) formulation tracks the
liquid using the Navier—Stokes equations, and the small
cavities are tracked in a Lagrangian sense using a variant
of a Rayleigh—Plesset (RP) equation. Most of these EL
models assume the bubble to be spherical. However,
the RP equation becomes less accurate when applied for
large cavities as they are often non-spherical with spatially
varying properties. Hence, a multi—scale model which can
accurately capture (a) the behaviour of both sheet cavities
and micro-bubbles and (b) compressibility of the medium
is developed and discussed in this work.

Bubbles are often exposed to strong acoustic pulses
and shock waves generated by the collapse of neighboring
bubbles. Keller and Miksis (1980) extended the original
RP equation to account for the compressibility of the
medium for a single bubble. However, it does not
account for the inter-bubble interaction. Fuster and
Colonius (2011) derived an RP equation which accounts
for the compressibility of the medium and explicitly
models the bubble-bubble interaction. However, it has



an O(N?) complexity (N - number of bubbles) making it
computationally expensive for large N. Ghahramani et al.
(2019) derived a localized RP equation and demonstrated
it ability to capture local flow effects. However, it does
not account for medium compressibility which becomes
important when a bubble undergoes violent collapse.
In this work, we derive a generalized RP equation
which accounts for both (a) medium compressibility,
(b) bubble-bubble interaction and (c¢) is computationally
feasible for a large number of bubbles.

In resolved bubble calculations, maintaining interface
sharpness is of great importance when advecting a fluid
interface. The computational methods to advect a fluid
interface fall into two main categories: 1) interface
capturing methods (ICM), namely the volume-of-fluid
(VOF) (Lafaurie et al., 1994) and the level-set (Osher and
Sethian, 1988) methods; 2) interface tracking methods
(ITM), such as the front tracking method (Unverdi and
Tryggvason, 1992). Given its ability to conserve mass,
and handle complex topology changes without ad hoc
modeling, VOF is an attractive candidate to consider
in the development of a cavitation model. Although
interface sharpness is crucial for the accurate simulation
of multiphase flows, it is not the only requirement
for a physical description of a flow undergoing phase
change. This becomes more important in the study
of cavitating flows where small scale bubbles play a
major role in the prediction of small scale phenomena
such as inception. In this work, we present a more
general phase change model based on the simplification
of the RP equation (Sauer, 2000; Yuan et al., 2001).
Also we discuss a multi-bubble tracking capability that
facilitates the calculation of bubble-related quantities
such as interfacial mass flux and bubble radius R(7).
Hermann (2013) presented a tracking methodology in
the context of simulating the atomization process in its
entirety. More recently, Gao et al. (2021) presented
a Lagrangian technique for tracking of bubbles and
detecting fragmentation and coalescence seen in breaking
waves. We adapt the algorithm of Hermann (2013) to
VOF by making use of the color function c¢. In addition,
the algorithm is extended to retag the bubbles/cavities
whereby the maximum id-identifier reflects the number of
vapor structures present. The extension of the algorithm
also encompasses the capability to maintain a vapor
structure’s id-identifier upon advection and deformation.

CAVITATION INCEPTION

Governing equations and numerical method

Incompressible Navier—Stokes equations are solved
for the LES of a shear layer. The equations are solved
using a finite-volume algorithm developed by Mahesh
et al. (2004) which ensures robustness without any

added numerical dissipation. This algorithm has been
validated for a variety of problems. It is based on a
predictor—corrector approach. The Cartesian velocities
(u;) and pressure (p) are stored at cell centers and the
face normal velocities are stored at the center of the
faces. The velocities are first predicted at cell centers
and then interpolated to obtain the face normal velocities.
The face—normal velocity is projected to discretely satisfy
the continuity equation. This gives a pressure Poisson
equation which is solved using a multi—grid approach
and then the pressure gradients (g—ﬁ) are obtained using a
novel least—squares formulation. Finally, these pressure
gradients are used to correct the velocities at cell
centers. Implicit time advancement is performed using the
Crank—Nicolson scheme. For these studies of inception,
we treat vapor as a passive scalar. The main idea is that
since inception is a stochastic process that generates small
amounts of vapor for short periods of time, the effects of
these small regions of vapor on the flow dynamics and
liquid density are negligible. The transport equation for
the passive scalar is given in equation 1. Here, the passive
scalar is taken as the concentration of vapor, C = p, o,
and the cavitation source terms are obtained from Saito
et al. (2007). Sc and p, are, respectively, the Schmidt
number for vapor in water and the vapor density, which
is assumed constant. For the shear layer problem, the
Navier-Stokes equations and equation 1 are filtered. The
resulting sub-grid scale stress and scalar flux are modeled
with the dynamic Smagorinsky eddy—viscosity model
(Germano et al., 1991) and the dynamic Smagorinsky
eddy—diffusivity model (Moin et al., 1991), respectively.
Equation 1 is solved implicitly using the Crank—Nicolson
scheme with a smaller time step than the one used for the
advancement of the velocity field. More details about the
method can be found in Brandao and Mahesh (2022)
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Problem and results

Inception in shear layers is studied using the
backward—facing step configuration with step height of
S = 10mm of Agarwal et al. (2018) at Re; = 1500 and
o = 0.55. The domain has an expansion ratio (ER) of
1.19 and an aspect ratio (AR) equal to 5.3. The grid
contains 190 million cells with Ay" = 0.6 and Ax™ = 12
in the vicinity of the corner and a uniform Az = 32 in
the spanwise direction. No—slip boundary conditions are
applied to every wall in the domain. In order to match
the experimental conditions, a turbulent boundary layer at
Re; = 1500 is generated on a separated plane through the
recycle—rescale method of Lund et al. (1998) and used as
an inflow boundary condition for the backstep.

A vapor concentration equivalent to o = 1 x 107>
is prescribed at the inflow. The flow field at the center



plane, x = 1§ and x = 3S are displayed in figure 1.
Figures 3 shows a comparison between numerical and the
experimental velocity profiles of Agarwal et al. (2018) at
x =18 and x = 3S. Good agreement is obtained for the
shear layer profiles despite the differences observed in the
incoming boundary—layer, which can be explained by the
use of a finer Ax™ at the backstep inlet section (x/S < 0
in figure 1(a)). The reattachment length obtained is L, =
6.0S, which is 9% larger than the experimental value of
L, =5.5S. In this work, we assume that inception occurs
when the local pressure drops below vapor pressure at
any instant of time. Figure 2 shows the inception event
rates for this flow. These events are obtained by counting
the number of events with p < p, across the shear layer
over two entire flow-throughs and averaging them over the
span direction. We can see that inception is more likely
to occur in the region 0.4 < x/S < 0.8, consistent with
experimental findings.
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Figure 1: Instantaneous flow field colored with u/u., for
Rer = 1500 at center plane (a) and at positions x = 15 (b)
and x = 35 (c¢) downstream of the step.
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Figure 2: Inception event rates averaged in the spanwise
direction. Levels are in ogarithmic scales.

O’Hern (1990) found that inception would primarily
occur in the stretched streamwise vortices, indicating that

the lowest values of pressure are likely to be in the
core of these vortices. The invariants of the velocity
gradient tensor as well as of the strain rate tensor and
rotation rate tensor help identify the flow structures that
contain pressure minima. The details of this approach
and the physical meaning of the invariants are given in
details in Perry and Chong (1994). Figure 4(a) shows
joint—PDF between the second (Q) and third (R) invariants
of the velocity gradient tensor. Regions of the flow lying
above the solid black line indicate that fluid particles
are undergoing stretching (R < 0) or contraction (R >
0). Figure 4(b) shows joint—-PDF between the second
invariants of the strain rate tensor (Q;) and the rotation
rate tensor (Q,,). Regions of the flow lying below the solid
black line are dominated by rotation (such as a vortex
core) while regions lying above the line are dominated by
strain (such as the periphery of a vortex).
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Figure 3: Comparison between numerical (lines) and
experimental (symbols) velocity profiles at x = 1S (left)
and x = 3S (right) downstream of the step for Re; = 1500.

We collect the values of these invariants for the
regions where and when the local pressure becomes lower
than vapor pressure, and show them in figure 4. The
joint-PDF of Q-R in figure 4(a) reveals that pressure drops



below vapor pressure primarily in regions where the flow
is being either stretched or contracted. The joint-PDF of
Qs—0,, in figure 4(b) shows that these events are likely to
be dominated by rotation. This confirms the conclusion
predicted by O’Hern (1990) that the pressure minima and
cavitation inception occur inside the core of vortices that
are being stretched or contracted.

The joint—PDFs showed that regions of higher rotation
rates are preferential sites for inception. However, they do
not quantify the balance between rotation and straining.
Truesdell (1954) measures the amount of rotation of
a fluid particle with the kinematical vorticity number
defined as
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Figure 4: Joint-PDFs of O-R (a) and Os—Q,, (b) for
o = 0.55. Levels in both plots are in logarithmic scale
and the invariants are in non—dimensional units (using
the appropriate combination of the step height, S, and the
freestream velocity, uo).

This variable measures the ratio between rotational
strength and irrotational stretching (Ooi et al., 1999). A

value of ¥ = 0 implies that a fluid particle is undergoing
purely irrotational stretching while a value of k =
oo means that the fluid particle is subjected only to
solid-body rotation. The joint—PDF between pressure and
Kk is displayed in figure 5 and reveals a predominance of
K =~ 2, which indicates that inception is most likely to
occur in the cores of vortex tubes subjected to a rotation
rate 4% stronger than the stretching rate. Additionally,
a decreasing pressure and consequently the likelihood of
cavitation, is found to be correlated to an increasing k.
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Figure 5: Joint-PDF between pressure and x for o =
0.55. The line of k¥ = 1 signals the boundary between
stretching to rotation dominated.

GRID-RESOLVED BUBBLE SCALE

VOF methodology with phase change

When considering resolved bubble calculations, the
continuity equation is modified such that

du; i ( 1 1 )
a)Ci Py pr
where i1 is the mass flux between the two phases per unit
area, p, is vapor density, p; is liquid density, and |dc/dx;]|
is the magnitude of the gradient of the color function that
ensures the divergence of the velocity field is non-zero
only at the interface.

An expression for the mass flux m can be determined
by simplifying the Rayleigh—Plesset (RP) equation which
assumes a spherical bubble subject to uniform pressure
variations. Ignoring non-condensable gas (NCG), surface
tension, and viscous effects, the RP equation reduces to,
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and has the following solution
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Because a local pressure will be used instead of the
far-field pressure, a correlation coefficient is needed to
correct the mass flux (Michael et al., 2017). The modified
mass flux, therefore, becomes
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where C, and C, are empirical coefficients of evaporation
and condensation, respectively. While values of C, and
C. seem to arbitrary in the literature, our numerical
experiments have found a dependence of the pressure
jump across the interface on the value of the coefficients
for different density ratios. = When working with a
one-fluid formulation applying pressure and velocity
boundary conditions at the level of a bubble interface is
not straightforward given the continuity of the variables
throughout the domain, however, the linearization of
source term in the pressure equation, described later in
this section, facilitates that task.

The presence of a non-solenoidal velocity field results
in a modification at the level of the Poisson equation

leading to
2 .
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Solving the Poisson equation with a source term often
leads to numerical instability, therefore the source term
was modeled semi-implicitly, similar to (Michael et al.,
2017), such that the semi-discrete form of the Poisson
equation is given as
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The system to be solved has the following form

acfc+Y arp; =RHS (10)
-

The implicit term shown in Equation (9) is absorbed
into the coefficient ac of Equation (10) hence increasing
diagonal dominance, which therefore leads to better
stability.

Interface tracking with VOF

When studying flows with phase change, the use of VOF
has become increasingly more popular given its ability to
capture complex topology changes and to conserve mass
if the numerics do not limit this feature. Early thrust
in that direction has primarily focused on simulating
boiling flows due to their industrial applications (Welch
and Wilson, 2000; Kunkelmann and Stephan, 2009).
The standard advection equation for the color function ¢
is given by
dc  d(cu;)
ot 8x,~

where c¢(du;/dx;) is 0 assuming the fluid to be
incompressible.  Traditionally, a source/sink term is
added to the right-hand side of the advection equation to
account for phase change. The addition of the source/sink
term often leads to undesirable interface diffusion
and is alleviated via the use of compressive schemes
such as ”"Compressive Interface Capturing Scheme for
Arbitrary Meshes” (CICSAM). We seek a sharp interface
formulation which bypasses the need for a compressive
advection scheme, and therefore we construct the full
interface velocity (i.e. including phase change effects) via
the Rankine-Hugoniot jump condition such that

m<1+1)+1( tuw)
ur=——\—+— —(u; +uy
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where ur is the final velocity used to advect ¢ via
equation (11). More recent work has primarly focused on
developing consistent advection schemes for flows with
phase change, see (Scapin et al., 2020) and (Malan et al.,
2021) for further details.

Bubble tracking with VOF

We utilize a modified Lagrangian point particle
approach based on the work of Hermann (2013) to track
vapor structures. Since the interface tracking method used
in this work is VOF, the algorithm was adapted to use

=0 (11)
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the color function c instead of the refined level set grid
variable G used in (Hermann, 2013). The need for a
tracking algorithm originates from the form of the mass
flux model discussed. The ratio Ry/R(¢) is not ignored,
and calculating R(¢) for each bubble, at any time instant,
is required. The merging of cavity pieces across multiple
blocks often causes the loss of the order of id-identifiers,
hence a retagging algorithm was developed to ensure that
bubbles/cavities present are tagged from 1 to N, where N
is the total number of vapor structures. Figure 6 shows an
example of how the maximum id-identifier obtained after
the merging step in traditional methods does not reflect
the total number of vapor cavities present.
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Figure 6: Merging of id-identifier of a vapor structure
across multiple blocks.

Since vapor structures can grow, collapse, deform, and
advect in a given flow, maintaining the value of the
id-identifier between adjacent time instants is required,
therefore an id maintenance procedure was incorporated
following the retagging procedure.
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Figure 7: Visual description of tag maintenance during
bubble advection.

To maintain the id-identifier of a cavity between
adjacent time steps, a copy of the old id-identifier
is kept initially. Since the interface cannot move a
distance larger than Ax for a given At based on the

Courant-Friedrichs-Lewy (CFL) condition, there exists a
region where the old id-identifier and the new id-identifier
intersect. The id-identifier in the intersected area is
changed to the old id-identifier, and finally the rest of
the element of the list containing the new id-identifier
is flooded with the old value as depicted in figure 7.
Full details of the tagging algorithm can be found in
Fakhreddine et al. (2022).

Figure 8: Tracked phase (left) and its identifier colored
by tag id (right) for N=1000 bubbles.

Problem and results

In order to validate the VOF methodology with
phase change, three canonical single bubble problems
were simulated, Rayleigh—Plesset (RP) collapse of a
free vapour bubble, vapour bubble collapse near a
solid boundary, and vapour bubble collapse on a solid
boundary. The latter two problems pose an additional
challenge to the model due to the absence of symmetry;
symmetry being a distinct feature of the Rayleigh bubble
collapse. The following assumptions were made for all
three problems: (1) the liquid is incompressible, (2) the
flow is nonviscous, (3) the vapour pressure is uniform
throughout the bubble interior, (4) the ambient and vapour
pressure are constant with time (5) non-condensable gas
(NCG) is absent, (6) and surface tension effects are
negligible.

The test cases are specified by the following
conditions: p.= ambient pressure, p, = vapour pressure,
Ry = inital bubble radius, and an additional parameter b,
for the case of a bubble near a solid boundary, which
is the distance from the center of the bubble extending
vertically to the solid boundary. Values of p., py, pi,
pv, and Ry were set to 1.01325, 0.03169, 1, 0.001, 0.042,
respectively.

i) Rayleigh bubble collapse

The collapse of a single bubble is a benchmark case that
has been widely used for the validation of the different
numerical models in the literature. Further, this problem
can be solved analytically up to collapse time.

The bubble was resolved with 30 cells spanning the
diameter with a nonuniform grid composed of a uniform
part that resolves the center of the cube and nonuniform



part that stretches to the boundaries of the computational
domain. The boundary conditions were set to Dirichlet for
pressure (Ppoundary = P-) and zero Neumann for velocity.
Figure 9 shows the evolution of bubble radius with
respect to time using VOF with phase change (dashed
line) in comparison to the solution of the RP equation
(symbols). Since the resolution of the grid is fixed
throughout the entire simulation, the number of cells
resolving the bubble decreases with time which in turn
causes higher uncertainty in the estimation of the interface
position. This directly affects the mass flux calculation
due to the need for the value of bubble radius in the model
at every time step. However, the model maintains good
agreement with the RP solution to the last instants of
collapse. We note that the choice of C, . has a direct effect
on the agreement with the analytical solution, this effect
is observed more strongly in the advection equation.
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Figure 9: Comparison of bubble radius variation with
respect to time between RP solution and numerical result.

ii) Spherical vapour bubble near/on a solid boundary

For both problems involving a solid boundary, the bubble
was resolved with a grid similar to that of the Rayleigh
bubble collapse case, only now the uniform part is shifted
near the wall. The computational domain is a cube of
size unity with the bubble located at the center of the
xz — plane, and shifted a distance b = 2Ry = 0.084 in
the vertical direction for the case of a bubble near the
boundary. In what proceeds, the case of a collapsing
bubble near a wall will be referred to as Case 1, and the
case of a collapsing bubble on a wall will be referred to as
Case 2.

Figure 10 shows the evolution of the bubble surface
near a wall with respect to time. The bubble is initially
spherical and at rest. As it collapses, it gets elongated
in the direction normal to the wall, then flattens and
forms an inward moving jet. The main reason behind this
elongation is the presence of the solid boundary which

reduces the velocity of the bubble interface that’s directly
facing the wall (Plesset and Champan, 1971). Some of
the key features seen in figure 10 is the disc-like shape
of the bubble towards the end of the collapse which was
also seen in the numerical experiments of (Plesset and
Champan, 1971) and (Zhange et al., 2019). Another key
feature observed in the current simulation is the formation
of two tails at + = t* at the top of the bubble surface
halfway through the collapse which was also seen in the
experimental results of (Kling and Hammit, 1972).
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Figure 10: Bubble surface at different times for case of
bubble near a solid boundary.
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Figure 11: Bubble surface at different times for case of
bubble on a solid boundary.

Similar to Case 1, the bubble is elongated in the
normal direction as it collapses, however, the elongation
and the tail formation is not as significant at t*. The
jet formed in Case 2 is more pronounced and leads to a
flattening of the bubble as the jet moves closer to the wall.
It is also observed that the final size of the bubble in Case
2 is larger than that in Case 1 due to the shielding from the



ambient that the solid boundary provides to the lower half
of the bubble. Figure 11 shows the evolution of the bubble
surface on a wall with respect to time and the behaviour
described above.

MULTI-SCALE MODEL

1. Governing equations

Carrier phase (Liquid + Resolved vapor)

The mixture density comprises of two components: the
liquid and the vapor, and is given by

P = P10y +py0y (13)

where p and o denote the density and volume fraction
respectively and the subscripts / and v denote liquid
and vapor respectively. In the homogeneous mixture
formulation, p,, is governed by a transport equation
which requires the vapor to be well-resolved for accurate
estimation. Hence, it under-performs when the vapor is
not well resolved. In the Euler-Lagrangian formulation,
pvo,, is governed by RP equation which assumes the
bubble to be spherical and hence it under-performs for
large cavities with non-uniform shape and properties.
Hence, to capture both the scales simultaneously and
accurately, p, o, is expressed a follows

pV a, = pvrex avrex + qun avun (14)

where the subscripts 'res’ and 'un’ imply resolved and
unresolved respectively. Here, p,,, ¢, represents the
resolved vapor and is governed by a transport equation
and p,,,o,, represents the unresolved bubbles and is
governed by the RP equation. In other words, the best of
both homogeneous mixture and Euler—Lagrangian models
is brought together resulting in a hybrid multi-scale
model. Now the mixture density becomes

p=pi0y+ Pg s Olres + Pgun Cun = le + pYres + pYun
15)
where Y represents the mass fraction

Note that only the liquid and resolved vapor are
assumed to be in thermodynamic equilibrium, i.e there
is no temperature difference or slip velocity between
these phases. However, the unresolved vapor is not in
thermodynamic equilibrium with the liquid or resolved
vapor. Substituting the mixture density (equation 15) in
the compressible Navier—Stokes equations, we obtain
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(PYy + pYres sy, = pYirusy, 17

(pYI + pYres)eslr = Peresl,

and S, and S, are the evaporation and condensation source
terms for the resolved vapor, p is the mixture pressure,
0;; is the viscous stress of the mixture, Q; is the thermal
conductivity of the mixture, u;, and e;, are the velocity
and internal energy of the homogeneous mixture of liquid
and resolved vapor, respectively. The mixture pressure (p)
is defined as

N
p=(1—Qun)pir+ Z o p;
i=1
Pi
plr = pla;Klnrir +pgresa;e.YRg7}r (18)
Ir +Pc
Olres

and o, =
1— Oun

res

where o] =
1— Cun
where p;, and Tj, are the pressure and temperature of the
homogeneous mixture of the liquid and resolved vapor, p;
is the pressure of the ith bubble and N is the number of
bubbles.

The unresolved terms on the right-hand side of
equation 16 have a divergence rate term ( %) which is a
measure of the expansion/collapse rate of the unresolved
bubbles. Computing this divergence using a standard
numerical method might lead to erroneous values due to
insufficient bubble resolution. A better way is to express
it in terms of the bubble quantities. The divergence rate
for a single bubble can be written as

duj _ 1 Dpg
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8)Cj Pg Dt (19)
Assuming no mass transfer
1D 1 DV, 3R
7ﬁ:777g:77’ (20)
pg Dt Ve Dt R



Hence 3 )
uj 3R
— =—. 21
8x j R ( )
Summing over N bubbles, the divergence term on the right
hand side becomes

8uj N 3pgiOC,'R,'
pYunT = Z T

Xj =1

(22)

The bubble size (R), velocity (R) and pressure (p;) need
to be obtained to compute the unresolved source terms.
This requires accurate modeling of the bubble dynamics
and the corresponding governing equations are derived
and discussed below.

Bubble dynamics

A generalized RP equation is derived using the
spherical momentum equation (assuming the bubble to be
spherical) along with the linear wave equation (to account
for the speed of sound). Also, the viscosity and surface
tension of the bubble have been neglected for the current
derivation, but are readily included. The momentum
equation and the wave equation are:

9,99 196,  1dp

oo T35 ) = 5%, o
82

S =

where ¢ and p are the velocity potential and pressure
respectively. We integrate from r = R to r = kR to account
for the local flow effects on the bubble dynamics (where
k is a constant parameter). This results in the following
equation.

0(kR) ~ 9 (R) + 3 (07 (R) 9, (R))

L PR —p(®) _

(24)
The general solution of the wave equation is

0= L(f—rfe)balitrfe) @)

Substituting equation (25) in equation (24) would
result in

(748 RR) — 2 ((F + )R+

L PR~ p(R) _

(26)
By taking the radial derivative of equation (25), the
folllowing relation between f’ and g’ can be obtained

S(02(R) — 9 (R))

f(r)=g'(r)—cro.(r) —co(r) (27)

Substituting equation (27) in equation (26), and
assuming there is no incident wave (g = 0), would result
in

(ARG, (KR) -+ e (kR)) + (R, (R) + o (R) +

PR —p(R),
(28)
Since surface tension and viscosity are neglected,
p(R) = p, where pp is the bubble pressure. Taking
the temporal derivative of equation (28) and using the
kinematic boundary condition (¢,(R) = R), we would
obtain the following generalized RP equation.

SR(O2(R) — 97 (R) +R(

RE(1 - ]g) + %Rz(l - 3%) =
: B 2
@% (kR) + é@ (kR) ¢ (kR) + %?q&ﬂ(kR)
(29)

From the generalized RP equation, the original RP
equation, the Keller-Misis equation and the localized RP
equation can be obtained with appropriate assumptions as
shown below.

Case 1: Large k

From equation (25) it can be observed that ¢, ~ ﬁ, Or ~
kiR and ¢y ~ ,%R. Therefore for large k, ¢, ~ 0, ¢, ~ 0 and
¢ ~ 0. Equation (29) would then reduce to

R 3., R R R p(R)—pe
RR(1- D+ 3R - = o))

2 3¢

(30)

which is the well known Keller-Miksis((Keller and
Miksis, 1980)) equation.

Case 2: Large ¢

For large ¢, equation (25) would become

RE(Q -1y 3o 2oLy pR)=p(kR)

K2 3% 3K p 3D

which is a localized incompressible RP equation.

Case 3: Both large c and large

For both large ¢ and large k, equation (25) would become
35 P(R)— p(kR)
2 P

which is the original incompressible RP equation.

RR + (32)



Case 4: Capturing local flow effects

The impact of the external flow on the bubble is felt via
the term p(kR). To capture the local flow effects, the
regions closer to the bubble need to be considered while
computing p(kR), i.e. k would be small. Closer to the
bubble, the flow can be assumed to be incompressible and
the corresponding velocity potential can be expressed as
o(r) = 7@. Substituting this ¢, and its temporal and
spatial derivatives in equation (25) would result in

o R 1.3, R 4 1.
REQ= =R 5 5e)

R R I, p(R)—p(kR) 1 R
(1+;+;E)( ) ) E(7+RRR)

(33)

This is an approximation to the generalized RP

formulation that accounts for the compressibility of the

medium and the local flow effects on the bubble via the

term p(kR). This equation is used in obtaining the results
discussed in the following sections.

Computing o,

Another important term in the two—way coupling of the
resolved and unresolved phases is ¢, which is the volume
fraction of the unresolved vapor. A Gaussian kernel(f)
is used to smoothen the distribution of ¢, and is shown
below.

rlz

e7 262

2 (34)

N

f=x

i=1

N is the total number of bubbles, r; is the distance
between the cell center and the ith bubble, and ¢ (standard
distribution) is defined as ¢ = (47”)1/ 3R;, where R; is

the size of the ith bubble. The volume fraction is then
computed as follows

[ fav
TV,

(35)

un

where V,, is the volume of the cell

2. Results
i) Unresolved bubble

Here, we simulate the collapse of an unresolved bubble
subjected to high external pressure. The simulation is
performed for a (i) vapor bubble and a (ii) gas bubble.
This is similar to the Rayleigh-like collapse of an
empty-spherical cavity for the vapor bubble. A key
difference between the gas and vapor bubble is that the gas
bubble rebounds upon its initial collapse as its pressure
varies inversely with its size. Following is the problem
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setup for both the cases

P,y = latm; Ry=0.1mm; Ry/Ax=0.5 (36)

where P, Ry and Ax are the external pressure, initial
bubble and the cell size, respectively. The initial bubble
pressure (P,) of the vapor bubble is 0.02 atm, and that of
the gas bubble is 0.5 atm. The bubble size variation and
the collapse time is compared to the reference solution
obtained from the Rayleigh-Plesset ODE. Figures 12(a)
and 12(a) show the comparison for the vapor bubble
and gas bubble, respectively, and we observe a good
agreement between the hybrid model (blue curve) and the
reference solution (orange curve). Also, the collapse time
for both the bubbles agrees with the reference solution.
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Figure 12: Comparison between the multi-scale model
and the reference solution from RP ODE for the collapse
of an unresolved (a) vapor bubble, (b) gas bubble.

ii) Resolved bubble

In contrast to the previous section, we consider
the collapse of a spherical vapor bubble which is
well resolved. We compare the size of the bubble
and the collapse time to the reference solution from
Rayleigh-Plesset ODE. Following is the parametric setup



P.y = latm; Ro = lmm; Ry/Ax=50; Py=0.02atm
(37

Figure 13 shows the comparison, and we observe a
good agreement between the hybrid model (blue curve)
and the reference solution (orange curve). Since the
bubble contains vapor, the condensation term (S.) on
the right-hand side of the transport equation in equation
16 causes the vapor to condense as the bubble pressure
exceeds the vapor pressure. This results in a rapid collapse
of the vapor bubble.

iii) Unresolved and resolved bubble pair

In the previous sections, the accuracy of the
multi-scale model was demonstrated independently for
an unresolved bubble and a resolved bubble. Here, we
choose a case where both the unresolved and the resolved
bubble co-exist. Following is the parametric setup

Resolved Bub: Ry, = lmm; R,/Ax =25;

Py, = 0.5atm
Unesolved Bub: Ry, = 0.1mm; Ry,/Ax = 1.25; (38)
P, =0.5atm

Domain size: — 10mm < x,y < 10mm;
—10mm < z < 15mm

P,; = latm and non-reflective boundary conditions are
used to avoid the reflection of pressure waves from the
walls. The distance between the bubbles (d) is Smm
ie. d/R, =5. The schematic of the setup is shown in
figure 14. At such separation distances, the bubbles might
impact each others’ behavior.
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Figure 13: Comparison between the multi-scale model
and the reference solution from RP ODE for the collapse
of a resolved vapor bubble.
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Figure 14: Problem Setup
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Figure 15: (a) Comparison between the multi—scale
model and RP ODE for the unresolved gas bubble.
(b) Instantaneous snapshot showing the pressure waves
generated by the resolved bubble as it collapses.

Since the unresolved bubble is much smaller than the
resolved bubble, it will have a negligible impact on the
resolved bubble’s behavior, whereas the resolved bubble
can have a significant effect. Since the initial bubble
pressure is much lesser than the surrounding ambient
pressure, shock waves are generated which travel into
the bubble and expansion waves propagate outward. The
unresolved bubble, which initially begins to collapse due



to the ambient pressure of latm, now experiences a
much lower external pressure because of these expansion
waves. As aresult, the collapse intensity of the unresolved
bubble reduces. This can be observed in figure 15(a),
which shows the bubble size comparison between the
multi—scale model (blue curve) and the RP ODE solution
(orange curve). During the initial collapse, the minimum
bubble size attained is much higher for the hybrid model.
This reduced intensity can be seen in the subsequent
oscillations as well. Since the resolved bubble is much
larger in size, its collapse time is much longer. As the
resolved bubble starts to collapse it generates compression
waves that propagate outward. This can be seen in figure
15(b), which is a snapshot taken during the collapse stage
of the resolved bubble. As these compression waves hit
the unresolved bubble, its intensity gets further dampened
as seen in figure 15(a) (post T = 0.0001). Eventually, the
unresolved bubble appears to undergo linear oscillations,
whereas the resolved bubble oscillates unperturbed.

iv) Effect of parameter k

For a single bubble exposed to large ambient pressure,
the bubble size variation and the collapse time are
expected to be independent of the value of k chosen in
the generalized RP equation. We verify that by simulating
the gas bubble oscillation case discussed in section i) by
considering three values of k: (a) k=15, (b) k=10and (c)
k =40 and compare it with the reference solution obtained
from Keller—-Miksis RP ODE. Figure 16 shows the plot
for the bubble size variation for three oscillation cycles
and we observe all the three curves (black, pink and green
curves) collapse onto one another, and also agree with the
reference solution (orange curve).
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v) Multiple Bubbles

We simulate a case where a cluster of bubbles is
exposed to an strong acoustic pulse and demonstrate the
ability of the generalized RP equation to capture the
bubble-bubble interaction. We choose a case from Maeda
and Colonius (2018) where N = 150 bubbles are exposed
to the following acoustic pulse

P = Py+ APsin(2mf1) (39)

where Py = 1 atm, AP = 10 atm and f = 300 kHz. The
initial size of the bubble is Ry = 10 um and Ry/Ax = 0.1.

(@)

p: -3 -24-18-12-06 0 0.6 1.2 1.8 24 3
| | 3 — Bubble cloud
Acoustic pressure
N |
p: -3 -24-18-12-06 0 06 12 18 24 3
() 1 1
p: -3 -24-18-12-06 0 06 1.2 1.8 24 3

Figure 17: Instantaneous snapshots showing the
interaction between the acoustic pressure and the bubble
cloud. The bubbles are represented by the iso-contour of
volume fraction (@ = 0.001) colored with pressure.

Figures 17(a), 17(b) and 17(c) show the interaction

Figure 16: Comparison between k =5, k = 10, k =40 petween the acoustic pulse and the bubbles. As the

and the RP ODE solution.
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pulse impinges on the bubbles, these bubbles undergo



acoustic cavitation and witness a large increase in their
size, as observed in figure 17(b). Figure 17(c) shows
the effect of the bubble cloud on the acoustic pulse as
a part of it gets transmitted, and the remaining part gets
reflected. We simulate this case with the multi-scale
model using both localized RP and the generalized RP
equations. We compute the instantaneous volume fraction
of the cloud for both the cases and compare it with that
of Maeda and Colonius (2018) as shown in figure 18.
While we observe a decent agreement among the three
curves, the generalized RP solution (blue curve) has a
better agreement with the reference solution (green curve)
in terms of both the amplitude and the phase of the
oscillations. This difference in the localized RP and the
generalized RP solutions mandates the need to account
for medium compressibility for the violent collapse of the
bubbles.

Maeda and Colonius (2018) used an RP variant
derived by Fuster and Colonius (2011) where the
bubble-bubble interaction is modeled explicitly using
potential flow assumption. However, it has an O(N?)
complexity and becomes computationally expensive for
a large number of bubbles. In contrast, the generalized
RP equation does not explicitly account for bubble-bubble
interaction yet captures the bubble-bubble interactions
accurately without being computationally expensive.

0.0004
Localized RP eqn
Generalized RP eqn
0.0003}F Maeda & Colonius (JCP, 2018)
B 0.0002F
0.0001}
0

7605 AE-05

t
Figure 18: Comparison of the volume fraction of the
cloud (P) between the localized RP equation (orange),

generalized RP equation (blue) and that of Maeda and
Colonius (2018) (green).

SUMMARY

Cavitation is investigated over a range of scales using
different problems. A backward—facing step setup was
used to study inception in a shear layer. Given that at the
inception level the amount of vapor formed is not high
enough to alter the flow dynamics, we assumed vapor to
be a passive scalar in a incompressible liquid. Joint—-PDFs
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of the flow invariants are obtained along the shear layer
and the cores of the elongated vortices are found to be the
regions most likely to experience inception. These regions
have a rotation rate 4 x stronger than the stretching rate.

A phase change model based on the volume-of-fluid
(VOF) method was developed for resolved bubble
calculations. = The model was tested against three
benchmark cases; Rayleigh bubble collapse, vapour
bubble collapse near a solid boundary, and vapour bubble
collapse on a solid boundary. The latter two problems
were of particular interest due to the asymmetry of the
collapse. Results from all three simulations showed
good qualitative and quantitative agreement with the
literature. To extend the model’s capability to multiple
bubbles, a Lagrangian tracking procedure was developed,
validated, and scaled. The tracking capability allows for
the calculation of bubble size and mass flux at the level
of each vapor cavity separately as the cavities change in
size, advect, and deform. The phase change model will
later be extended to include effects of non-condensable
gas (NCG) where problems involving bubble oscillation
can be studied.

Lastly, a fully compressible multi-scale model has
been developed which captures both macro cavities and
micro bubbles. In addition, a generalized RP equation
is derived for the Lagrangian bubble dynamics which
accounts for the compressibility of the medium and the
inter-bubble interaction. For both unresolved and resolved
bubbles, the model has been shown to accurately capture
the interaction between the bubble and the surrounding
liquid. It has been applied to study the interaction between
aresolved bubble and an unresolved bubble and the strong
collapse of the resolved bubble was found to dampen
the intensity of the unresolved bubble oscillations. The
multi-scale model was then used to study the interaction
between a strong acoustic pulse and a bubble and the
generalized RP equation was found to perform better than
the localized RP equation.
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DISCUSSION

Thad Michael,

Naval Surface Warfare Center Carderock Division (872),
9500 MacArthur Blvd, West Bethesda, MD 20817, Ph:
301.227.5831, thad.michael @navy.mil

I am very pleased to see this progress on cavitation
modeling over a range of scales. It is an important part of
being able to solve real world cavitation erosion problems
in the future, where we have both the problem of how the
bubbles interact with the surface and the evolution of the
bubbles up to that point.

1. It would seem that a very fine grid would
be required for the [I — (Ro/R)*] term to be
significantly different than 1 for the solution of
phase change when the bubble is tracked with VOF.
I commend the authors on their effort to track RO.

How is RO tracked when bubbles merge and split?

What is the significance of RO for cavitation models
where the interior of the bubble is neither empty
(as assumed in the derivation of the R-P equation)
nor filled with NCG? Does it represent some initial
quantity of vapor which was in equilibrium with the
surface tension of the bubble and flow conditions
prior to entering the computational domain.

Can bubbles be tracked between the resolved and
unresolved models as they shrink below the size
that can be resolved by the VOF method or grow
large enough to be tracked by the VOF method?

AUTHOR'’S REPLY

The authors thank you for your comments and questions,
which are addressed below.

Question 1: The main factor contributing to the
importance of this term is the size of the cavity
under study i.e. when R >> Ry and R << Ry.
For problems involving single bubble dynamics, our
numerical experiments showed that 30 CVs is sufficient
to get good agreement with the RP solution. Hence, grid
resolution is not as significant.

Question 2: We thank the discusser for this valuable
comment. In the current study, only advection and
deformation were addressed. Merging and splitting is a
work in progress.

Question 3: That is correct. The main assumption is that
an initial quantity of vapor is in equilibrium with the flow
conditions before entering the computational domain.
Question 4: The bubbles can be tracked between resolved
and unresolved models since the value of the color
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function at a given CV is the only input to the tagging
routines. The only difference would be the tolerance set
to initiate tagging.



