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ABSTRACT

The modeling of trip-induced laminar-to-turbulent
boundary layer transition and turbulent near-wall flow
over an inclined prolate spheroid is challenging due
to high Reynolds number, three-dimensionality of the
boundary layer and the rapidly varying pressure gradient
on the body. Tripping such a flow is non-trivial and a
compromise has to be reached between adding enough
perturbation to trigger transition over a range of pressure
gradients while keeping the downstream flow free from
trip-specific features. Large eddy simulation is used to
study this problem to assist the planning of experiments
as part of ONR’s HIPRO program. The influence of
trip location is first studied using wall-modeled large
eddy simulation (WMLES). The boundary layer is
axisymmetrically tripped and the flow resulting from three
different tripping locations is compared. Wall-resolved
and trip-resolved LES (WRLES) is then performed
to assess the effects of cylindrical post trips under
experimental consideration. The physical details of
how a single trip element causes transition is studied
using global linear stability analysis of a laminar
boundary layer tripped by a cubical element. The global
stability analysis is able to capture the frequency of
the primary vortical structures observed in nonlinear
direct numerical simulation (DNS). The results show
that the varicose unstable mode extracts its energy from
both the wall-normal and spanwise shear of the central
low-speed streak, and its instability core is located
within the reversed flow region downstream of the cube.
A preliminary study of alternative trip configurations
is performed for three different canonical geometries:
cylindrical post, wire and delta wing. Results show
that the trip geometry has an influence on the type of
perturbation that is introduced, which in turn affects
the effectiveness of the tripping in term of downstream
distance at which the boundary layer becomes turbulent.

INTRODUCTION

The flow around a 6:1 prolate spheroid at angle of attack
is a canonical problem that shows many similarities with
the flow observed around complex, real-world submerged
bodies. Despite the simplicity of the geometry, the
resulting flow is complex and exhibits a three-dimensional
boundary layer evolving under a streamwise varying
pressure gradient, cross-flow separation and reattachment.
The pressure gradient varies azimuthally, from favorable
on the windward side, to adverse on the leeward side.
This drives the near-wall flow along the side of the
spheroid, resulting in separation and formation of a pair
of counter-rotating vortices. The vortex pair entrains
surrounding flow and reattaches the boundary layer
towards the leeward centerline.

In practice, the flow is tripped at model scale to
attain high Reynolds number behavior, and ensure that the
transition to turbulence is repeatable, although the best
approach to do so remains unclear. Difficulties arise when
designing an effective trip to successfully trigger flow
transition over a range of angles of attack and Reynolds
numbers, without significant history effects post–tripping.
In particular, finding an appropriate location to trip the
flow is non-trivial. While an early trip is desirable so that a
larger portion of the boundary layer is fully turbulent, it is
also harder to achieve because the local Reynolds number
is smaller. In the case of the flow around the prolate
spheroid, earlier tripping faces the additional constraint
that the windward favorable pressure gradient is stronger
hence more prone to under–tripping while the leeward
adverse pressure gradient is also larger and more likely
to overtrip. In addition, the choice of trip geometry
can be challenging; e.g. Erm and Joubert (1991) who
studied a zero pressure gradient flow over a flat plate
tripped using distributed roughness grit, cylindrical pins
and wire. Different geometries trigger different modes of
perturbation which translate into different evolution of the
boundary layer to a turbulent state.
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Global linear stability theory (Theofilis, 2011)
can provide insight into the early stages of temporal
disturbance growth in a tripped boundary layer and is
especially useful for non-parallel flows such as roughness
wakes. It is therefore a promising tool to predict and
analyze the tripping effects. Isolated, three-dimensional
roughness elements may be considered as the primary
models to be generalized and extended for more complex
trip geometries. Loiseau et al. (2014) used global stability
theory to investigate the flow past a cylindrical roughness
element. They suggested that the frequencies associated
with the dominant fluid dynamics are well predicted by
global stability analyses, and that the unstable nature
of the central low-speed streak is of crucial importance
in the transition process. Bucci et al. (2021) noted
that the roughness Reynolds number and aspect ratio
might not be the only important parameters for transition
characteristics, the shear ratio also plays a crucial role in
the onset and symmetry of the primary global instability.
The joint effects of these parameters make the instability
characteristics and transition process highly sensitive to
the flow configuration. In this paper, we perform global
linear stability analysis to gain insight in the unstable
nature induced by a cube immersed in a laminar boundary
layer.

The present work is focused on boundary layer
tripping in context of flow over the spheroid. The
objectives of this study are: (i) to compare the influence of
trip location on turbulent flow around the prolate spheroid;
(ii) to assess the sensitivity of the tripping effectiveness
to geometry of the trip. The numerical approach is
discussed in the next section, followed by a detailed
problem description and discussion of results. Finally, the
key outcomes of the present work are summarized.

NUMERICAL APPROACH

The LES solves the filtered incompressible Navier–Stokes
equations using the algorithm developed by Mahesh
et al. (2004) for unstructured grids on massively
parallel platforms. The spatially-filtered incompressible
Navier–Stokes equation are:

∂ui

∂ t
+

∂

∂x j
(uiu j) = − ∂ p

∂xi
+ν

∂ 2ui

∂x j∂x j
−

∂τi j

∂x j
(1)

∂ui

∂xi
= 0 (2)

where ui is the velocity, p is the pressure and ν is
the kinematic viscosity. The overbar (·) denotes spatial
filtering and τi j = uiu j − uiu j is the subgrid stress,
which is modeled using the dynamic Smagorinsky model
(Germano et al., 1991; Lilly, 1992).

The algorithm uses a finite volume method
where the Cartesian velocity components and pressure

are stored at the centroids of the control volumes, while
the face normal velocities are stored independently at the
centroids of the faces. Time marching is performed using
an implicit Crank–Nicolson scheme. The equations are
discretized in space with a second order central scheme.

For the wall-modeled LES, the grid resolution
requirement near wall is relaxed by employing wall
model to account for unresolved near-wall scales.
This is achieved by replacing the usual no-slip
boundary condition at the wall with a prescribed
mean shear stress (τw), obtained by assuming that
the instantaneous wall-parallel velocity (U) satisfies
Reichardt’s law-of-the-wall (Reichardt, 1951) given by:
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where, the superscript ‘+’ denotes normalization using
viscous units, and C = 4.1 and κ = 0.38 are constants.
Reichardt’s law is chosen as it is valid for the entire inner
layer, as opposed to the log-law which only holds for
y+ > 50 or so. This ensure accuracy and robustness as
the boundary layer thickness can vary a lot over the body.
For a given u = U at a wall-normal location y = d, Eq.
(3) is solved using the Newton–Raphson method to obtain
τw = u2

τ , which is then prescribed at the wall by setting the
face velocity to zero and the eddy viscosity (νt ) as:

νt = τwd/U −ν (4)

where, ν is the kinematic viscosity. This implementation
of wall model was found more robust compared to setting
νt = 0 and modifying wall face velocity to prescribe τw.

For the resolved trip geometry studies, the trips
were resolved using the incompressible LES overset
methodology developed by Horne and Mahesh (2019a,b).
This methodology enables a large degree of freedom in
the grid generation process.

The global stability analysis linearizes the
incompressible Navier-Stokes equations about a base
state, Ub and describes the evolution of a small
perturbation ũi and p̃.
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An encapsulated formulation of the selective frequency
damping (SFD) method developed by Jordi et al. (2014)
is used to obtain the stationary base flow. The main idea is
to apply a temporal low-pass filter to damp the oscillations
due to the unsteady part of the solutions, and is achieved
by introducing a linear forcing term on the right-hand
side of the Navier-Stokes equations. The problem is
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considered to have converged when ||q − q||in f ≤ 10−8

according to Jordi et al. (2014), where q is the filtered
state. The base flow for the present case converges over a
time period of T = 1000h/Ue.

The numerical schemes used to solve the
Linearized Navier-Stokes (LNS) equations are identical
to that used to obtain the base state (Mahesh et al., 2004).
A matrix-free method - the implicitly restarted Arnoldi
method (IRAM) is implemented in the PARPACK library
to solve for the leading eigenvalues and eigenmodes. A
temporal exponential transformation of the eigenvalue
spectrum is performed. The eigenvalue problem is
integrated over time τ = 0.9 and converges over 227
iterations. Also, Adjoint sensitivity analysis is performed
that solves for the dominant eigenvalues and eigenmodes
of the adjoint LNS Equations. The adjoint perturbation
velocity field highlights optimal locations for point
forcing and the inception of instability (Hill, 1995). The
continuous adjoint equations are:
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PROBLEM DESCRIPTION

WMLES of the flow around a prolate spheroid

WMLES of the flow around the spheroid is
performed at 2.5 and 15 degrees angle of attack and Re =
6.5×106. The flow is numerically tripped at x/L = 0.05,
x/L = 0.10 and x/L = 0.20 by prescribing a azimuthally
uniform steady wall-normal blowing. The location of the
x/L = 0.20 numerical trip is identical to the reference
experiments of Chesnakas and Simpson (1996) and is
commonly used by past experiments. The wall-normal
blowing strategy has been validated for the flow over the
Suboff hull at 0◦ angle of attack (Kumar and Mahesh
(2018); Morse and Mahesh (2021)).

The computational grid contains 3 million
hexahedral cells to enable fast turn around and a
qualitative assessment of tripping effects. A longitudinal
view of the grid is shown in Figure 1. The computational
domain is a cylinder of length 36a in the major axis of
the spheroid and radius of 16a where a is the length of
semi-minor axis of the spheroid.

Figure 1: Longitudinal view of the 3M prolate spheroid
grid.

The coordinate system and the domain are
aligned with respect to the spheroid. A uniform velocity is
prescribed at the inflow plane. The freestream is inclined
to match the angle of attack. The usual no-slip boundary
condition at the wall is replaced by a prescribed wall
stress obtained using the aforementioned wall model. The
simulations are advanced in time with a non-dimensional
time step ∆ tU/a = 0.004, where U is the freestream
velocity magnitude. The simulations are performed for at
least two flow-through time to discard transients and then
for another few flow-through times sampled at every five
time steps to obtain time-averaged flow field.

Trip-resolved LES of the flow around the prolate
spheroid

WRLES is performed on the prolate spheroid at
0◦ and 20◦ angles of attack, at Re = 4.2× 106. Both the
boundary layer and the trip geometry are resolved in order
to study the effect by which the boundary layer transitions
to turbulence. The grid is composed of 600 million
unstructured hexahedral elements. The trip geometry
and location is identical to the preliminary design fro
the HIPRO campaign. It consists of 20 azimuthally
distributed cylindrical posts which have an aspect ratio
h/d = 5 : 2 where h = 5 × 10−3L is the height of the
post and d = 2 × 10−3L is its diameter. The trips are
located at x/L = 0.067. Each post has its separate overset
mesh, which promotes reusability, allows for additional
flexibility in the grid generation process and improves grid
quality and efficiency overall. Though the boundary layer
has non-uniform thickness due to the pressure gradient,
the ratio h/δ99, where δ99 is the boundary layer thickness,
is estimated to vary between 5/1.4 on the windward side
to 5/7 on the leeward side, with a Reynolds number based
on δ99 around 2000.
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Global stability analysis

The global stability and sensitivity analyses
of flow over an isolated cubic roughness element is
performed at different Reh in a range of 450-600. The
flow configuration, computational domain and roughness
geometry are depicted in figure 2. The cuboid with height
h and width d is centered at the origin of the Cartesian
coordinate system. The cubes with equal length and
width are considered because they can provide similar
global stability results as cylindrical posts. The ratio of
the roughness height to the displacement thickness of the
boundary layer h/δ ∗ is 2.86, which is large and related to
an early trip location. While a trip at an early location is
desirable to obtain a turbulent boundary layer over a large
portion of the body, it is also harder to achieve since the
local Reynolds number is smaller. The present case aims
to provide insight into how moving a trip closer to the
leading edge affects the transition. The aspect ratio η =
d/h = 1. This case is denoted by Case (Reh,η)=(600,1).
The roughness height is h = 1, the reference length in the
simulations. The streamwise extent of the computational
box Lx is 45h. The spanwise extent is Lz = 10h to ensure
that the roughness element behaves as isolated, and the
wall-normal extent is Ly = 15h. The distance from the
inlet of the computational domain to the center of the
roughness element is denoted by l = 15h. The Blasius
laminar boundary layer solution is specified at the inflow
boundary, and convective boundary conditions are used
at the outflow boundary. Periodic boundary conditions
are used in the spanwise direction. No-slip boundary
conditions are imposed on the flat plate and the roughness
surfaces. The boundary conditions Ue = 1, ∂v/∂y =
∂w/∂y = 0 are used at the upper boundary. Uniform grids
are used in the streamwise and spanwise directions, and
the grid in the wall-normal direction is clustered near the
flat plate.

Lx

Lz

Ly

l

Ue

h
d

O

x

z
y

Figure 2: Sketch of the flow configuration and roughness
geometry.

Alternative trip geometries
The flow around three different trip geometries

on a no-slip flat plate is computed using LES. Three
different trip geometries are considered: a cylindrical post
with a 1:1 height to diameter aspect ratio, where the height
of the post h is unit; a unit-diameter cylindrical wire; a
“delta wing”, which is an equilateral triangle at 40 degree
angle of attack, whose centroid is at y= 1.5h where h= 1,
the length of the base of the triangle. The grid used for the
delta trip is shown in Figure 3. The support of this trip was
not modeled. The angle of attack was chosen such that a
large separation occurs on the leeward side and produce
a counter-rotating vortex pair that perturbs the boundary
layer. The inflow is set as a Blasius velocity profile with a
boundary layer thickness δ99 = 1.5h, which was chosen
to be similar to the expected conditions on the prolate
spheroid study and the location of the trip. No pressure
gradient is imposed. The Reynolds number based on trip
height is prescribed as Reh =Ueh/ν = 1000, where Ue is
the boundary layer edge velocity and h is the roughness
height, which corresponds to δ ∗ = 522.

Figure 3: Grid of the delta trip
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RESULTS AND DISCUSSION

WMLES of the flow around a prolate spheroid

Figure 4 shows the averaged streamwise velocity
on the center plane along with the near-wall streamlines
at 2.5◦ and 15◦ angle of attack. The streamlines are
constrained to the first cell and are equivalent to friction
lines. At 2.5◦, the flow is close to being axisymmetric and
does not form a vortex pair. Two stagnation points are
observed at the nose and at the tail, close to the major axis
of the prolate spheroid. Away from the wall, the flow is
accelerated to be maximum in a region extending from the
trip until about x/L = 0.8 to x/L = 0.9. This acceleration
is consistent with the favorable pressure gradient that
exists on the foremost half of the prolate spheroid. The
fact that velocity increases more strongly past the trip,
away from the wall, is likely due to a reduction of
the skin friction associated with the transition of the
boundary layer turbulence at this location. Near the wall
on the other hand, the velocity is maximum at the nose
upstream of the trip, then drops to a minimum directly
downstream of the trip. The near-wall velocity is then
slowly re-accelerated until the aft part of the spheroid.
The near-wall streamlines are at a slight angle with respect
to the major axis of the prolate spheroid. No convergence
line is observed which suggests that no boundary layer
separation exists.

At 15◦, the flow is not axisymmetric. A
stagnation point is seen at the nose, slightly windward.
Two higher velocity regions are observed at the higher
incidence on the windward side in the aft-most half of the
spheroid and on the leeward side on the fore-most half of
the prolate spheroid. The windward centerline constitutes
a stagnation line. From there, the flow splits on each side
of the prolate spheroid and travels predominantly in the
streamwise direction.

Figure 4: Averaged streamwise velocity at 2.5◦ and 15◦

angles of attack. The flow is tripped at x/L = 0.2

The azimuthal component of velocity increases
to reach a maximum around φ = 90◦, which is observed
as an inflection of the streamline curvature.

The streamlines converge on the leeward size,
which indicates the primary boundary layer separation
resulting in the formation of the primary vortex. On
the other hand, the leeward centerline at φ = 180◦

corresponds to a divergence of the streamlines associated
with the reattachment of the flow from the primary vortex
pair.

Figures 5 to 8 show the skin friction coefficient
C f and pressure coefficient Cp along the streamwise
coordinate x/L, at 2.5◦ and 15◦ of incidence respectively,
at three locations on the spheroid: on the windward side
(φ = 0◦), on the port side (φ = 90◦) and on the leeward
side (φ = 180◦). Each line represent at different tripping
location.

Similar trends are observed for both incidences
and at the three locations considered. First, the boundary
layer is laminar and C f decreases from the leading edge
to the location of the trip. The skin friction rises to
peak around 0.08x/L downstream of the trip. Since the
boundary layer is turbulent, C f decreases until it flattens
at the midsection. Finally, the skin friction rises again in
the aft portion of the spheroid to drop sharply downstream
of x/L = 0.9, where the flow separates at the tail.

Two regions are identified in the evolution of C f .
Directly downstream of the trip, the three curves do not
overlap. This region is understood as a trip dependent
area where the value of skin friction is affected by the
signature of the trip. Farther downstream, the curve
eventually collapse into a single value. This is interpreted
as a trip-independent region where the boundary layer has
erased the signature of the trip. The challenge of effective
tripping is to reach the latter region as early as possible so
that the measured flow is independent of the trip.

At 2.5◦ incidence, similar behaviors are seen
for the three azimuthal stations since the flow is
near-axisymmetric. In reference to the 0.05x/L tripping,
the value of skin friction coefficient from the spheroid
tripped at 0.10x/L collapses much faster to the one from
the spheroid tripped at 0.05x/L than the one tripped at
0.20x/L. The reason for that may be that the pressure
gradient is weaker at 0.20x/L as seen in Figure 7, hence
the trip behaves differently than the other two cases
and the boundary layer takes longer to transition to a
canonical, trip-independent turbulent state.
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Figure 5: Skin friction coefficient along the prolate
spheroid at 2.5°angle of attack, at φ = 0◦ (top plot),
φ = 90◦ (middle plot) and φ = 180◦ (bottom plot).

φ = 0◦

φ = 90◦
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Figure 6: Skin friction coefficient along the prolate
spheroid at 15°angle of attack, at φ = 0◦ (top plot), φ =
90◦ (middle plot) and φ = 180◦ (bottom plot).
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Figure 7: Pressure coefficient along the prolate spheroid
at 2.5°angle of attack, at φ = 0◦ (top plot), φ = 90◦

(middle plot) and φ = 180◦ (bottom plot).

φ = 0◦

φ = 90◦

φ = 180◦

x/L

Figure 8: Pressure coefficient along the prolate spheroid
at 15°angle of attack, at φ = 0◦ (top plot), φ = 90◦ (middle
plot) and φ = 180◦ (bottom plot).
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At 15◦, the 0.20x/L curves collapse with the
other two shortly after the rise in C f for the φ = 0◦ and
φ = 90◦ cases, when the pressure gradient is favorable
though no obvious collapse is visible until x/L = 0.9 at
φ = 180◦ where the pressure gradient is adverse. The
0.10x/L curve collapses with the 0.05x/L case quickly at
all three azimuthal positions on the other hand. Similarly
to the 2.5◦ case, it is possible that a stronger difference of
pressure gradient at the 0.20x/L compared to the 0.10x/L
might explain these observations. In addition, conversely
to the φ = 0◦ and φ = 90◦ stations, the φ = 180◦ is located
on the leeward centerline, which is the location at which
the primary vortex pair reattaches onto the body. One
could expect that the value of skin friction along this line
is affected by the structure of the vortex pair which itself
depends on the turbulent state of the boundary layer prior
to separation. A laminar boundary layer would separate
earlier which would create a larger vortex and a different
value of C f at the reattachment line. By this mechanism, it
is possible that small difference in the location of the trip
could translate into larger deviations in the skin friction
on the leeward side.

Overall, for both angles of attack, placing the
trips at 0.05x/L and 0.10x/L seems to yields a shorter
trip-dependent region hence a more effective tripping.
The skin friction coefficient is sensitive on the location
of the trip at low angle of attack, and at high angle of the
attack on the leeward centerline.

Trip-resolved LES around the prolate spheroid

Figure 9 shows the flow directly downstream
of the trip at 0◦ angle of attack, which is subject to
a weak favorable pressure gradient. The posts are
effective in introducing unsteadiness in the flow and
the boundary layer becomes transitional. The velocity
profiles downstream of the trip, behind and between posts
are given in Figure 10. The shape of both profiles evolves
to display a linear section in the semi-logarithmic scale
starting at around x/L = 0.20. This suggests that the
flow evolves from a transitional state to a turbulent flow
around 0.13x/L downstream of the trip. The profiles
between the two streamwise stations are different at
x/L = 0.10, which can be understood by the fact that
the perturbation introduced by the post is initially local
in the spanwise direction. Both stations then converge to
a similar profile at x/L = 0.20 which indicates that the
boundary layer becomes statistically axisymmetric. Both
these observations suggest that this trip becomes effective
within 0.13x/L downstream of the posts at 0◦ angle of
attack.

Figure 11 shows the skin friction coefficient on
the port side and on the windward side of the nose of the
prolate spheroid at 20◦ angle of attack.

Figure 9: Flow field around the resolved trip on the
prolate spheroid at 0◦ angle of attack.

lo
g(

r)

x/L

Figure 10: Averaged velocity profiles downstream the
trips, directly behind the post (red) and between two posts
(blue) at 0◦ angle of attack.

The perturbation introduced by the posts is
visible as streaks which are convected from the windward
side to the leeward side at an angle larger than
the incidence of the flow. This is assumed to be
a consequence of the centrifugal balance inside the
boundary layer: a slower moving fluid follows a larger
curvature, which is along the φ direction on the prolate
spheroid. A strong asymmetry is observed between a
quiescent windward side and an unsteady leeward side
where the perturbation from all the post except one
located at φ = 0◦, converges. The wake originating from
the latter post remains in the centerline though the skin
friction diminishes rapidly. Despite the perturbation of
this post, an area of low skin friction is seen where
the boundary layer flow is steady. Figure 12 gives the
evolution of the velocity profile directly behind the φ = 0◦

post and adjacent to it, between the trips. Both sets
have different shapes closer to the post at x/L = 0.10,
which converge toward a similar profile at around x/L =
0.30. This difference in the profiles is thought to be
a consequence of the localized, wake-like perturbation
introduced by the trip in which the flow downstream is
more unsteady than on the side. This wake-like structure
also visible in the skin friction on Figure 11. The
profiles remain laminar throughout with a slight increase
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in boundary layer thickness. The absence of transition
is thought to be related to the quiescent area observed in
the skin friction and is understood as a consequence of
a stabilizing favorable pressure gradient which dampens
the excitation of the post, with a strong crossflow which
advects the perturbed flow away from the windward side.

Figure 11: Skin friction at the nose of the prolate spheroid
at 20◦ angle of attack on the port side (top) and on the
windward side (bottom).

lo
g(

r)

x/L

Figure 12: Averaged velocity profiles downstream the
windward trip, directly behind the post (red) and between
two posts (blue) at 20◦ angle of attack.

Global instability and adjoint sensitivity analyses
How does a single trip element induce transition?

Recall the problem formulation depicted in figure 2; the

base flow computed using SFD method is examined in
figure 13. The isosurfaces of the streamwise velocity
deviation ud = Ub − ubl are used to visualize the high-
and low-speed streaks. The central low-speed streak
which originates from the flow separation downstream of
the roughness element, is symmetric with respect to the
mid-plane. The lateral low-speed streaks are associated
with the counter-rotating vortices. High-speed streaks
appear farther downstream and are attached to the wall.

z/
h

x/h

ud/Ue

Figure 13: Top view of high- and low-speed streaks,
visualized by isosurfaces of the streamwise velocity
deviation of the base flow from the Blasius boundary layer
solution, ud =Ub −ubl , for Case (Reh,η)=(600,1).

σ

St

Reh = 600
Reh = 500
Reh = 475
Reh = 450

varicose

varicose

varicose

varicose

Figure 14: Leading eigenvalues of cases with η = 1 at
different Reh.

Global stability analysis was performed at
different Reh, and the leading eigenvalues are shown in
figure 14. At each Reh, one leading eigenvalue is obtained.
The changeover from an unstable to a stable system
typically occurs when the Reynolds number exceeds a
certain threshold. The case at Reh = 450 is absolutely
stable, consistent with the steady flow field observed from
the DNS results. As Reh increases, both the growth rate
and the temporal frequency are increased. The critical Reh
of global instability can be identified when the growth rate
of an eigenvalue becomes positive for the first time. The
flow at Reh = 475 is marginally stable which suggests that
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the critical Reh is close to 475 for this configuration. The
eigenfrequency from linear stability analysis is consistent
with the Strouhal number of hairpin vortices (St = 0.175
at Reh = 600).

All the eigenmodes of the leading eigenvalues
show varicose symmetry for the various Reh investigated,
where varicose symmetry means a symmetric mode shape
with respect to the spanwise mid-plane. The other mode
type, the sinuous mode, presents anti-symmetry and is
expected to occur for a thinner trip geometry and a higher
Reynolds number (Ma and Mahesh, 2021). The real part
of the leading eigenmodes is shown for Reh = 600 in
Figure 15. The shape and location of the mode correspond
to those of the central low-speed streak observed in Figure
13.

z/
h

x/h

Figure 15: Contour plots at slice y = 0.5h of the
streamwise velocity component of the leading unstable
global mode for Case (Reh,η)=(600,1). The contour
levels depict ±10% of the mode’s maximum streamwise
velocity.

The production of disturbance kinetic energy
provides insight into how the global mode extracts its
energy from the base flow. As illustrated by De Tullio
et al. (2013) and Loiseau et al. (2014), the main
contributions to the production of disturbance kinetic
energy are the two terms

Py =−|û||v̂|∂Ub

∂y
,Pz =−|û||ŵ|∂Ub

∂ z
. (7)

The streamwise variation and spatial distribution of
these two dominant terms are examined for Case
(Reh,η)=(600,1) in Figure 16. In combination with the
production terms, the local shear is visualized by the
solid contour lines of us = ((∂Ub/∂y)2 +(∂Ub/∂ z)2)1/2

in Figure 16, where Ub is the streamwise velocity of
the base flow. The distributions of Py and Pz show a
coincidence with the location of the streaks, indicating
that the varicose mode extracts the energy from the
wall-normal and spanwise shear of the base flow. These
results confirm that the varicose mode demonstrates the
instability of the entire 3-D shear layer.

The adjoint perturbation velocity field highlights
the most receptive regions to momentum forcing, which

provides important information on the regions to trip the
flow. The leading adjoint eigenvalues and the results show
good agreement with their associated direct eigenmode
counterpart. The streamwise velocity component of the
leading adjoint modes is depicted in Figure 17. The
adjoint modes are located immediately upstream of the
roughness element as well as on the top edge of the
separation region directly above and downstream of the
roughness element. The adjoint mode shows varicose
symmetry with respect to the spanwise mid-plane,
corresponding to the direct varicose mode.

y/
h

z/h

Py

y/
h

z/h

Pz

Figure 16: Contours of Py on the left and Pz on the right
in cross-flow planes at x = 10h for Case (Reh,η)=(600,1).
The contour levels are shown within the range from
−1.0e−7 (blue) to 1.0e−7 (red). The localized shear
is depicted by the solid lines of us = ((∂Ub/∂y)2 +
(∂Ub/∂ z)2)1/2 from 0 to 2. The orange dashed lines show
the location of the element.

z/
h

x/h

Figure 17: Contour plot of the leading adjoint varicose
mode for Case (Reh,η)=(600,1).

Due to the non-normality of the global linear
evolution operator, neither direct nor adjoint solution
alone can describe the whole picture. The product for
each jth pair of direct and adjoint global modes computed
as

Wj(x,y,z) =
||û j||||û†, j||

max(||û j||||û†, j||)
, (8)

10



determines the region where the eigenvalues of the
linearized Navier–Stokes operator are most sensitive to
localized feedback (Giannetti and Luchini, 2007), - also
called the ”wavemaker” regions. Locations where W ≈ 1
are sensitive to localized feedback, corresponding to the
instability core. The value of W can be interpreted as
quantification of a possible change in the eigenvalues as
a result of applied forcing in the given region of the flow
(Ilak et al., 2012).

z/
h

x/h

Figure 18: Isosurfaces of the wavemaker for the leading
varicose mode in Case (Reh,η)=(600,1).

Figure 18 depicts the wavemaker regions for the
leading mode of Cases (Reh,η)=(600,1). The wavemaker
for the varicose mode is prominent on the top edge of the
reversed flow region and over an extended region along
the central low-speed streak. The wavemaker has its
maximum value within the separation region, and drops
to the order of 10−1 as it passes through the reversed flow
region. This indicates that the global varicose instability
has its core in the reversed flow region, and is associated
with a convective nature of the shear layer which can aid
the formation of hairpin vortices farther downstream.

Canonical trip study
Preliminary results of the flow around the three

trip geometries displayed in Figure 19 indicate that the
three obstacles trigger different modes of perturbation.
The delta wing produces streamwise counter-rotating
wingtip vortices whose orientation is controlled by the
angle of attack. A positive angle of attack yields a
clockwise - counter-clockwise (CW-CCW) pair which
entrains the flow from the outer region of the boundary
layer to the wall. Conversely, a negative angle of attack
creates a CCW-CW vortex pair which lifts the flow
from the wall to the unperturbed region. This vortex
pair eventually breaks down and perturbs the flow. The
angle of attack could be used to provide control over the
transition of the boundary layer. The cylindrical post
produces a streamwise CCW-CW vortex pair, similarly
to the delta trip at a negative angle of attack. In addition,
the post produces a wake-like structure, visible as a low
momentum region downstream of the trip, between the

vortex pair and down to the wall. Conversely to the
delta and the post, the wire generates a large (over 10h)
spanwise recirculation bubble. This stationary vortex
eventually sheds downstream into streamwise vortices.

Figure 19: Velocity magnitude in the longitudinal (left)
and transverse (right) slices. From top to bottom: delta
wing, wire, cylindrical post.

Figure 20: Velocity magnitude in the longitudinal (left)
and transverse (right) slices for the delta wing trip at
AoA =−40◦. See legend on Figure 19.

Figure 20 shows the velocity field downstream
of the delta trip at a negative angle of attack AoA =
−40◦. Similarly to the delta trip at positive angle
of attack, two counter-rotating vortices are produced
through the lift of the geometry, although the pair
rotates in the opposite direction since the direction of
the lift is opposite. The vortex pair is lifted up, away
from the wall as the streamwise coordinate is increased.
These vortices also produce entrainment region at the
centerplane of the domain which was not observed in the
three flows of Figure 19. This entrainment region lifts
the low-momentum fluid from the near-wall region. Some
perturbation is visible between the vortex pair.

Though both the delta post at negative angle of attack and
the cylindrical post result in the formation of a CCW-CW
pair, little resemblance is observed between the two flows.
While the downstream flow from the delta is dominated
by the vortex pair, the flow downstream of the post
has lower momentum, no entrainment zone and constant
wall-normal position of the vortices.

Future simulations will consider longer domains
to allow the development of a turbulent boundary layer,
and examine the far–field impact of these different
near–field perturbations.
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SUMMARY

The flow around a 6:1 prolate spheroid is simulated using
WMLES at Re = 6.5× 106 and 2.5◦ and 15◦ angles of
attack for three trip locations. The variation of the skin
friction coefficient along the spheroid is used as a metric
to evaluate the sensitivity of the flow to the location of the
tripping. It is found that having a trip at x/L = 0.20 yields
a trip-dependent region which extends farther downstream
than having a trip at x/L = 0.05 and x/L = 0.10.

The performance of a trip consisting of 20
cylindrical posts was assessed with wall-resolved and
trip-resolved large-eddy simulation at Re = 4.2 × 106.
At 0◦ angle of attack, the boundary layer is found to
transition to a statistically axisymmetric turbulent state
within 0.13x/L of the trips. At 20◦, the crossflow advects
the perturbation created by the windward side posts, to
the leeward side. This effect combined with the strong
favorable gradient are proposed to explain the presence
of a quiescent, laminar area on the windward side of the
prolate spheroid, downstream of the trips.

Global stability and adjoint sensitivity analyses
are performed for a cubic roughness element immersed
in a laminar boundary layer at a relatively large shear
ratio h/δ ∗ = 2.86. The results suggest that the critical
Reh for instability is 475. The varicose global mode is
observed in both the subcritical and supercritical regimes.
The varicose instability has its root in the center of the
reversed flow region, experiences spatial transient growth
along the central low-speed streak and extracts its energy
from the whole 3-D shear layer, contributing to the birth of
hairpin vortices. As the global unstable mode diminishes
farther downstream, the hairpin vortices break down and
the nonlinear saturation becomes strong.

In addition, the behavior of a cylindrical post, a
delta geometry and a cylindrical wire trips are studied at
Reh = 1000. The wire introduces a recirculation bubble
which sheds downstream, while both the post and the
delta trips create a streamwise vortex pair. In the latter
case, the direction and intensity of the vortex pair is
dictated by the angle of attack of the obstacle. Distinctly
different near—field perturbations are observed whose
far—field impact will be examined in future studies.
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DISCUSSION COMMENTS

David R. Dowling, University of Michigan.

This interesting paper describes the impact of boundary trip placement and angle of attack on boundary
layer tripping results for a six-to-one prolate spheroid at Reynolds numbers of 6.5 and 4.2 million at various angles of
attack. Additional results for the global stability of flow past a single cubical roughness element, and for different trip
geometries are also provided. The paper is well written and the various computational tasks are clearly defined.

• In Fig. 6, I am surprised that the skin friction coefficient, , is at x/L = 0.90 is nearly the same on both the
windward side ( = 0°) and the leeward side ( = 180°) for the 15° angle of attack. I expected to be higher on
the windward side as it is for the 2.5° angle of attack. Thus, I would like to know: does the definition of in this
manuscript utilize the local flow speed or the upstream flow speed? Or, what phenomena leads to the high at
the aft end of the prolate spheroid at the 15° angle of attack?

• Fig. 11 nicely illustrates the geometrical difficulty associated with tripping the flow over this model at non-trivial
angles of attack. However, it would be nice to know why the ‘patchy’ red regions occur and what causes
the striations (most clearly seen in the upper panel of Fig. 11 ). Are the Fig. 11 images, ‘time-averaged’ or
‘snapshot-in-time’ results? Does the ‘patchiness’ of the skin-friction results also occur at other flow conditions?

• And finally, even though the authors suggest otherwise, I am struck by the unexpected visual likeness of the
wakes of the cylindrical post (bottom panels of Fig. 19) and the delta wing at a negative angle of attack (Fig.
20). The primary visual differences are the stronger wake velocity deficit from the post and the greater lifting of
the vortices downstream of the wing. Do these two elements perform similarly as boundary layer trip devices? I
am interested in this because the post’s performance should not depend on the incoming boundary layer flow’s
direction across the surface (a nice feature for experiments) while that of delta wing will likely depend on the
wing’s yaw angle with respect to the incoming flow.

RESPONSE TO DISCUSSION COMMENTS

We thank the referee for the comments and questions. Please find below the Authors’ responses.

• The skin friction coefficient is defined based on the freestream velocity. On the aft windward side, the increase
in the skin friction is understood to be related to the acceleration of the flow at this location (see Figure 4). It is
unclear why the aft peak of skin friction as similar magnitude in both angle of attacks.

• Figure 11 shows the instantaneous skin friction. These patches are instantaneous and have been observed to
be a transitional, intermittent feature. The Authors’ hypothesis is that the striations are the consequence of
crossflow instabilities at this location, which manifests itself as spanwise oscillation of the main component of
velocity. The striations have been observed on other, finer grids although it is unclear if they appear at other
angles of attack or Reynolds number.

• Indeed, both the post and the delta produce a counter-rotating vortex pair in the wake although the mechanism
of inception is different (i.e. horse-shoe vortex in the case of the post, generation of lift in the case of the delta)
and as noted, the loss of momentum is higher in for the former. The effectiveness of the trips is currently being
studied quantitatively. As commented, one advantage of the post is invariance in yaw however the higher loss of
momentum may cause over-tripping. One advantage of the delta is that it offers additional degrees of freedom
to modulate the strength of the perturbation through the angle of attack.
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