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ABSTRACT

Direct numerical simulations are used to study the drag
reduction effect of superhydrophobic surfaces in both
laminar and turbulent regimes. The superhydrophobic
surfaces are longitudinal grooves mounted on one side
of a plane channel. The laminar simulations are com-
pared to the experiments of Maynes et al. (2007). The
effects of groove geometry, trapped gas and interface
meniscus are independently studied. An alternative to
the commonly used zero-shear boundary condition is ap-
plied to consider the effect of the gas at the interface.
Fully wetted turbulent simulations were performed at
Reτ = δ

δν
= 400 with groove widthw+ = w/δν = 3.6

and heighth+ = h/δν = 3.6 in viscous wall unit. The
results show that geometry causes an apparent slip to the
external flow which extends up toy+ = y/δν = 2 from
the wall and yields overall drag reduction of about 5%.
The instantaneous solution shows behavior similar to ri-
blets in that the near wall vorticity does not penetrate into
the grooves yielding overall drag reduction. The failure
of the interface is examined and a simple criterion is pro-
posed.

INTRODUCTION

Superhydrophobic surfaces (SHS) have drawn much at-
tention for their potential in viscous friction reduction.
The effects of SHS are attributed to surface chemistry
and roughness. In both static and dynamic regimes, the
grooves reduce contact area since a lower viscosity fluid
is trapped inside the groove and is in contact with the
solid. This regime is known as the Cassie-Baxter regime
(Cassie and Baxter, 1944). It is not fully understood if
the Cassie-Baxter regime can be sustained in the pres-
ence of high shear rates and flow unsteadiness in the
turbulent boundary layer. Also, most past studies have
been performed for laminar flow in micro channels (see
Rothstein (2010)) and the gas-liquid interface is treated
as a zero-shear interface (Philip, 1972a,b). Curvature ef-

fects were investigated and analytical solutions were pro-
posed for slip lengths (b = uslip/(∂u/∂y)) as a func-
tion of curvature and gap span for zero-shear interfaces
(Teo and Khoo, 2010). The impact of curvature on the
cross-sectional area was quantified using small pertur-
bation theory (Sbragaglia and Prosperetti, 2007) and the
results are consistent with the scaling law proposed by
Ybert et al. (2007). Experimentally, direct measurements
of slip velocities have been performed (e.g. Pit et al.
(1999), Tretheway and Meinhart (2002, 2004)).

Busse and Sandham (2012) performed a parametric
study of the streamwise and spanwise slip lengths, and
related the slip lengths to the change of drag using DNS
atReτ = 180 andReτ = 360. Park et al. (2013) simu-
lated the SHS as a patterned slip and no-shear boundary
conditions on both walls of the turbulent channel up to
Reτ = 590, and examined the dependence of the ef-
fective slip length on Reynolds number. The wall pres-
sure fluctuations were studied by Seo et al. (2015) at
Reτ = 200.
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Figure 1: The channel geometry and groove configura-
tion.

In this paper, we study the microphysics of drag re-
duction in SHS with longitudinal grooves in laminar and
turbulent regimes. We use direct numerical simulation
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to resolve the flow inside the grooves. We study the ef-
fect of geometry by performing fully wetted simulations,
and the effect of gas by capturing the coupled interac-
tion between the liquid and gas phases. Figure 1 shows a
schematic of the problem investigated.

NUMERICAL METHOD

Direct Numerical Simulation (DNS) using the Volume-
of-Fluid (VOF) methodology is used to study the liquid-
gas interface within a groove. The scalar transport equa-
tion which governs the color functionc is given by:

∂c

∂t
+ uj

∂c

∂xj
= 0 (1)

The VOF methodology is based on reconstruction
and advection steps. The reconstruction step geomet-
rically conserves the volume in each cell and therefore
conserves mass. The advection step prevents over- and
under-shoots in the value of the color function, which en-
sures boundedness. The DNS is performed using the fi-
nite volume algorithm developed by Mahesh et al. (2004)
for solving the incompressible Navier-Stokes equations
on unstructured grids. The governing equations are given
by the momentum and continuity equations:
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+ Fst + Fb (2)

∂ui

∂xi
= 0, (3)

where the index notationi of xi denotes the streamwise
(x), wall-normal (y), and spanwise (z) directions. The
velocity notationui denote the components of the veloc-
ity vector inx, y, z directions,p is the pressure,ρ is the
density andµ is the viscosity of the fluid, andFb is the
body force. For the multiphase simulation,Fst is the sur-
face tension force modeled as a source term and is given
by the continuum surface force:

Fst = σκ∇c. (4)

Hereσ is the surface tension constant,κ is the curvature
of the interface calculated using the height function and
∇c is the gradient of the color function that is equivalent
to the surface normals. The fluids are assumed to be im-
miscible hence the density(ρ1 andρ2) and viscosity(µ1

andµ2) in each phase are taken as a constant and evalu-
ated as follows:

ρ = ρ1 + (ρ2 − ρ1)c (5)

µ = µ1 + (µ2 − µ1)c (6)

Different configurations were studied within the lami-
nar regime and are listed in table 1. In the turbulent
regime, DNS is performed of a feature-resolved fully
wetted channel with micro-grooves on the bottom sur-
face.Reτ = 400, the groove widthw+ = 3.6 and height
h+ = 3.6. The introduction of micro-grooves makes
the flow statistically inhomogeneous in the spanwise di-
rection. Therefore, the statistics are averaged temporally
and spatially in the streamwise direction, and ensemble-
averaged over all the grooves.

RESULTS

Comparison to Experiment

Maynes et al. (2007) conducted an experiment with
grooves on the top and bottom wall for a laminar chan-
nel. The grooves were closed off at the end, inducing a
reverse flow in the gas pockets. Drag reduction is quan-
tified as a function ofφ, using the productfRe, where
φ = w/(w + d) is the non-dimensional groove width,
w andd are the width of the groove and the distance be-
tween the grooves respectively,f is the Darcy friction
factor andRe is the Reynolds number.
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Figure 2: Comparison between the VOF results and ex-
periment. The dashed line is for gas pocket filling the en-
tire groove, the red dash-dot line represents a 20% fluid
penetration into the groove, and the solid line is for a
fully wetted case (100% fluid penetration). Symbols rep-
resent the experiment.

VOF simulations of the Maynes et al. (2007) exper-
iments were performed allowing for reverse flow in the
gas pocket. The penetration of the liquid into the groove
was varied; figure 2 shows our results compared to the
experiment. Here the dashed line is for gas pocket filling
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the entire groove, the red dash-dot line represents 20%
fluid penetration into the groove, and the solid line is for
a fully wetted case (100% fluid penetration). Based on
the comparison with experiment (symbols) it is clear that
fluid penetrating the groove increases drag. In order to
model this, a boundary condition should include geomet-
ric effects, amount of fluid penetrating the groove and the
meniscus shape.

Laminar Channel

We discuss the role of the geometry, the shear stress on
the interface, and the shape of the interface, see figure
1 for geometric parameters and flow configuration.H
andW are the height and width of the channel respec-
tively, b is the depth of the groove, andh is the height of
the interface. First, the geometric effect is studied inde-
pendently by modeling the fully wetted grooves (figure
1(b)). Second, the interface is assumed to be flat and the
shear rate on the interface is modeled using the approxi-
mate boundary condition:

duliquid

dy
= µr

uliquid

h
(7)

whereµr is defined as the ratio of the gas to liquid vis-
cosity µgas/µliquid. Finally, the shape of the interface
is taken into account by defining the meniscus using the
Young-Laplace equation with prescribed pressure differ-
ence that sustains the curvature:

∆p = σ∇ · n (8)

where∆p is the pressure difference,σ is the liquid-
gas surface tension andn is the interface normal. We
compare the VOF simulations with the Young-Laplace
equation by varying the contact angle (defined in figure
3(a))as a boundary condition, and computing the pres-
sure difference as a function of contact angle (figure
3(b)). The good agreement between the VOF simulations
and the Young-Laplace equation shows that the Young-
Laplace solution is a valid model.

(a)

θ(deg)

∆
p
(P

a
)

90 120 150 180
0

2000

4000

6000

8000

(b)

Figure 3: (a)Schematic of contact angleθ. (b)The con-
tact angle of the meniscus in terms of the pressure differ-
ence. The solid line is derived from the Young-Laplace
equation. The symbols are measured from VOF simula-
tions.

Table 1 lists the simulations performed in the lam-
inar regime. The SHS channels are simulated with a
various combination of channel heights, groove and gas
pocket sizes. Cases F7, F12 and F25 are simulations
of fully wetted grooves; cases I7, I12 and I25 represent
flat interface simulations; cases M7, M12 and M25 are
meniscus simulations.φ = w/(w + d) is the coverage
ratio of the grooves.

Table 1: Simulation parameters. The width of the chan-
nel is fixed atW = 4. The depth of the groove isb = 2.5.

Case H φ h ∆p(kPa)
F7 7.52 1/4, 1/2, 3/4 n/a n/a
F12 12.75 1/4, 1/2, 3/4 n/a n/a
F25 25.0 1/4, 1/2, 3/4 n/a n/a
I7 7.52 1/4, 1/2, 3/4 0.7, 1.5, 2.25, 2.5 n/a
I12 12.75 1/4, 1/2, 3/4 0.7, 1.5, 2.25, 2.5 n/a
I25 25.0 1/4, 1/2, 3/4 0.7, 1.5, 2.25, 2.5 n/a
M7 7.52 1/2 n/a 0, 1, 3, 6
M12 12.75 1/2 n/a 0, 1, 3, 6
M25 25.0 1/2 n/a 0, 1, 3, 6

All the laminar channel flow simulations are per-
formed with constant flow rate. The drag reduction is
defined as:

DR =
Kno−slip −KSHS

Kno−slip
, (9)
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whereKSHS andKno−slip are the body forces driving the
SHS/no-slip channel flow for the same volume flow rate.
The effective slip length and slip velocity are functions
of the volume flow rateQ and are defined as follows:

beff = −
12QH

W − 1

12QH
W − 4

, (10)

ueff =
2QH

W
−

1

6
. (11)

Here all lengths are normalized by the channel height
H. The velocities are normalized byKH2/µ. Figure
5 shows the drag reduction results. For a fixed groove
geometry and gas pocket penetration, the drag reduction
increases as the coverage ratioφ increases. For a fixed
coverage ratio and groove geometry, the drag reduction
increases as the amount of vapor in the groove increases.
Note that even though low, fully wetted simulations show
a drag reduction effect when the volume flow rateQ is
measured in the channel part above the grooves. This is
due to the fact that the liquid experiences slip over the
liquid inside the grooves. The meniscal interface yields
drag reduction that slightly exceeds the zero-shear pla-
nar interface prediction. Intriguingly, drag reduction of
the SHS with meniscus shapes shows the highest drag re-
duction when∆p = 5kPa, then it drops down when∆p
increases to 6kPa (see figure 4 for the trend of drag re-
duction against increasingθ or ∆p). Good agreement

is found between the VOF calculations and the calcula-
tions with the approximate boundary condition. This can
be explained as a tradeoff between the local gas height
and the arc length of the meniscus.

A similar trend is obtained for effective slip lengths
and velocities (figure 6, 7). Also note that the simulations
with modeled interface agree well with VOF simulations.
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Figure 4: Variation of drag reduction with contact an-
gle θ and pressure difference∆p. (Open symbols are
approximate BC with meniscus shape simulations; solid
symbols are VOF simulations).
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Figure 5: Drag reduction for all simulations.� are for cases F7, F12, F25.♦ are cases I7, I12, I25.∆ are cases M7,
M12, M25. ◮ are VOF with equal pressure gradient in both phases.• are VOF with zero mass flow rate in groove.
Solid line is Philip (1972a) theoretical prediction.
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Figure 6: Effective slip length in different models. Symbols are the same as figure 5.
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Figure 7: Effective slip velocity in different models. Symbols are the same as figure 5.

Table 2: Channel dimensions and spatial resolution of DNS.

(w + d)+ h+ φ L W ∆x+ ∆y+min ∆y+c ∆z+min

Flat channel – – – 2πδ πδ 7.9 0.8 6.1 3.2
Grooved channel 4.11 3.6 0.8756.58δ 3.29δ 10.3 0.4 6.0 0.257

Turbulent channel

First, DNS of a plane channel with smooth walls was
performed and validated against Moser et al. (1999) at
Reτ = 395 (figure 8); good agreement is observed. Ta-
ble 2 lists the dimensions of the channel and grooves
along with the spatial resolution. Note that the simula-
tion resolves 320 grooves whose widthw+ and height
h+ are both 3.6. The cross section of each groove has
15 points in each direction. The grooves are assumed to
be fully wetted to examine the effect of groove geometry
independently.

Figure 9 shows contours of the streamwise veloc-
ity in a cross-sectional plane and a plane parallel to the
bottom wall. Note that the grooves are barely visible
on the outer scale; a close-up view shows low momen-
tum fluid swirling within the grooves. Statistics are col-
lected by averaging over time and the streamwise direc-

tion. Note that the flow is statistically inhomogeneous
over the spanwise extent of a single groove. The inho-
mogeneous statistics are ensemble-averaged over each
of the 320 grooves. Figure 10 shows profiles of mean
velocity and turbulence intensities over the bottom half
of the channel. Note that the grooves introduce an ap-
parent slip to the mean velocity, whose magnitude de-
creases from the center of the groove towards the groove
boundaries. The maximum value of slip is approximately
1.2uτ . The effect of the grooves is felt over approxi-
mately 10 wall units, while the spanwise inhomogeneity
due to the grooves extends to approximately 2 wall units
(figure 11). The overall discharge increases by 5%.
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Figure 8: DNS statistics of the turbulent channel at
Reτ = 400 (dotted line) compared with Moser et al.
(1999) (solid line) benchmark data.

Figure 9: Instantaneous contours of streamwise veloc-
ity of the turbulent grooved channel. The arrow indicates
the flow direction. In the 3D plot on the left, the incre-
ments of the contours ofy− z plane andx− z plane are
2uτ and0.3uτ . Inside the red rectangle, it is the contour
of streamwise velocity in the vicinity of 5 grooves. The
increment of the color-filled contour plot is1.5uτ . The
level of the line plot is0.2uτ .
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Figure 10: Conditional averaged (a) velocity and (b) in-
tensities plots. Solid line represents smooth channel data;
green line is the statistics of the top half channel (no
grooves on top wall); red line is the statistics from the
groove ridge to the channel center; blue line is the statis-
tics from the groove center to the channel center, as is in-
dicated in the figure inside (a) (For illustration purpose,
the groove aspect ratio is different from the simulation).

y/δ

U
/
u
τ

@
@@I

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

Figure 11: Zoomed-in view of the conditional averaged
velocity profile. Black lines are extracted from difference
phases of the groove, the arrow indicates the direction
from the groove ridge to the groove center.

If the grooved surface is considered to be a rough
surface, the roughness scales = 0.009, which is compa-
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rable to the viscous scaleδν = 0.0025. Assuming (Pope,
2000):

dU

dy
=

uτ

y
Φ

(

y

δν
,
s

δν

)

, (12)

the mean velocity in the log layer:

u+ =
1

κ
ln
(y

s

)

+ B̃

(

s

δν

)

. (13)

Figure 11 shows that the velocity profiles converge be-
yondy+ ≈ 2 and are shifted by 0.8. Therefore,

B̃ = B + 0.8, (14)

whereB is the constant in the log law.

The grooves affect the near wall turbulence in a
manner similar to riblets (Choi et al., 1993). Figure 12
shows instantaneous contours of the vorticity field. Note
that the spanwise extent of the near wall vorticity exceeds
the groove width. The vortical fluctuations do not there-
fore penetrate into the grooves, yielding overall drag re-
duction.
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Figure 12: Instantaneous plots of the vorticity field (a)ωx, (b)ωy, (c)ωz.

Figure 13: A time sequence images depicting the liquid (red) within a groove coming in contact with the bottom
boundary due to the large contact angle that results from a high pressure difference across the interface and the gas
pocket (blue) separating. Velocity vectors are also shown.

Failure of Superhydrophobic Effect

Failure can occur because the interface contacts the side
or bottom walls. The Young-Laplace equation shows that
the contact angleθ is 180o, when

∆pcr = 2σ/w. (15)

Assuming this pressure difference to be a result of the
pressure fluctuation induced by the boundary layer, we
can assume that failure occurs when∆pcr = Kprms ∼

3Kρu2
τ , whereK is an empirical constant, which reflects

the extent to which intense instantaneous pressure events
exceed their rms values. Rearrangment yields a critical
Weber number:

Wecr =
ρu2

τw

σ
=

2

3K
. (16)

Assuming for examplēU/Uτ ≈ 18 for Reτ = 400
(smooth channel value),σ = 7.2E−2N/m, w = 30µm
yieldsŪ ≈ 7m/s.

The depth of the groove can also affect failure. Fig-
ure 13 shows VOF simulations of an interface which
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comes into contact with the bottom wall, yielding gas
pockets which move towards the side walls and the top
of the groove.

If failure is defined by the loss of drag reduction,
such failure may occur even when the interface is intact.
Figure 14 shows deflection of the interface prescribed by
Young-Laplace equation for varying values of pressure
difference. Note how the deflection increases with in-
creasing pressure difference. As discussed in the lami-
nar channel section, when the interface penetrates con-
siderably into the groove, the velocity at the interface ap-
proaches the no-slip condition. The shear on the liquid
therefore increases, and the drag reduction goes down.
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Figure 14: Plot of the meniscus interface.∆p =
500, 1000, 2000, 5000, 7200Pa, from top to bottom.
Length unit is10µm. The interface penetrates into the
groove as the pressure difference increases.

CONCLUSION

This paper uses direct numerical simulations to study
the microphysics of superhydrophobic surfaces and their
drag reducing ingredients. Good agreement is obtained
with the experiments of Maynes et al. (2007). The sim-
ulation results are used to show that groove geometry,
trapped gas, and interface meniscus all contribute to drag
reduction. Each of these effects is independently stud-
ied. An alternative to the zero shear boundary condition
is used to represent the effect of gas pocket on the outer
liquid. The results show good agreement with Volume-
of-Fluid simulations and analytical solution (not dis-
cussed in this paper). Turbulent simulations bounded by
grooved wall on one side were performed atReτ = 400
with groove widthw+ = 3.6 and heighth+ = 3.6. The
results show that geometry causes an apparent slip to the
external flow which extends up toy+ = 2 from the wall
and yields overall drag reduction of about 5%. The in-
stantaneous solution shows behavior similar to riblets in
that the near wall vorticity does not penetrate into the
grooves yielding overall drag reduction. The failure of

the interface is examined and a simple criterion is pro-
posed.
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