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A Eulerian-Lagrangian model to simulate
two-phase/particulate flows

By S. V. Apte, K. Mahesh†, & T. Lundgren‡

1. Motivation and Objectives

Figure 1 shows a snapshot of liquid fuel spray coming out of an injector nozzle in
a realistic gas-turbine combustor. Here the spray atomization was simulated using a
stochastic secondary breakup model (Apte et al. 2003a) with point-particle approxima-
tion for the droplets. Very close to the injector, it is observed that the spray density is
large and the droplets cannot be treated as point-particles. The volume displaced by the
liquid in this region is significant and can alter the gas-phase flow and spray evolution.
In order to address this issue, one can compute the dense spray regime by an Eulerian-
Eulerian technique using advanced interface tracking/level-set methods (Sussman et al.
1994; Tryggvason et al. 2001; Herrmann 2003). This, however, is computationally in-
tensive and may not be viable in realistic complex configurations. We therefore plan to
develop a methodology based on Eulerian-Lagrangian technique which will allow us to
capture the essential features of primary atomization using models to capture interac-
tions between the fluid and droplets and which can be directly applied to the standard
atomization models used in practice. The numerical scheme for unstructured grids de-
veloped by Mahesh et al. (2003) for incompressible flows is modified to take into account
the droplet volume fraction. The numerical framework is directly applicable to realistic
combustor geometries.
Our main objectives in this work are:
• Develop a numerical formulation based on Eulerian-Lagrangian techniques with

models for interaction terms between the fluid and particles to capture the Kelvin-
Helmholtz type instabilities observed during primary atomization.
• Validate this technique for various two-phase and particulate flows.
• Assess its applicability to capture primary atomization of liquid jets in conjuction

with secondary atomization models.

2. Mathematical Formulation

Recent direct numerical simulations of large number of solid particles interacting
through a fluid medium by Joseph and collaborators (Choi & Joseph 2001) show that a
layer of heavy particles with fluid streaming above it can develop Kelvin-Helmholtz (K-
H) instability waves whereas a layer of particles above a lighter fluid develops Rayleigh-
Taylor instability. This suggests that the primary breakup of a liquid jet into a spray can
be simulated by replacing the jet by a closely packed collection of droplets with some
assumed size distribution. The K-H instability at the boundary between droplets and
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Figure 1. Snapshot spray from a gas-turbine fuel-injector.

fluid would initiate dispersal of droplets into a spray. Further breakup of these dispersed
drops can be obtained by advanced secondary breakup models.
The formulation described below is a modification of the equations for spray compu-

tation developed by Dukowicz (1980) which consists of Eulerian fluid and Lagrangian
particle calculations, and accounts for the displacement of the fluid by the particles as
well as the momentum interchange between them. The modifications presented here are
mainly in the details of modeling the interaction terms.

2.1. Gas-Phase Equations

The fluid mass for unit volume satisfies a continuity equation,

∂

∂t
(ρfΘf ) +5 · (ρfΘfuf ) = 0 (2.1)

where ρf , Θf , and uf are fluid density, volume fraction, and velocity, respectively. This
indicates that the average velocity field of the fluid phase does not satisfy the divergence-
free condition even if we consider an incompressible suspending fluid. The fluid momen-
tum equation is given as

∂

∂t
(ρfΘfuf ) +5 · (ρfΘfufuf ) = −5 (Θfp) +5 · (µfDc) + F (2.2)

where p is the average dynamic pressure in the fluid phase, µf is the viscosity of the
fluid phase, and Dc = 5uc +5uTc is the average deformation-rate of the fluid-particle
composite, uc is the composite velocity of the mixture, and F is the force per unit
volume the particles exert on gas. These equations are derived in detail for constant
density flows by Joseph & Lundgren (1990). For particulate flows and dilute suspensions
at low Reynolds numbers, the fluid viscosity should be replaced by an effective viscosity
µ∗ by using Thomas (1965) correlation,

µ∗ = µf
(

1 + 2.5Θf + 10.05Θ
2

f + 0.00273e
16.6Θf

)

(2.3)

2.2. Particle-Phase Equations

The evolution of particle-phase is governed by a Liouville equation for the particle dis-
tribution function Φ(xp,up, ρp, Vp, t)
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∂Φ

∂t
+5x · (Φup) +5up

· (ΦAp) = 0, (2.4)

where xp is the particle position, up particle velocity, ρp particle density, and Vp particle
volume. Ap is the particle acceleration and Fp = mpAp the total force acting on the
particle of massmp and are given below. Here,5x· and5up

· are the divergence operators
with respect to space and velocity, respectively. The individual particle positions and
velocities can be obtained by solving the Liouville equation in Lagrangian framework for
each particle p:

d

dt
(xp) = up (2.5)

mp
d

dt
(up) = Fp (2.6)

2.2.1. Particle Forces

The main issue is to model the force on a particle. This may consist of the standard
hydrodynamic drag force, dynamic pressure gradient, gradient of viscous stress in the fluid
phase, a generalized buoyancy force, and inter-particle collision. The total acceleration
of the particle Ap is given as,

Ap = Dp (uf − up)−
1

ρp
5 pp +

(

1−
ρf
ρp

)

g +Bp +Acp (2.7)

Here Bp is the generalized buoyancy force and Acp is the acceleration due to inter-
particle forces. If ρp >> ρg the pressure gradient, viscous, and buoyancy terms are
usually negligible. In the present study, the generalized buoyancy force is also neglected
for simplicity. It is shown later that, even without the presence of this buoyancy force,
one can obtain lift of particles in a shear flow. The drag force is caused by the motion of
a particle through the gas. The standard expression for Dp is used

Dp =
3

8
Cd

ρf
ρp

|uf − up|

Rp
(2.8)

where Cd is the drag coefficient and is given by (Gidaspow 1994; Andrews & O’Rourke
1996)

Cd =
24

Re

(

1 + aRebp
)

Θ−1.8
f , for Rep < 1000 (2.9)

= 0.44Θ−1.8
f , for Rep ≥ 1000 (2.10)

where Cd is the drag coefficient for spherical particles, Rp = (3Vp/4π)
1/3
is the particle

radius. The particle Reynolds number (Rep) is given as

Rep =
2ρfΘf |uf − up|Rp

µf
. (2.11)

There is an indirect collective effect in this drag term: when there is a dense collection
of particles passing through the fluid interphase momentum exchange term in equation
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(2.2) will cause ug to approach the particle velocity, up thus decreasing the drag on a
particle, a drafting effect.
The probability function Φ integrated over velocity and mass gives the probable number

of particles per unit volume at x and t in the interval (up,up + dup) , (ρp, ρp + dρp) ,
(Vp, Vp + dVp). The particle volume fraction (Θp) is defined from the particle distribution
function as,

Θp =

∫ ∫ ∫

ΦVpdVpdρpdup. (2.12)

From continuity, the gas-phase volume fraction is obtained as Θf = 1−Θp. The interphase
momentum transfer function per unit volume in equation (2.2) is given as

F =

∫ ∫ ∫

ΦVpρp

[

Dp (uf − up)−
1

ρp
5 pp

]

dVpdρpdup. (2.13)

2.2.2. Collision Force

The acceleration of particles due to inter-particle interactions (Acp) is an important
term in dense particulate and two-phase flows. For dilute and lightly loaded configura-
tions, the particle volume fraction (Θp) is small (< 10%), the inter-particle collisions are
negligible and probability of particles overlapping each other is low. For dense partic-
ulate flows, however, the particle volume fraction should not exceed the close-packing
limit (which is usually around 0.6 for three-dimensional case). In the Eulerian-Eulerian
approach for two-phase flows, this is ensured by force due to the gradient of interparti-
cle stress in the averaged momentum equation for the particle phase (Gidaspow 1986;
Gidaspow 1994). Same model was used in Eulerian-Lagrangian approach by Andrews &
O’Rourke (1996), Patankar & Joseph (2001b), Snider et al. (1998), and Snider (2001).
Accordingly, the expression for acceleration of particles due to collision (Acp) is

Acp = −
1

Θpρp
5 τ (2.14)

where τ is the interparticle stress that provides a pressure type force that prevents packing
of particles beyond the close-packing limit. Expression for τ is given as (from Snider et
al. (1998))

τ =
PsΘ

β
p

Θcp −Θp
(2.15)

where Ps has units of pressure, Θcp is the particle volume fraction at close packing and β is
a constant. The values for Ps and β are obtained from Snider et al. (1998). In this model,
the inter-particle acceleration due to particle collision is assumed to be independent
of its size and velocity. This model is least expensive in terms of computational cost
as particle binary pairs are not formed and the collision force is directly obtained by
interpolation from equation (2.14). This model, however, couldn’t completely prevent the
particle volume fraction to exceed the close packing limit and some numerical instabilities
were experienced in the present unstructured code. Further research on this model will
be conducted to eliminate this problem. An alternative but expensive collision scheme
based on the distinct element method (DEM) of Cundall & Strack (1979). This scheme
can be readily applied to parcel techniques used in Lagrangian spray simulations. A
parcel represents a number (Np) of droplets/particles of same size, velocity, and other
properties. The effective radius (Rpar) of a parcel based on its total volume is then given
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by

Rpar =

(

3NpVp
4π

)1/3

(2.16)

In this method, the interaction among particles and between wall and particles is taken
into account separately to ensure that Θp ≤ Θcp. The force FP−P

pj on parcel p due to
collision with parcel j is given by

FP−P
pj = 0 for dpj ≥ (Rpar, p+Rpar, j + α)

=
(

kcδ
3/2
pj − ηc(up − uj) · npj

)

npj for dpj < (Rpar, p+Rpar, j + α)

δpj = (Rpar, p+Rpar, j + α)− dpj

FP−P
jp = −FP−P

pj

where dpj is the distance between the center of the pth and jth parcels, npj is the unit
vector from the center of parcel j to that of parcel p, α is the force range, kc the stiff-
ness parameter, and ηc the damping parameter. Tsuji et al. (1993) used the following
expressions to compute the damping parameter

ηc = 2α

√

mpkc
1 + α2

α = −ln (e/π)

where e is the coefficient of restitution. Similarly, the parcel-wall force (FiP−Wpw ) on parcel
p due to collision with wall w is

FP−W
pw = 0 for dpw ≥ (Rpar, p+ α)

=
(

kcδ
3/2
pw − ηc(up) · npw

)

npw for dpw < (Rpar, p+ α)

δpw = (Rpar, p+ α)− dpw

where dpw is the distance between the parcel and the wall, and npw is the unit vector from
the wall to the center of the parcel. The total collision force is obtained by looping over
all particles and walls. The corresponding particle acceleration is obtained by dividing
the collision force by parcel mass (mp = NpρpVp).

3. Numerical Method

The collocated, finite-volume numerical scheme on unstructured grids developed by
Mahesh et al. (2003) is modified to take into account the gas-phase volume fraction. In
addition, the particle centroids are tracked using the Lagrangian framework developed by
Apte et al. (2003b). The important feature of the numerical scheme is the computation
of Θf and Θp on the unstructured grids. As the particles in the simulations performed
do not move out of the domain or are destroyed, the total volume occupied by the
particles remains constant from mass-conservation. As a particle crosses a particular
control volume, its contribution to the particle volume fraction on neighboring cells must
provide global mass-conservation. In addition, it was observed that the Eulerian volume
fraction field should also be smooth in order to avoid numerical instabilities encountered
due to changes in Θ as the particles move from one grid cell to another. A strategy similar
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Computational domain, 0.2× 0.6× 0.0275m Grid, 10× 30× 5

Fluid density, 1.254kg/m3 Particle Density, 2500kg/m3

Numer of Parcels, 2880 Particles per parcel, 3375
Diameter of particles, 500µm Initial particle concentration, 0.4

Table 1. Parameter description for the gravity-dominated sedimentation case.

Figure 2. Temporal evolution particle distribution during gravity-dominated sedimentation.
Initially the particles are randomly distributed over the box rectangular box.

to the two-way coupling methodology by Maxey & Patel (2001) is used to compute the
volume fraction. The interphase momentum transport terms are also treated in a similar
way.
The particle equations are integrated using third-order Runge-Kutta schemes for ode-

solvers. At each Runge-Kutta step, the particles were located and the collision force
was re-computed. This was found necessary to ensure that the close-packing limit for
particle-volume fraction is not exceeeded.

4. Results

We first simulated sedimentation of solid particles under gravity in a rectangular box.
Details of this case are given in Table 1. The initial parcel positions are generated ran-
domly in the top half of the box, 0.3 ≤ y ≤ 0.6. These particles are then allowed to settle
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Computational domain, 0.2× 0.6× 0.0275m Grid, 10× 30× 5
Gas jet velocity, 9m/s Jet diameter, 0.04m
Fluid density, 1.254kg/m3 Particle Density, 2500kg/m3

Numer of Parcels, 2880 Particles per parcel, 3375
Diameter of particles, 500µm Initial particle concentration, 0.4

Table 2. Parameter description for the simulation of fluidization by a gas jet.

through the gas-medium under gravity. The collision model is important here near the
bottom wall after the initial group of parcels hit and bounce back from the bottom wall.
This prevents particle volume fraction to exceed the close-pack limit. The upper mixture
interface between the particles and the fluid is closely approximated by h = gt2/2 similar
to that obtained by Snider (2001). The particles eventually settle down with close-packing
near the bottom wall. Snider (2001) and Patankar & Joseph (2001a) did sedimentation
under gravity, in an inclined pipe with large number of parcels and used the particle
stress model for collision force. This allowed them to use large number of parcels as the
computational cost for this collision model is negligible. We plan to use this model to do
similar validation test cases using the unstructed LES code. One difficulty at the time
of writing was that this model didn’t always prevent the particle volume fraction from
exceeding the close-pack limit. Further investigations on this matter will be performed.

4.1. Gas-Solid Fluidization

We consider the problem of fluidization of solid particles arranged in an array at the
bottom of a rectangular box. Fluidization is achieved by a jet of gas issuing from the
bottom of the box. The flow parameters are given in Table 2. The choice of collision
parameters is based on the recent computations by Patankar & Joseph (2001b). The
particle motion is mostly dominated by the hydrodynamic drag force and collision model
should not affect the overall particle motion. The collision model, however, is important
in governing the particle behavior near the walls and helps prevent the volume fraction
from exceeding the close-pack limit.
Figure 3 shows the position of parcels at different times during bubbling fluidization.

Parcel diameters are drawn to scale. The jet issuing from the bottom wall pushes the
particles away from the center region and creates a gas-bubble in the center. The particles
collide with each other and the wall and are pushed back towards the central jet along the
bottom wall. They are then entrained by the jet and are levitated. This eventually divides
the central bubble and two bubbles are trapped. The particles tend to move upwards and
collide with the upper wall and remain levitated during future times. The computational
results are in good agreement with the simulations of Patankar & Joseph (2001b) as
well as in qualitative agreement with experiments on jet fluidization. Similar results
are reported using Eulerian-Eulerian approach in two-dimensions by Ding & Gidaspow
(1990).

4.2. Fluidization by Lift of Spherical Particles

The transport of particles by fluids in coal-water slurries, hydraulically fractured rocks
in oil-bearing reservoirs, bedload transport in rivers and canals and their overall effect
on the river bed erosion etc., are important scientific and industrial issues in particulate
flows. In order to understand fluidization/sedimentation in such conduits, (Choi & Joseph
2001) performed a DNS study of fluidization of circular cylinders (300 particles) arranged
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Figure 3. Temporal evolution of particle distribution during fluidization by a gas jet. Initially
all the particles are uniformly arranged in layers at the bottom of the rectangular box. Air
is injected through a rectangular slot at the bottom wall. Air bubbles are trapped within the
particles and the growth and pattern of these bubbles are in agreement with experimental
observations.

Computational domain, 63× 12× 12cm Grid, 20× 11× 10
Gas jet velocity, 9m/s Jet diameter, 0.04m
Fluid density, 1g/cm3 Fluid viscosity, 1poise
Particle Density, 1.01g/cm3 Diameter of particles, 0.95cm
Numer of Parcels, 3780 Particles per parcel, 1
Initial array height, 4.75cm, Initial centerline velocity, 360cm/s
Pressure gradient, 20dyne/cm3

Table 3. Parameter description for the simulation of fluidization of spherical particles in a
plane Poiseuille flow.

at the bottom of a channel in plane Poiseuille flow. They observed that with sufficient
pressure gradient across the channel, the particles initially at rest in the lower half of the
channel start moving and roll over the wall. Particle rotation in a shear flow generates lift
and the channel is fluidized after some time. We attempt to capture this phenomenon by
our Eulerian-Lagrangian model. The flow parameters are given in Table 3. As opposed to
Choi & Joseph (2001), we are performing three-dimensional simulations and our particles
are spheres. As shown in Fig.4 we observe that the effect of volume displacement due



Modeling dense two-phase/particulate flows 169

x

y

0 10 20 30 40 50 60

-5

0

5

x

y

0 10 20 30 40 50 60

-5

0

5

x

y

0 10 20 30 40 50 60

-5

0

5

x

y

0 10 20 30 40 50 60

-5

0

5

x

y

0 10 20 30 40 50 60

-5

0

5

Figure 4. Temporal evolution of particle distribution during fluidization by lift in a plane
Poiseuille flow. Also shown are contours of axial gas-phase velocity. Initially all particles are
arranged at the bottom of the channel.

to particles is to set up Kelvin-Helmholtz type waves between the fluid and particle
layers. A vertical pressure gradient is created and gives vertical velocity to the particles
and the channel gets fluidized. We also did several test cases, with higher grid resolution,
increased density ratios to obtain similar results. With increased particle density, the two-
way coupling between the particle and fluid momentum equation, decelerates the fluid in
the bottom half of a channel and an inflection point is created in the axial velocity profile.
This eventually cause lift and particle dispersal. In liquid-fuel combustor applications,
we believe that similar mechanism can be observed in the dense-spray regime near the
injector and will allow us to capture the important features of primary atomization.

5. Summary

We have developed a numerical scheme which accounts for the displacement of the fluid
by particles and is applicable to dense particulate flows and spray regimes close to the
nozzle injector. This scheme has been implemented into the unstructured LES code. We
performed various numerical simulations of fluidization and particulate flows to validate
our scheme. It was shown through simulation of channel flow with layers of spherical
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particles at the bottom wall that the effect of particle volume fraction is to displace the
fluid in a control volume and create vertical pressure gradient through two-way coupling
between the particles and fluid. This gives Kelvin-Helmholtz type instability waves which
result in dispersal and lift-off of particles. This liftoff of dense-particles cannot be observed
without explicit modeling of lift-forces on particles by using the standard point-particle
approximation in Lagrangian-Eulerian framework. Similar K-H waves are present in the
dense spray regime near the injector nozzle which may affect the overall spray dynamics
and breakup in practical combustors. We plan to apply this model coupled with secondary
breakup model to perform simulations of spray atomization. We also plan to perform
several validation studies of this methodology for dense particulate/granular flows to
address some issues related to collision scheme, efficient and consistent computation of
particle volume fraction on multiple domain-decomposition.
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