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ABSTRACT

We numerically obtain the time-domain response of
an elastic plate subjected to turbulent boundary layer
wall-pressure fluctuations at two Reτ = uτ δ

ν
where uτ

is the friction velocity, δ is the characteristic length
scale and ν is the kinematic viscosity. Two datasets
of turbulent boundary layer wall-pressure fluctuations
are considered: synthetically generated time-domain
wall-pressure fluctuations at Reτ =2223, and Direct
Numerical Simulation (DNS) wall-pressure fluctuations
generated at Reτ =180. For the first dataset, wall-pressure
fluctuations are generated using the Corcos cross-spectral
density and Smolyakov-Tkachenko auto-spectral density
model. A time-domain algorithm to synthetically
generate the wall-pressure fluctuations comprising of
1 billion wavenumbers/frequencies from a prescribed
wavenumber-frequency spectrum and, efficient and
accurate computation of forces on finite element mesh
using L2-orthogonal projection is developed. The
numerically obtained velocity response at a point on
the plate shows good agreement with the experimental
result of Han et al. (1999). For the second dataset,
wall-pressure fluctuations are generated by performing
DNS of turbulent channel flow at Reτ = 180. A load
transfer algorithm to accurately transfer the piecewise
constant load present in the fine fluid surface mesh to
a coarse solid surface mesh is discussed where the fine
fluid surface mesh is assumed to be embedded in the
coarse solid surface mesh. The plate response using DNS
wall-pressure fluctuations is obtained for steel and POM
(polyoxymethylene) polyacetate plates, with clamped
boundary conditions and compared.

INTRODUCTION

The excitation of solid structures by turbulent flow
influences the radiated far-field sound. A flat-plate
turbulent boundary layer is a canonical example of such
interaction. Willmarth and Wooldridge (1962), Corcos
(1964), Bull (1967), Blake (1970), Farabee and Casarella

(1991), Ciappi et al. (2009) performed measurements
of wall-pressure fluctuations, including root-mean-square
(rms) fluctuations, power spectral density, longitudinal
and lateral cross-correlation and spectral density and
convection velocity beneath turbulent boundary layers.
An interesting result of Farabee and Casarella (1991)
is the scaling of auto-spectral density of wall pressure
fluctuations. They classified the frequency range
into low

(
ωδ

uτ
< 5
)

, mid
(

5 < ωδ

uτ
< 10

)
, overlap (for

sufficiently high Reτ )
(

100 < ωδ

uτ
< 0.3Reτ

)
and high(

ωδ

uτ
> 0.3Reτ

)
. Scaling quantities which led to collapse

of auto-spectral density for different Reτ for each of
the frequency ranges were identified through which
the location of source that contributes the most to the
frequency range was discerned. Willmarth (1975), Bull
(1996) and Blake (2017) have published comprehensive
reviews of wall-pressure fluctuations.

Kim (1989) computed power spectra, probability
density function and two-point correlations of
wall-pressure fluctuations from turbulent channel flow
DNS at Reτ = 180 of Kim et al. (1987). Choi and Moin
(1990) computed wavenumber-frequency spectra and
frequency dependent convection velocity of wall-pressure
at Reτ = 180 from the DNS dataset of Kim et al. (1987).
Hu et al. (2006) computed wall-pressure spectra and rms
values of wall-pressure in turbulent channel flow upto
Reτ of 1440 using DNS. Sillero et al. (2013) performed
DNS of turbulent boundary layers and computed rms
wall pressure for Reτ up to 2000. A common finding of
the DNS of Hu et al. (2006) and Sillero et al. (2013) is
that the rms wall pressure varies with the logarithm of
Reτ . This is exactly the contribution of the overlap region
which dominates for higher Reτ as evaluated by Farabee
and Casarella (1991), assuming ω−1 dependency of the
wall-pressure spectrum in the overlap region based on
the work of Panton and Linebarger (1974). Effects of
adverse pressure gradient on wall-pressure fluctuations
in a turbulent boundary layer were studied using DNS



by Na and Moin (1998). Due to the computational
cost of performing DNS to generate accurate data of
wall-pressure fluctuations, alternative methods to model
wall-pressure fluctuation spectrum based on the Reynolds
averaged Navier-Stokes equations have been proposed by
Lee et al. (2005), Peltier and Hambric (2007) and Hu et al.
(2017).

Smol’Iakov and Tkachenko (1991), Bull (1967),
Goody (2004) and several others have proposed
wall-pressure auto-spectral density models based on
experimental measurements. Hwang et al. (2009)
reviewed nine wall-pressure spectrum models and
compared them to various experimental data over a wide
range of Reynolds numbers. Corcos (1964), Chase
(1980), Hwang (1998), Caiazzo and Desmet (2016)
and several others have proposed cross-spectral density
models. Graham (1997) compared several cross-spectral
density models for the sound power radiated by plates.
The experiments of Willmarth and Wooldridge (1962)
observed that assuming Taylor hypothesis, the ratio of
contribution of a particular wavenumber

(
k = ω

Uc

)
(where

Uc is the convection velocity/speed of moving frame
of reference) to auto-correlation in a moving reference
frame is dependent only on ωx1

Uc
(where x1 = Ucτ and

τ is the time lag in the auto-correlation. This is
the distance travelled by the moving frame during the
time τ). Willmarth and Wooldridge (1962) observed
this to be an indication that the contribution of eddies
of wavenumber k to cross-correlation decays by a
constant fraction after travelling distances proportional to
their wavelength. Corcos (1964) used these heuristics
along with experimental data of pipe flow to propose
the following form of the cross-spectral density of
wall-pressure:

Rpp(ζ1,ζ2,ω) = Rpp(0,0,ω)A
(

ζ1ω

Uc

)
B
(

ζ2ω

Uc

)
e−i ωζ1

Uc

(1)
where ζ1,ζ2 are the streamwise and spanwise separation
respectively, A

(
ζ1ω

Uc

)
and B

(
ζ2ω

Uc

)
represent the decay

of cross-spectral density with increasing streamwise and
spanwise separation respectively, Uc is the convection
velocity. Different Corcos type models have different
forms of the function A

(
ζ1ω

Uc

)
and B

(
ζ2ω

Uc

)
.

Theoretical frequency domain methods using
modal superposition and Poisson-Kirchoff plate theory
response from a given cross-spectral density model
of wall-pressure fluctuation have been discussed
by Elishakoff (1983) and Blake (2017). Hwang
and Maidanik (1990) computed modal sensitivity
function for rectangular and circular panel with simply
supported, clamped and free boundary conditions.
Frequency-domain Finite Element Methods (FEM)

have been used by Hambric et al. (2004) to obtain
cross-spectral density of structural response from a given
cross-spectral density of surface pressure. They compare
the velocity power spectral density at a point on the
plate with the experiments of Han et al. (1999) using
model cross-spectral density spectrum of wall-pressure.
We use the same experiment of Han et al. (1999) to
verify our time-domain plate response to synthethically
generated wall-pressure fluctuations at Reτ = 2233.
Hambric et al. (2004) observed that the wavenumber
transform of clamped mode shape overlaps mainly with
the low wavenumber region of wall-pressure wavenumber
frequency spectrum whereas that of mode shape with
free boundary condition, significantly overlaps with the
convective peak of wall-pressure wavenumber frequency
spectrum for a large range of frequencies. So, they
proposed two models which separately approximated the
low-wavenumber region and the convective component
of the modified Corcos model of Hwang (1998). The
proposed models were compared to response of plates
obtained from FEM using the modified Corcos model
for different plate thickness, loss factor and boundary
conditions. Scaling laws for mean power spectral density
of response of thin plates have been proposed by Ciappi
et al. (2012, 2015). They compared the collapse of several
experimental measurements of the mean plate response
for different scaling variables.

Large Eddy Simulation (LES) is increasingly
used to compute complex turbulent flows (Mahesh et al.,
2015). LES propeller crashback calculations of pressure
on the blade surface was used to obtain response and
stresses in the blade for two advance ratios by Chang et al.
(2008). Hambric et al. (2015) used pressure fluctuations
generated by LES simulation of a turbulent shear layer
from a nozzle to excite a simply supported beam placed at
the nozzle exit and assessed potential structural damage.
Schäfer et al. (2010) used coupled LES flow, structure and
acoustics solvers to obtain the radiated acoustic pressure
from a flexible plate adjacent to a turbulent boundary layer
in the far field. The quantitative values of sound pressure
level spectra differed significantly between the measured
and numerically predicted values due to higher damping
values of the plate in the experimental setup than in the
numerical simulation.

In this paper, we consider time-domain
simulation of plate response to wall-pressure fluctuations.
We first discuss the development and validation of
the parallel FEM solver. This is followed by a
description of the methodology used to generate synthetic
wall-pressure fluctuations from a given wavenumber
frequency spectrum, and load transfer strategy for surface
pressure for efficient and accurate computation of the
loads on the structure. Then, we discuss the details of
the DNS used to generate wall-pressure fluctuations at



Reτ = 180 and present a load-transfer strategy. The
response of a steel plate subjected to the wall-pressure
fluctuations representative of the Han et al. (1999)
experiment is then discussed and velocity spectra at a
point on the plate are compared to the experiment. This
is followed by the DNS results for turbulent channel flow,
and comparison of response of steel and POM polyacetate
material at Reτ = 180.

PARALLEL LINEAR ELASTICITY STRUCTURAL
SOLVER

We briefly discuss the numerical details of the finite
element methodology used to solve the dynamic linear
elasticity equations. This is followed by a discussion of
the solver and its validation.

Numerical Method
The governing equations for dynamic linear

elasticity are the momentum conservation equations
(summation implied on repeated indices)

ρ
s ∂ 2ds

i (x, t)
∂ t2 =

∂σ s
i j(x, t)
∂x j

+ fi(x, t), (2)

where x is the location in the solid domain, t is the time,
ρs is the solid density, ds

i is the solid displacement vector
component , σ s

i j is the solid stress tensor and fi is the
component of body force. A linear constitutive law is
assumed for the stress tensor σ s

i j. Eq. 2 is referred to
as the strong form of the governing equations. The above
equation is converted to weak (Hughes, 2012) form by
multiplying with a test function and requiring solutions
that are continuous which may not have pointwise
classical derivatives (Brenner and Scott, 2007). Then,
an approximate solution is obtained from the Galerkin
formulation, by choosing the approximate solution and
the test function as a linear combination of a finite set of
basis functions in the weak formulation.

On choosing Lagrange polynomials as the basis
of the approximate solution, we obtain

Md̈(t)+Kd(t) = f(t) , (3)

where M is the mass matrix, K is the stiffness matrix, d (t)
is the displacement and f (t) is the force vector on the
degrees of freedom at the nodes at time t. To incorporate
damping in the structure, the Rayleigh damping model is
used, i.e. the damping matrix C is approximated as

C = αM+βK, (4)

where α and β are mass and stiffness proportional
damping constants respectively. The system of ODEs in
Eq. (3), then become

Md̈(t)+Cḋ(t)+Kd(t) = f(t) . (5)

Time integration is performed using the
Newmark method. The equations solved to obtain
displacements, velocities and acceleration at timestep
n+1 are

Man+1 +Cvn+1 +Kdn+1 = fn+1, (6)

dn+1 = dn +vn+1∆t +
∆t2

2
(2ζ an+1 +(1−2ζ )an) , (7)

vn+1 = vn +∆t (γan+1 +(1− γ)an) . (8)

The values of γ and ζ are chosen to be 1
2 and 1

4
respectively. For this choice of γ ad ζ , the method is
second order, unconditionally stable and non-dissipative.
For extremely thin materials, 3D solid elements lead
to slow convergence of iterative methods used to solve
the implicit equations. For the simulations at two
Reτ considered, the Newmark method but with mode
superposition time integration (Hughes, 2012) instead of
Eqn. (6) is used to obtain the dynamic response.

Implementation

An in-house parallel unstructured finite element
solver was developed to solve the above equations.
The solver uses in-house parallel sparse matrix storage
and operations to effciently assemble matrices of higher
order elements and perform operations like matrix-vector
multiplications. It supports multiple data structures
like cell-based, face-based and node-based under a
single framework, uses multi-grid preconditioned linear
algebra and eigenvalue solvers from the Trilinos (Heroux
et al., 2005) linear algebra package, and Parmetis
(Karypis et al., 1997) for partitioning elements between
different processors. Parallel-netCDF (Li et al., 2003)
for scalable I/O and 4-types of finite elements are
presently implemented: 27-node hexahedral, 8-node
hexahedral, 9-node quadrilateral and 4-node quadrilateral
elements. In-house MPI (Message Passing Interface)
communication modules are developed and tested up to
200,000 processors.

Validation

9-node hexahedral and 27-node hexahedral
elements were used for all the below described 2D and
3D validation cases, respectively.

Figure 1: Geometry of 2D cantilever beam.



Fig. 1 shows the geometry of a 2D cantilever
beam in plane strain. The boundary conditions are

d1(0,0) = d2(0,0) = d1(0,±c) = 0, (9)
h1(x1,±c) = h2(x1,±c) = 0, (10)

h1(L,x2) = 0,h2(L,x2) =
P
2I

(
c2− x2

2
)
, (11)

h1(0,x2) =
PLx2

I
,h2(0,x2) =−

P
2I

(
c2− x2

2
)
, (12)

(13)

where hi(x1,x2) is the component of surface force at
(x1,x2) and I = 2c3

3 . The parameters chosen were
L = 16;c = 2;P = 1 . In each direction, 32 9-node
quadrilateral elements were used. From Tab. 1, it can
be seen that the numerically obtained tip deflection is in
good agreement with the analytical solution for the tip
deflection of cantilever beam.

Table 1: Comparison of numerical result with analytical
solution for tip deflection of cantilever beam.

Poisson’s ratio Analytical Numerical

0.3 244.14 244.13

0.499 205.74 205.74

Figure 2: Geometry of 3D clamped plate.

Table 2: Comparison of non-dimensional numerical
plate center displacement w

D/(qL4)
103 with Taylor and

Govindjee (2004).

Number of dofs Reference Numerical

729 1.27 0.9

2601 1.27 1.18

9801 1.27 1.24

38025 1.27 1.26

17.3×106 1.27 1.27

Fig. 2 shows a clamped square plate
with uniform pressure loading q. The obtained

non-dimensional plate center displacement w
D/(qL4)

103 is
compared to the reference result of Taylor and Govindjee
(2004). w is the plate center displacement, D is the plate
bending stiffness, q is the uniformly distributed pressure
on the plate and L is the length of side of the square
plate. The plate bending stiffness D = Eh3

12(1−ν2)
where

E is the Young’s modulus, h is the plate thickness and
ν is the poisson’s ratio. Tab. 2 shows good agreement
and convergence with increase in number of degrees
of freedom. Note that the reference results of Taylor
and Govindjee (2004) used Poisson-Kirchoff plate theory
equations whereas we use 3D elasticity equations without
thin plate theory assumptions.

Tab. 3 shows the comparison of computed
eigenvalues of first 5 modes of a clamped square plate
to the reference results compiled by Leissa (1969). 32
27-node hexahedral elements were used in the axes
directions parallel to the plane of the plate and 1 element
was used along the plate thickness. Good agreement is
seen in the numerically computed eigenvalues.

Table 3: Comparison of non-dimensional numerically

obtained natural frequencies ωn

√
ρh
D L2 with Leissa

(1969).

Mode Reference Numerical

1 36 36.08

2 73.41 73.58

3 73.41 73.58

4 108.3 108.4

5 131.6 131.92

The time accuracy is validated by comparing
the result obtained from direct time integration to the
analytical result for a sinusoidally varying force vector
with component only along the first mode of vibration.
The response of such a forcing will also be along the
first mode of vibration which can be obtained from
the Duhamel integral (Bathe, 2006). Fig. 3 shows
the comparison of component of numerically obtained
response along the first mode using Newmark method
with analytical solution of modal response. The plate
dimension and mesh are same as those used in the
eigenvalue validation. The nondimensional forcing

frequency ω

√
ρh
D L2 is 10.



Figure 3: Comparison of numerically obtained
component of response along first mode of vibration with
analytical result.

SIMULATION DETAILS

We describe the plate geometry, wall-pressure fluctuation
generation method and load transfer strategy for the Reτ =
2233 and Reτ = 180 cases.

Reτ =2233

Figure 4: Geometry of the plate used in the experiment
by Han et al. (1999)

Table 4: Flow parameters of Han et al. (1999).

Displacement thickness (δ ∗) 0.0024m

Freestream velocity (U∞) 44.7ms−1

The plate geometry and flow parameters are
chosen to match the experiment of Han et al. (1999). Fig.
4 shows the geometry of the plate and Tab. 4 shows the
flow parameters of the experiment. The plate material is
steel. Calculating wall-shear stress from correlations, Reτ ,
boundary layer thickness δ and viscous length scale δν

are found to be 2233, 1.92× 10−2m and 8.59× 10−6m,
respectively. Note that the viscous length scale is much
smaller than the plate thickness. The length of the plate in
the streamwise and spanwise directions is 25 to 19 times
the boundary layer thickness. The aspect ratio of the plate
is approximately 300.

Synthetic space-time wall-pressure fluctuations
are generated from a given wavenumber-frequency
spectrum, assigning random phases for the individual

Fourier coefficients. A spatial domain of size L f
1 in

the streamwise, L f
2 in the spanwise direction and a

total time T f is chosen. Here, superscript f denotes
quantities used to generate the synthetic forcing. The
continuous space-time wall-pressure fluctuation in the
chosen spatial and temporal domain is represented as a
Fourier interpolant,

p(x1,x2, t) =
N1/2−1

∑
l1=−N1/2

N2/2−1

∑
l2=−N2/2

N3/2−1

∑
−l3=N3/2

p̂l1,l2,l3eikl1 x1+ikl2 x2+iωl3 t , (14)

where N1,N2 are the number of wavenumbers in space
and N3 is the number of frequencies considered. The
wavenumbers kl1 ,kl2 and frequency ωl3 are defined
as kl1 = 2πl1

L f
1

, kl2 = 2πl2
L f

2
and ωl3 = 2πl3

T f respectively.

The Fourier coefficients p̂l1,l2,l3 are obtained from
a given continuous wavenumber-frequency spectrum
Spp(k1,k2,ω) as

p̂l1,l2,l3 =

√
2π

L f
1

2π

L f
2

2π

T f Spp(kl1 ,kl2 ,ωl3)e
iϕ , (15)

where ϕ is a random number uniformly distributed
between 0 and 2π . The generated space-time
wall-pressure fluctuations p(x1,x2, t) then have the same
spectral features as Spp(k1,k2,ω), but are stochastic due
to the randomly assigned phase to each of the Fourier
coefficients. The Fourier coefficients are generated only
in the right half-plane in wavenumber-frequency space.
Real data is ensured by enforcing the other half plane to
be conjugates of the generated half plane. Rogallo (1981)
used a similiar technique to generate initial conditions
for a 3D isotropic turbulence simulation. Maxit (2016)
used a similar approach in the frequency domain to
generate multiple realizations of the Fourier transform
p̂(x1,x2,ω). Here, we generate a single realization of
wall-pressure fluctuations using the method described
above and compute the response of the plate.

The Corcos (1964) model is used for the
two-sided wavenumber frequency spectrum Spp(k1,k2,ω)
and Smol’Iakov and Tkachenko (1991) is used for
the two-sided power spectrum Fpp(ω) of wall-pressure
fluctuation.

Fpp(ω)

τ2
wδ ∗/U∞

=
1
2

5.1

1+0.44
(
|ω|δ ∗

U∞

)7/3 , (16)

Spp(k1,k2,ω) = Fpp(ω)∗
α1

π

α2

π

|ω|2

U2
c

1(
α1ω

Uc

)2
+
(

ω

Uc
+ k1

)2
1(

α2ω

Uc

)2
+(k2)

2
,

(17)



where α1 = 0.11, α2 = 0.7 and convection
velocity Uc is assumed to be 0.89U∞. Note that
using the above technique, synthetic wall-pressure
fluctuations corressponding to any homogenous
wavenumber-frequency spectrum can be generated.

The time span of load generation is chosen to be
840 times the time-period of the first mode of vibration
to allow the transient response of the structure to decay.
The spatial extents L f

1 , L f
2 are chosen to be 10 times

the length of the plate in corressponding directions to
incorporate wavelengths in the forcing with dimension
larger than the plate in each direction. Note that we
only include a specific subset of the entire wavenumber
space in our simulations. So, the large levels of Corcos
model as wavenumbers tend to 0 are likely not an issue
in our simulations. In frequency domain simulations
where the cross-spectral density obtained by integrating
over entire wavenumber space is used to excite the
structure, inclusion of the low wavenumber region of
Corcos model leads to larger prediction of the structural
response (Hwang and Maidanik, 1990).

10000 frequencies in time and 320 wavenumbers
in each spatial direction are used to generate the synthetic
wall-pressure fluctuation. A parallel implementation was
developed to generate around 1 billion wavenumbers.

Figure 5: Comparison of length scale of wall-pressure
fluctuation to mesh size on the surface of the plate above
hydrodynamic coincidence frequency.

The surface pressure enters the system of
equations as the force vector in the plate-normal degree
of freedom of the ith node through the element integral
for the pth element as

fi =
∫

Γp
Ni(x)p(x, t)dΓ. (18)

It is well known that above the hydrodynamic coincidence
frequency, the length scale of wall-pressure fluctuations
becomes smaller than the length scale of the bending
structural mode. Therefore, more number of elements
are required to resolve the surface pressure than to
obtain reasonable response of the structure above the
hydrodynamic coincidence frequency. Fig. 5 shows
this scenario. Large number of elements just to resolve
the surface pressure can be avoided by evaluating the
surface integrals in the right hand side of Eqn. 18 to
high accuracy using a large number of Gauss-Legendre
integration points. However, this method is extremely

expensive for the synthetic wall-pressure fluctuation case
as we need to perform approximately a billion additions
and multiplications to obtain pressure at a given time for
a given quadrature point in an element. We use the fact
that the domain is Cartesian and perform L2 orthogonal
projection of sines and cosines in Eqn. 14 onto the space
of polynomials of degree 2 using Legendre polynomial
basis (Powell, 1981) at a given time. This results in a
method where we only need to store 9 coefficients of a
2D Legendre polynomial basis on each element on the
plate surface per timestep. The resulting evaluation of the
surface integral using the projected Legendre polynomial
in place of p(x, t) in Eqn. 18 with 3 quadrature points will
give the exact result.

The frequency range of interest in the structural
simulation is up to 500 Hz. 32 quad 27-node hexahedral
elements are used in each spatial direction with 1 element
along the thickness. The mesh resolution was decided
so as to sufficiently resolve the mode shapes of natural
frequencies that are in the frequency range of interest. The
timestep of the simulation is chosen to be 5× 10−5s to
have around 20 points in the time-period of the largest
frequency used to generate the pressure fluctuations.
Rayleigh damping coefficients were chosen so as to have
a loss factor of around 0.003-0.006 in the frequency
range of interest. Since the aspect ratio of the plate is
around 300, 3D solid elements with direct time integration
using Eqn.6 suffered from extremely slow convergence
of implicit solver even though multi-grid preconditioned
conjugate gradient method was used for the iterative
solver. Therefore, we use the modal superposition time
integration method (Hughes, 2012). We compute 20
modes of the plate and the force vector at each timestep
is projected onto these modes. The resulting decoupled
ODEs are integrated using Newmark method to obtain the
individual modal response. The total response of the plate
is then obtained by summing over the individual modal
response.

Reτ =180
Wall-pressure fluctuations for Reτ = 180 are

generated using DNS of turbulent channel flow. The
governing equations are the incompressible Navier-Stokes
equations (summation implied on repeated indices),

∂u f
i

∂xi
= 0, (19)

∂u f
i

∂ t
+

∂u f
i u f

j

∂x j
=−∂ p f

∂xi
+ν

∂ 2u f
i

∂x j∂x j
, (20)

where u f
i is the fluid velocity, p f is the fluid pressure and

ν is the kinematic viscosity of the fluid. Note that density
of the fluid is absorbed in fluid pressure, p f .



DNS is performed using the finite volume
numerical method of Mahesh et al. (2004). The method
is discretely kinetic energy conserving in the absence of
time discretization error. We use an implicit version of the
method using Crank-Nicholson time integration scheme.

All quantities are non-dimensionalized based
on channel half height and friction velocity uτ . The
computational domain is a box 2π×2×π where 2π , 2 and
π are lengths in streamwise, wall-normal and spanwise
directions respectively. A Cartesian domain of 341×
128× 207 control volumes (CVs) is used. A total of 9
million CVs are used on 256 processors to perform the
DNS. The timestep used for the simulation is 5× 10−4

which is in viscous units 0.09ν/u2
τ . A uniform mesh

is used in streamwise and spanwise directions, and a
non-uniform mesh is used in the wall-normal direction.
The streamwise, spanwise, near wall and channel center
spacing in the wall-normal direction is 3.3, 2.73, 0.8 and
4.6 in wall units respectively.

The bottom wall of the channel is assumed
to be elastic. Therefore, the plate length (in fluid
non-dimensional units) is taken to be 2π in the streamwise
and π in the spanwise directions. The thickness of
the plate is chosen to be π/100. The wall-pressure
fluctuations obtained from DNS is saved for a total of 17
units with time separation of 5×10−4 and then transferred
to the structure. Two materials of the plate are considered:
steel and POM polyacetate material. The range of
frequencies where the wall-pressure power spectrum has
reasonable levels (0-250uτ/δ ) contains around 2 natural
frequencies for the steel plate and around 17 natural
frequencies for the POM polyacetate plate. Similar to
the Reτ = 2233 simulation, the structural mesh need not
be designed to resolve the surface pressure, but instead
can be chosen to resolve the mode shapes. The following
load transfer methodology is used to transfer the surface
pressure forces from the fine fluid mesh to a coarse solid
mesh.

Figure 6: Fine fluid mesh embeddded in coarse solid
mesh.

We assume the fluid mesh to be finer and
embedded in a surface mesh as in Fig. 6, i.e. multiple
fluid mesh element faces can be combined to form a
single solid element face. Even though this embedding
of meshes may not be possible for extremely complex
geometries, we can take advantage of this for the current
load transfer problem. The spatial variation of pressure
fluctuations is assumed to be piecewise constant on the
fluid surface mesh. The load is first computed on the

nodes of the fine fluid surface mesh and then transfered
to the coarse solid mesh. Since the surface meshes are
embedded, we can write the shape function Ns

i associated
with the ith node of the solid mesh as a linear combination
of the shape function N f

j associated with the nodes of the
fluid mesh as

Ns
i (x) =

n f

∑
j=1

γi jN
f
j (x) ; i = 1, . . . ,ns, (21)

where n f and ns are the number of nodes on the fluid
and solid surface mesh respectively. Then, the force
on the plate normal degree of freedom associated with
the ith node of solid mesh can be obtained as a linear
combination of the nodal forces on the fine fluid mesh as∫

Γp

Ns
i (x)p(x, t)dx =

n f

∑
j=1

γi j

∫
Γp

N f
j (x)p(x, t)dx

i = 1, . . . ,ns. (22)

The surface forces evaluated from Eqn. 22 are exact
given the piecewise constant representation of surface
pressure on the fluid mesh. Also, this load transfer
framework is implemented in parallel for simulations that
will involve surface pressure described on very fine fluid
meshes. This method can be shown to be equivalent to
the optimal Mortar method of solution transfer between
different meshes (Farhat et al., 1998).

Table 5: Material properties of steel and POM
polyacetate plates.

Property Stainless steel POM polyacetate

Young’s modulus 200GPa 3GPa

Density 8000kgm−3 1480kgm−3

Poisson’s ratio 0.3 0.35

Loss factor 0.002-0.01 0.0013-0.008

The solid equations are non-dimensionalized
based on ρ f , uτ and channel half height. Since we need
physical values ρ f and uτ to compute non-dimensional
solid density and Young’s modulus, ρ f is chosen to be that
of air and uτ is set to 1ms−1 for convenience. The material
properties of the two plate materials are shown in Tab. 5.
Similar to the Reτ = 2233 case, mode superposition time
integration with 20 modes is used. The timestep is chosen
to be the same as that of the DNS simulation. We use
27-node hexahedral solid elements for the plate. The solid
surface is obtained by coarsening the fluid surface mesh
by a factor of 5. 68 elements were used in the streamwise
and 40 elements were used in the spanwise direction with
1 element along the plate thickness.



RESULTS

Reτ =2233

Figure 7: Sample instantaneous spatial variation of
synthetic wall-pressure field.

Figure 8: Sample instantaneous deformation (scaled
50000 times) of the plate.

Figure 9: Comparison of the plate velocity spectra at a
point 15cm from the plate’s left edge and 12cm from its
bottom edge.

Figs. 7 and 8 show the instantaneous
wall-presure fluctuation field and response of the plate
respectively. The ratio of bending wave speeds (cm) of
the modes of vibration with convection velocity (Uc) in
the frequency range considered varies from 0.22-0.84.
The rms displacement and velocity of plate center are
0.5δν and 0.001uτ respectively. These rms values show
that the plate vibration is mostly confined to the viscous
sublayer of the boundary layer and is too small to
affect the turbulent boundary layer, thereby justifying
one-way coupled simulations where the loads from a
rigid wall are used to excite the flexible structure. Also,
the non-dimensional first natural frequency of the plate
non-dimensionalized with boundary layer quantities δ ,uτ

is 5.893. This shows that the plate vibration time scale is
of the same order as the boundary layer time scale.

Fig. 9 compares the plate velocity spectra at
a point 15cm from the plate’s left edge and 12cm from
the bottom edge of the plate to measured experimental
data of Han et al. (1999). From Fig. 9, it can be seen
that the numerically computed plate velocity spectrum
agrees better for frequencies lower than 300Hz than for
frequencies larger than 300Hz. This will be investigated
in further work by performing simulations with higher
number of elements.

Reτ =180

Figs. 10 and Fig. 11 compare mean and
fluctuation statistics of the velocity and pressure fields
from the current DNS to that of Kim et al. (1987)
respectively. Good agreement is observed.

Figure 10: Comparison of mean velocity profile with
DNS of Kim et al. (1987).



Figure 11: Comparison of Reynolds stress and r.m.s.
pressure fluctuation profiles with DNS of Kim et al.
(1987). Superscript + denotes quantities in wall units.
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Figure 12: One-sided power spectrum of wall-pressure
fluctuations.

Table 6: RMS displacement and wall-normal velocity of
the plate at (-1.059,-0.531) in wall units. (Plate center is
at (0,0))

Property Steel POM polyacetate
<d2>1/2

δν
2.61×10−3 0.252

<v2>1/2

uτ
1.34×10−6 2.21×10−4
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Figure 13: Velocity power spectra at (-1.059,-0.531) for
steel plate. (Plate center is at (0,0).)
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Figure 14: Velocity power spectra at (-1.059,-0.531) for
POM polyacetate plate. (Plate center is at (0,0).)

Fig. 12 shows the comparison of one-sided
power spectral density of wall-pressure with the DNS
results of Choi and Moin (1990). The total time length of
the samples and the time separation between the samples
for the computation of one-sided power spectral density of
wall-pressure is 15δ/uτ and 5× 10−4δ/uτ respectively.
We use Hanning window with 50% overlap to avoid
leakage of the power spectra and increase convergence.
Also, a factor of 8/3 has been multiplied to the obtained
power spectral density to correct the estimates following
the application of Hanning window (Bendat and Piersol,
2011). Good agreement is observed in Fig. 12.

With the plate center fixed at (0,0), the plate
wall-normal displacement and velocity are probed at
(-1.059,-0.531) for both plate materials. Fig. 13 and 14
show the computed point velocity spectra at the probe
location. In the frequency range with values of ωδ/uτ

between 0 and 250, the spectral levels shown in Fig.



12 have reasonable magnitude. For the steel plate, only
two natural frequencies are present in this range, whereas
around 17 out of the 20 considered mode shapes are
present for the polyacetate plate. For the steel plate, the
first two non-dimensional natural frequencies (ωnδ/uτ )
are approximately around 126 and 160 which corresspond
to the peaks observed in the same location in Fig. 13.
These two frequencies are located in the roll-off region
of the wall-pressure spectrum. However, for the POM
polyacetate plate, several natural frequencies are located
in the frequency range ωδ/uτ of 0 to 100 where the
power spectrum has a constant relatively large magnitude.
The peak in the plate velocity spectra at ωδ/uτ = 36
and ωδ/uτ = 46 in Fig. 14 corresspond to the first two
natural frequencies of the POM polyacetate plate. We
will perform more simulations in future for the POM
polyacetate plate with larger number of elements and with
a higher number of mode shapes.

Table 6 shows the rms values of dispacement
and velocity of the two plate materials considered at the
probe location. It can be seen that rms values are very
small in wall units, thereby justifying one-way coupled
simulations. Also, the rms displacement and velocity of
steel plate is two orders of magnitude smaller than that of
POM polyacetate plates.

CONCLUSION

In this paper, we described the development and
validation of a parallel in-house finite element structural
solver. The structural solver is then used to obtain plate
response at Reτ = 2233 and Reτ = 180. A methodology to
generate homogenous synthetic space-time wall-pressure
fluctuations from a given wavenumber frequency and
power spectrum is discussed. An efficient and accurate
surface force computation strategy for surface pressure
described using a large number of Fourier coefficients
based on L2 orthogonal projection is presented which
avoids the need to refine the structural mesh to capture
the fine spatial variation of surface pressure above the
hydrodynamic coincidence frequency. This technique
can also be used in frequency domain FEM calculations.
Plate response at Reτ = 2233 is then computed from
the generated synthetic wall-pressure fluctuations and
compared with the experimental results of Han et al.
(1999). Wall-pressure fluctuations at Reτ = 180 are
generated using DNS of turbulent channel flow. An
optimal load transfer method is described to compute
the forces on the structural mesh when the fine fluid
surface mesh is embedded in the coarse solid surface
mesh. The response of steel and POM polyacetate plates
is obtained using the DNS wall-pressure fluctuations at
Reτ = 180 and compared. The rms values of velocity and
displacement computed at a point on the POM polyacetate

is around two orders of magnitude larger than that of steel
plate with same dimensions.
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