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ABSTRACT fects were investigated and analytical solutions were pro-
posed for slip lengthsb(= uqi,/(9u/dy)) as a func-
Direct numerical simulations are used to study the dragion of curvature and gap span for zero-shear interfaces
reduction effect of superhydrophobic surfaces in both(T€0 and Khoo, 2010). The impact of curvature on the
laminar and turbulent regimes. The superhydrophobi&rOSS'seCtional area was quantified using small pertur-
surfaces are longitudinal grooves mounted on one sid@ation theory (Sbragaglia and Prosperetti, 2007) and the
of a plane channel. The laminar simulations are com/€sults are consistent with the scaling law proposed by
pared to the experiments of Maynes et al. (2007). The'bertetal. (2007). Experimentally, direct measurements
effects of groove geometry, trapped gas and interfac®f slip velocities have been performed (e.g. Pit et al.
meniscus are independently studied. An alternative td1999), Tretheway and Meinhart (2002, 2004)).
the commonly used zero-shear boundary conditionis ap-  Busse and Sandham (2012) performed a parametric
plied to consider the effect of the gas at the interfacestudy of the streamwise and spanwise slip lengths, and
Fully wetted turbulent simulations were performed atrelated the slip lengths to the change of drag using DNS
Re, = § = 400 with groove widthw™ = w/6, = 3.6 atRe, = 180 andRe, = 360. Park et al. (2013) simu-
and heighth™ = h/§, = 3.6 in viscous wall unit. The lated the SHS as a patterned slip and no-shear boundary
results show that geometry causes an apparent slip to trnditions on both walls of the turbulent channel up to
external flow which extends up 1" = y/§, = 2from  Re, = 590, and examined the dependence of the ef-
the wall and yields overall drag reduction of about 5%.fective slip length on Reynolds number. The wall pres-
The instantaneous solution shows behavior similar to risure fluctuations were studied by Seo et al. (2015) at
blets in that the near wall vorticity does not penetrate intoRe, = 200.
the grooves yielding overall drag reduction. The failure
of the interface is examined and a simple criterion is pro-
posed.

INTRODUCTION z

Superhydrophobic surfaces (SHS) have drawn much at-

@
tention for their potential in viscous friction reduction. E E
Water Water

The effects of SHS are attributed to surface chemistry

and roughness. In both static and dynamic regimes, the ‘

grooves reduce contact area since a lower viscosity fluid / / Interface
is trapped inside the groove and is in contact with the lo Flow

solid. This regime is known as the Cassie-Baxter regime ®)
(Cassie and Baxter, 1944) It is not fU”y understood if Figure 1: The channel geometry and groove configura-
the Cassie-Baxter regime can be sustained in the presipn.

ence of high shear rates and flow unsteadiness in the

turbulent boundary layer. Also, most past studies have

been performed for laminar flow in micro channels (see  In this paper, we study the microphysics of drag re-
Rothstein (2010)) and the gas-liquid interface is treatedluction in SHS with longitudinal grooves in laminar and
as a zero-shear interface (Philip, 1972a,b). Curvature etturbulent regimes. We use direct numerical simulation
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to resolve the flow inside the grooves. We study the ef- w=p1+ (p2 — p1)c (6)

fect of geometry by performing fully wetted simulations, _. , . . s .
g yoy P g Different configurations were studied within the lami-

and the effect of gas by capturing the coupled interac . : :
g y cap g P ar regime and are listed in table 1. In the turbulent

tion between the liquid and gas phases. Figure 1 shows &
schematic of the p?oblem in?/est?gated g regime, DNS is performed of a feature-resolved fully

wetted channel with micro-grooves on the bottom sur-
face. Re, = 400, the groove widthv™ = 3.6 and height
NUMERICAL METHOD h*t = 3.6. The introduction of micro-grooves makes
the flow statistically inhomogeneous in the spanwise di-
Direct Numerical Simulation (DNS) using the Volume- rection. Therefore, the statistics are averaged temporall
of-Fluid (VOF) methodology is used to study the liquid- and spatially in the streamwise direction, and ensemble-
gas interface within a groove. The scalar transport equaaveraged over all the grooves.
tion which governs the color functianis given by:

dc Jdc RESULTS
at—&—uj&vj =0 ()
Comparison to Experiment
The VOF methodology is based on reconstruction

and advection steps. The reconstruction step geomeMaynes et al. (2007) conducted an experiment with
rically conserves the volume in each cell and thereforegrooves on the top and bottom wall for a laminar chan-
conserves mass. The advection step prevents over- afl. The grooves were closed off at the end, inducing a
under-shoots in the value of the color function, which en-reverse flow in the gas pockets. Drag reduction is quan-
sures boundedness. The DNS is performed using the ffified as a function ot, using the producy Re, where
nite volume algorithm developed by Mahesh et al. (2004 = w/(w + d) is the non-dimensional groove width,
for solving the incompressible Navier-Stokes equationgv andd are the width of the groove and the distance be-
on unstructured grids. The governing equations are givefiveen the grooves respectively,is the Darcy friction
by the momentum and continuity equations: factor andRe is the Reynolds number.
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where the index notatiohof x; denotes the streamwise
(), wall-normal ), and spanwisez{ directions. The
velocity notationu; denote the components of the veloc-
ity vector inz, y, z directions,p is the pressurey is the
density andu is the viscosity of the fluid, and} is the
body force. For the multiphase simulatidn, is the sur-
face tension force modeled as a source term and is given

by the continuum surface force: Figure 2. Comparison between the VOF results and ex-
periment. The dashed line is for gas pocket filling the en-
Fy = okVe. (4) tire groove, the red dash-dot line represents a 20% fluid

penetration into the groove, and the solid line is for a

Hereo_is the surface tension gonstamtls_the curvature  fylly wetted case (100% fluid penetration). Symbols rep-
of the interface calculated using the height function andiesent the experiment.

Vcis the gradient of the color function that is equivalent
to the surface normals. The fluids are assumed to be im-

miscible hence the densipy( and p,) and viscosityfi; VOF simulations of the Maynes et al. (2007) exper-
and ;) in each phase are taken as a constant and evaliments were performed allowing for reverse flow in the
ated as follows: gas pocket. The penetration of the liquid into the groove
was varied; figure 2 shows our results compared to the
p=p1+(p2—pi)c (5) experiment. Here the dashed line is for gas pocket filling



the entire groove, the red dash-dot line represents 20%
fluid penetration into the groove, and the solid line is for
a fully wetted case (100% fluid penetration). Based on ) 0
the comparison with experiment (symbols) it is clear that \
fluid penetrating the groove increases drag. In order to \
model this, a boundary condition should include geomet-

ric effects, amount of fluid penetrating the groove and the (a)
meniscus shape.
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We discuss the role of the geometry, the shear stress on 0(deg)

the interface, and the shape of the interface, see figure (b)

1 for geometric parameters and flow configuratiaH. , _ )
and IV are the height and width of the channel respec-F19ure 3: (a)Schematic of contact angfe (b)The con-

tively, b is the depth of the groove, ards the height of tact angle of the meniscus ?n terms of the pressure differ-
the interface. First, the geometric effect is studied inde-£MNCe- The solid line is derived from the Young-Laplace

pendently by modeling the fully wetted grooves (figure e_quatlon. The symbols are measured from VOF simula-
1(b)). Second, the interface is assumed to be flat and th ons.

shear rate on the interface is modeled using the approxi-

mate boundary condition: Table 1 lists the simulations performed in the lam-
inar regime. The SHS channels are simulated with a
various combination of channel heights, groove and gas
pocket sizes. Cases F7, F12 and F25 are simulations
of fully wetted grooves; cases 17, 112 and 125 represent
flat interface simulations; cases M7, M12 and M25 are
meniscus simulationsp = w/(w + d) is the coverage

) ] ) ... ratio of the grooves.

wherey,. is defined as the ratio of the gas to liquid vis-

COSitY figas/iiguia- Finally, the shape of the interface tapie 1: Simulation parameters. The width of the chan-
is taken into account by defining the meniscus using thg,g| is fixed afiV’ = 4. The depth of the groove ts= 2.5.
Young-Laplace equation with prescribed pressure differ-

ence that sustains the curvature:

dwiquia _ . UWiquid 7)
dy " h

Case H 10} h Ap(kPa)

F7 7.52 1/4,1/2,3/4 nla n/a

F12 12.75 1/4,1/2,3/4 nla n/a
Ap=0oV-n (8) F25 25.0 1/4,1/2,3/4 nla n/a

17 7.52 1/4,1/2,3/4 0.7,1.5,2.25,25 nla
112 12,75 1/4,1/2,3/4 0.7,1.5,2.25,25 nla
125 25.0 1/4,1/2,3/4 0.7,15,2.25,25 nla

. . . - M7 7.52 12 n/a 0,1,3,6
where Ap is the pressure difference; is the liquid- M12 1275  1/2 n/a 0136
gas surface tension andis the interface normal. We  m25 250 112 nia 0,1,3,6

compare the VOF simulations with the Young-Laplace
equation by varying the contact angle (defined in figure . . .
3(a))as a boundary condition, and computing the pres. All the laminar channel flow simulations are per-

sure difference as a function of contact angle (figureformed with constant flow rate. The drag reduction is

3(b)). The good agreement between the VOF simula’tiongeflned as.
and the Young-Laplace equation shows that the Young- DR — Kno—siip — Ksnus 9
Laplace solution is a valid model. R= Kno—slip ’ ©)



whereKgpgs and K, —gip are the body forces driving the is found between the VOF calculations and the calcula-
SHS/no-slip channel flow for the same volume flow rate.tions with the approximate boundary condition. This can
The effective slip length and slip velocity are functions be explained as a tradeoff between the local gas height

of the volume flow rat&) and are defined as follows: and the arc length of the meniscus.
12QWH -1 A similar trend is obtained for effective slip lengths
beft = T 19QH _ 4 (10)  and velocities (figure 6, 7). Also note that the simulations
W with modeled interface agree well with VOF simulations.
20H 1
Ueff = 7 — 6 (11) Ap(Pa)
Here all lengths are normalized by the channel height 4E-13 1250 2463 3600 4628 5516 6235 6766 7091
H. The velocities are normalized by H?/p. Figure * *
5 shows the drag reduction results. For a fixed groove 154 /n/':'_,':'_ 15
geometry and gas pocket penetration, the drag reduction )/':' .
increases as the coverage ratiincreases. For a fixed 144 - 14
coverage ratio and groove geometry, the drag reduction
increases as the amount of vapor in the groove increases. 8 1 * [
Note that even though low, fully wetted simulations show 12 [ .
a drag reduction effect when the volume flow rées
measured in the channel part above the grooves. This is 114 11
due to the fact that the liquid experiences slip over the
liquid inside the grooves. The meniscal interface yields [ A P PR P PR PR, r T A
drag reduction that slightly exceeds the zero-shear pla- 6(°)

nar interface prediction. Intriguingly, drag reduction of _ o . .

the SHS with meniscus shapes shows the highest drag rE1gure 4: Variation of drag reduction with contact an-
duction whenAp = 5kPa, then it drops down whekpy ~ 91€ ¢ and pressure differencap. (Open symbols are
increases to 6kPa (see figure 4 for the trend of drag re2PProximate BC with meniscus shape simulations; solid

duction against increasingj or Ap). Good agreement Symbols are VOF simulations).
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Figure5: Drag reduction for all simulationg] are for cases F7, F12, F25.are cases 17, 112, 25\ are cases M7,
M12, M25. » are VOF with equal pressure gradient in both phasesre VOF with zero mass flow rate in groove.
Solid line is Philip (1972a) theoretical prediction.
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Figure 6: Effective slip length in different models. Symbols are theng as figure 5.
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Figure 7: Effective slip velocity in different models. Symbols arettame as figure 5.

Table 2: Channel dimensions and spatial resolution of DNS.

(w+d)*™ hT ¢ L %% Azt Ayt Ayfo Azb
Flat channel - - - 21 ) 7.9 0.8 6.1 3.2
Grooved channel 4.11 3.6 0.87%.58) 3.295 10.3 0.4 6.0 0.257
Turbulent channel tion. Note that the flow is statistically inhomogeneous

over the spanwise extent of a single groove. The inho-
First, DNS of a plane channel with smooth walls wasmogeneous statistics are ensemble-averaged over each
performed and validated against Moser et al. (1999) abf the 320 grooves. Figure 10 shows profiles of mean
Re; = 395 (figure 8); good agreement is observed. Ta-velocity and turbulence intensities over the bottom half
ble 2 lists the dimensions of the channel and groovegf the channel. Note that the grooves introduce an ap-
along with the spatial resolution. Note that the SimU|a-parent S||p to the mean Ve|0city, whose magnitude de-
tion resolves 320 grooves whose widift and height  creases from the center of the groove towards the groove
h* are both 3.6. The cross section of each groove hagoundaries. The maximum value of slip is approximately
15 points in each direction. The grooves are assumed t9 2,,_. The effect of the grooves is felt over approxi-
be fully wetted to examine the effect of groove geometrymately 10 wall units, while the spanwise inhomogeneity
independently. due to the grooves extends to approximately 2 wall units

Figure 9 shows contours of the streamwise veloc<figure 11). The overall discharge increases by 5%.

ity in a cross-sectional plane and a plane parallel to the
bottom wall. Note that the grooves are barely visible
on the outer scale; a close-up view shows low momen-
tum fluid swirling within the grooves. Statistics are col-
lected by averaging over time and the streamwise direc-
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Figure 8 DNS statistics of the turbulent channel at 0 100 200300 400
Re, = 400 (dotted line) compared with Moser et al. Y
(1999) (solid line) benchmark data. Figure 10: Conditional averaged (a) velocity and (b) in-

tensities plots. Solid line represents smooth channej data
green line is the statistics of the top half channel (no
grooves on top wall); red line is the statistics from the
groove ridge to the channel center; blue line is the statis-
tics from the groove center to the channel center, as is in-
dicated in the figure inside (a) (For illustration purpose,
the groove aspect ratio is different from the simulation).
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Figure 9: Instantaneous contours of streamwise veloc-

ity of the turbulent grooved channel. The arrow indicatesFigure 11: Zoomed-in view of the conditional averaged
the flow direction. In the 3D p|ot on the |eft’ the incre- VeIOCity profile. BIaCk |ineS are eXtI’aCted from diﬁerence

ments of the contours af— z plane and: — z plane are  Phases of the groove, the arrow indicates the direction
2u, and0.3u,. Inside the red rectangle, it is the contour from the groove ridge to the groove center.

of streamwise velocity in the vicinity of 5 grooves. The

increment of the co!or-fllled contour plot is5u,. The If the grooved surface is considered to be a rough
level of the line plot is). 2u.. surface, the roughness scale- 0.009, which is compa-



rable to the viscous scade = 0.0025. Assuming (Pope, whereB is the constant in the log law.

2000): The grooves affect the near wall turbulence in a
av _ “Tq, ( y s ) (12)  manner similar to riblets (Choi et al., 1993). Figure 12
dy oy 0y shows instantaneous contours of the vorticity field. Note

the mean velocity in the log layer: that the spanwise extent of the near wall vorticity exceeds

L the groove width. The vortical fluctuations do not there-
u ; In ( ) +B < 5u) (13) ;oret_penetrate into the grooves, yielding overall drag re-
uction.

Figure 11 shows that the velocity profiles converge be-
yondy™ ~ 2 and are shifted by 0.8. Therefore,
B=B+0.28, (14)
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Figure 12: Instantaneous plots of the vorticity field (&), (b) w,, (C) w..
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Figure 13: A time sequence images depicting the liquid (red) within @oge coming in contact with the bottom
boundary due to the large contact angle that results frongla fiiessure difference across the interface and the gas
pocket (blue) separating. Velocity vectors are also shown.

Failure of Superhydrophobic Effect the extent to which intense instantaneous pressure events

exceed their rms values. Rearrangment yields a critical
Failure can occur because the interface contacts the sidgeber number:

or bottom walls. The Young-Laplace equation shows that )
the contact anglé is 180°, when We,. — P _ 2 (16)
“ o 3K’

Aper = 20 /w. 15 . _
P o/ (15) Assuming for exampld/ /U, =~ 18 for Re, = 400
Assuming this pressure difference to be a result of thdSmooth channel valuey, = 7.2E72N/m, w = 30um
pressure fluctuation induced by the boundary layer, we/ieldsU ~ 7m/s.
can assume that failure occurs whap,., = Kpyms ~ The depth of the groove can also affect failure. Fig-
3K pu?, whereK is an empirical constant, which reflects ure 13 shows VOF simulations of an interface which



comes into contact with the bottom wall, yielding gas the interface is examined and a simple criterion is pro-
pockets which move towards the side walls and the togposed.
of the groove.

If failure is defined by the loss of drag reduction, Ack NOWLEDGMENT
such failure may occur even when the interface is intact.

Figure 14 shows deflection of the interface prescribed bYrhis work was supported by the United States Office of
Young-Laplace equation for varying values of pressureyaya| Research under ONR Grant NO0014-12—1-0874
difference. Note how the deflection increases with in-\iin Dr. Ki-Han Kim as the program manager. Comput-

creasing pressure difference. As discussed in the Iamli—ng resources were provided by the Argonne Leadership

nar channel section, when the interface penetrates cofrompyting Facility and the Minnesota Supercomputing
siderably into the groove, the velocity at the interface apnstitute.

proaches the no-slip condition. The shear on the liquid
therefore increases, and the drag reduction goes down.
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