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A formula is derived that shows exactly how much the discrepancy between the
volume flux in laminar and in turbulent flow at the same pressure gradient increases
as the pressure gradient is increased. We compare laminar and turbulent flows in
channels with and without flow control. For the related problem of a fixed bulk-
Reynolds-number flow, we seek the theoretical lowest bound for skin-friction drag
for control schemes that use surface blowing and suction with zero-net volume-flux
addition. For one such case, using a crossflow approach, we show that sustained
drag below that of the laminar-Poiseuille-flow case is not possible. For more general
control strategies we derive a criterion for achieving sublaminar drag and use this
to consider the implications for control strategy design and the limitations at high
Reynolds numbers.

1. Introduction
It is well known that in channels and pipes the volume flux of laminar flow is

greater than that for turbulent flow at the same pressure gradient (Thomas 1942).
Equivalently, the skin-friction drag in a laminar flow is less than in a turbulent flow
for the same volume flux. In this paper we derive a formula to compute this volume-
flux discrepancy for a given pressure gradient and consider the implications at high
Reynolds numbers.

It has been conjectured (e.g. Bewley 2000) that, for constant volume-flux flows,
sustained sublaminar drag is not possible even in the presence of flow control. Bewley
considered zero-net volume-flux blowing or suction at the no-slip walls as a control
strategy. (For the case of a fixed pressure gradient, the equivalent conjecture would be
that such flow control cannot produce an average volume flux in excess of the laminar
value.) However, several studies including Bewley & Aamo (2004) and Cortelezzi et al.
(1998), have demonstrated transient drag reductions below the laminar level. Recently,
Min, Kang, Speyer & Kim (2006) demonstrated that sustained sublaminar drag can in
fact be achieved in a fully developed channel flow, albeit at a low Reynolds number.
By ‘sustained drag’ we mean that the average value of the drag is independent of
time. Min et al. (2006) used direct numerical simulations in an open-loop control
strategy, with wall blowing and suction in the form of an upstream travelling wave,
to achieve their result.

In this paper we consider laminar- and turbulent-flow comparisons for
incompressible channel flows, with and without control, and discuss the implications
for a range of Reynolds numbers. Two types of zero net-volume-flux blowing and
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suction control strategies are investigated. The first involves uniform-control flow
across the channel, as was used by Fukagata, Iwamoto & Kasagi (2002), and for
this case we prove that sustained drag below that of the laminar-Poiseuille-flow case
is not possible. The second control strategy addresses the more general case, with
zero-mean flow at the walls, as was considered by Bewley & Aamo (2004) and others.
For this case we obtain a criterion for sustained sub-laminar conditions based on the
power input of the control flow. Consideration of the criterion sheds light on why
the control scheme of Min et al. (2006) was successful and indicates directions for
modified control strategies that might yield further improvements.

2. Equations for channel flow
Much of the following extends the analyses presented by Busse (1970), Howard

(1972) and Joseph (1974), who considered channel flows without control.
For a fully developed channel flow of an incompressible fluid, driven by a constant

pressure gradient, the Navier–Stokes and continuity equations may be written as

∂V
∂t

+ V · ∇V = −∇p + exP + ∇2V , (2.1)

∇ · V = 0. (2.2)

The Cartesian coordinate system used here defines x and y as the streamwise and
spanwise directions respectively, and z is the distance in the wall-normal direction
from the centre of the channel. Unless indicated, here all terms have been non-
dimensionalized using ν, the kinematic viscosity of the fluid, and d , the height of the
channel. The domain occupied by the fluid is

−∞ < x, y < ∞; −1/2 � z � 1/2.

Here P > 0 is the constant pressure gradient driving the flow, and the total pressure
at a point in the fluid is

p(x, y, z, t) − Px,

where in all cases pressure has been normalized by ρ, the fluid density. We denote a
wall-parallel plane average with an overbar:

f̄ (z, t) = lim
L→∞

1

(2L)2

∫ L

−L

∫ L

−L

f (x, y, z, t) dx dy,

and the overall average as

〈f 〉 =

∫ 1/2

−1/2

f̄ dz.

Therefore, the Reynolds number ReB = 〈V̄x〉 is that based on the channel height
and the bulk velocity. We will also decompose the velocity and pressure into mean
(wall-parallel plane-averaged) and fluctuating parts,

V = V̄ + u, p = p̄ + p′, (2.3)

where the fluctuations have a zero mean: ū, v̄, w̄, p̄′ = 0.

2.1. Boundary conditions

We consider three types of channel flow. For all three cases

Vx = Vy = 0 at z = ±1/2
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while we have

for case 1, Vz = 0 at z = ±1/2;
for case 2, Vz = C(t) at z = ±1/2, where C̄ = constant;
for case 3, Vz = φ+(x, y, t) at z = 1/2 and φ−(x, y, t) at z = −1/2, where φ̄+ =

φ̄− = 0.

Note that u = v = 0 at z ± 1/2 for all three cases, but w = φ = 0 for cases 1 and
2 only. Case 1 is conventional channel flow, while cases 2 and 3 cover the possible
flows with blowing or suction at the walls and with zero net-volume-flux addition.
For case 2, any flow introduced through the bottom wall is balanced by flow leaving
the top wall. This flow was considered in control studies by Fukagata et al. (2002).
Case 3 is the case considered by Bewley & Aamo (2004), Min et al. (2006) and others;
it allows for different functions for Vz on the top and bottom walls provided that
their mean is zero.

2.2. Energy equations

In the following we will make use of energy identities. These are derived first by
substituting (2.3) into (2.1) and using continuity to give

∂ V̄
∂t

+
∂u
∂t

+ V̄z

∂ V̄
∂z

+ ∇ · (V̄ u + uV̄ + uu) = − ez
∂p̄

∂z
− ∇p′ + exP +

∂2V̄
∂z2

+ ∇2u. (2.4)

For cases 1 and 3, V̄z = 0 everywhere owing to (2.2), while for case 2, V̄z = C. The
wall-parallel plane average of (2.4) is

∂ V̄
∂t

+ V̄z

∂ V̄
∂z

+ ∇ · (uu) = −ez
∂p̄

∂z
+ exP +

∂2V̄
∂z2

, (2.5)

and the difference (2.4)–(2.5) is

∂u
∂t

+ ∇ · (V̄ u + uV̄ + uu − uu) = −∇p′ + ∇2u. (2.6)

An energy identity for the mean component is found by forming the dot product of
V̄ with (2.5), taking the average and setting the result to zero, i.e. 〈V̄ · (2.5)〉 = 0,
which gives

1

2

d

dt
〈|V̄ |2〉 +

〈
V̄x

∂uw

∂z
+ V̄y

∂vw

∂z

〉
= P 〈V̄x〉 + V̄z[p̄]∓ −

〈∣∣∣∣∂V̄x

∂z

∣∣∣∣
2

+

∣∣∣∣∂V̄y

∂z

∣∣∣∣
2
〉

, (2.7)

where the notation [ ]∓ indicates that the quantity at z = 1/2 is subtracted from the
quantity at z = −1/2, i.e. [p̄]∓ = p̄− − p̄+. The corresponding energy identity for the
fluctuating parts is found from forming 〈u · (2.6)〉 = 0, which gives

1

2

d

dt
〈|u|2〉 +

〈
uw

∂V̄x

∂z
+ vw

∂V̄y

∂z

〉
= Γ − 〈|∇u|2〉, (2.8)

where

Γ = [φ(p′ + φ2/2)]∓. (2.9)

(Here we note that u · ∂u/∂z = 0 at the walls for all three cases. This can be shown by
using Taylor series expansions, the continuity equation and the boundary conditions.)

Summing (2.7) and (2.8) gives the total energy equation

1

2

d

dt
〈|V̄ |2 + |u|2〉 = P 〈V̄x〉 + V̄z[p̄]∓ + Γ −

〈
|∇u|2 +

∣∣∣∣∂V̄x

∂z

∣∣∣∣
2

+

∣∣∣∣∂V̄y

∂z

∣∣∣∣
2
〉

. (2.10)
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It may be noted that in addition to the driving pressure-gradient work term, P 〈V̄x〉,
an extra energy-source term exists for case 2 owing to another pressure-gradient work
term, V̄z[p̄]∓, while for case 3 the extra term is Γ , which is due to the control flow at
the walls and the associated induced fluctuating pressures.

3. Volume-flux comparison between laminar and turbulent flows
First we consider laminar Poiseuille flow (case 1 with u = 0). Here V = (Ul(z), 0, 0)

and (2.1) has the solution

Ul(z) = 3
2
〈Ul〉(1 − 4z2) (3.1)

for

Pl = −d2Ul

dz2
= 12〈Ul〉. (3.2)

In order to evaluate the bulk flow rate for the turbulent-flow case, 〈V̄x〉, we
specify two properties of statistical stationarity. The first is that all wall-parallel plane
averages, indicated by overbars, are time independent, and second we assume that
velocity components have a zero mean value unless a non-zero mean value is forced
externally. This latter property implies V̄y = 0 for all flows considered here. Under
such conditions (2.5) may be written as

d

dz

[
exVxVz + uw + ezp̄ − exPz − dV̄

dz

]
= 0, (3.3)

where VxVz = V̄xV̄z, since V̄z = 0 or a constant. The energy equation (2.8) becomes

−
〈

uw
dV̄x

dz

〉
+ Γ = 〈|∇u|2〉. (3.4)

We now seek an expression for P by taking the first integral of the x-component of
(3.3):

Pz = uw + VxVz − 〈uw〉 − 〈VxVz〉 − dV̄x

dz
. (3.5)

The above equation is similar to the well-known linear relation for the stress. Forming
〈z · (3.5)〉 = 0 gives

P = 12〈z(uw + VxVz)〉 + 12〈V̄x〉. (3.6)

The above equation is identical to that given by Fukugata et al. (2002) (equation
(16) in their paper). A comparison between the volume flux in the channel for a
turbulent flow with control and for the base laminar flow can now be made. For flows
with the same driving pressure gradient (P = Pl), using (3.6) and (3.2) the difference
in the bulk flow rates for fully developed laminar flows and for turbulent flows is
given by

〈Ul − V̄x〉 = 〈z(uw + VxVz)〉. (3.7)

Therefore a proof that zero net-volume-flux blowing or suction control cannot produce
a volume flux in excess of laminar flow requires

〈z(uw + VxVz)〉 � 0. (3.8)

To test this we form 〈(uw + VxVz) · (3.5)〉 = 0 and using (3.4) obtain after some
manipulation

P 〈z(uw + VxVz)〉 = 〈|∇u|2〉 + 〈[(uw + VxVz) − (〈uw〉 + 〈VxVz〉)]2〉 − Γ. (3.9)
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Figure 1. The turbulent mean-velocity profile, from the DNS dataset of del Álamo & Jiménez
(2003) at Reτ = 186, and the corresponding laminar profile for the same driving pressure
gradient. The profiles are drawn to scale (relative to each other).

Here P > 0 by definition and, therefore, (3.9) indicates that (3.8) holds for case 2,
since φ = 0 and hence Γ = 0 and all other terms on the right-hand side are positive.
However, for case 3, where V̄z = 0, the controlled flow can produce a volume flux in
excess of laminar flow if and only if

Γ > 〈|∇u|2〉 + 〈[uw − 〈uw〉]2〉. (3.10)

The same criterion holds for producing sublaminar drag, as will be discussed in § 4.
Although the drag is sublaminar, the power required to drive the flow may not be
less than the laminar value (e.g. Choi, Moin & Kim 1994, p. 79). Also, we note that
the right-hand side of (3.10) will change with φ, and the expression itself does not
suggest a practical design strategy. However, it is clear that any control that yields
sublaminar drag needs to satisfy (3.10) and that the specific term [φ(p′ + φ2/2)]∓
needs to be positive. This will be further discussed in § 4.1.

3.1. Quantitative comparisons

For regular channel flows and flows with crossflow control strategies (cases 1 and 2
in § 2.1), the right-hand side of (3.7) is, as shown above, always positive, and hence
the bulk flow rate for the laminar case is always higher for these flows. This is a more
general statement of the ‘mass-flux-discrepancy theorem’ of Busse (1970) and Joseph
(1974). A formal proof of this for regular pipe flow was first given by Thomas (1942).
For regular channel flow, the result is well illustrated in figure 1, where a turbulent
mean-velocity profile, taken from a direct numerical simulation (DNS) dataset at
Reτ = 186, together with, for comparison, the corresponding laminar profile (3.1) for
the same level of driving pressure gradient. (Here Reτ is the Kármán number, which is
defined as the Reynolds number based on the channel half-width and the skin-friction
velocity Ûτ = (τ̂0/ρ)1/2.) The condition P = Pl requires that the wall-normal gradients
of the velocity profiles be equal at the walls.

While it is well known that the flow rate is higher in laminar than in turbulent
flow at the same pressure gradient, we are not aware of any formula other than
the one derived here from which the flow rates may be calculated. For example, the
above results indicate that a laminar channel or pipe flow in transition to turbulence
will always be associated with a bulk deceleration of the flow. Given the confined
geometry, this transient event can only manifest itself through an adverse pressure
gradient (i.e. one that is opposite to the driving pressure gradient). Few articles in
the literature have reported this, an exception being a recent study by van Doorne
(2004). Quantitative differences between the bulk flow rates (or volume fluxes) can be
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Figure 2. The ratio of the bulk velocities for laminar and turbulent channel flows as a
function of Reτ . The solid line corresponds to (3.13). The dashed line corresponds to the same
result but with the skin-friction formulae of Dean (1978). The solid circles are from the DNS
datasets of del Álamo & Jiménez (2003), del Álamo et al. (2004) and Hoyas & Jiménez (2006).
The Reτ = 186 ordinate corresponds to the profiles in figure 1. The dotted line corresponds
to the expression for pipe flow. The dotted circles are from the pipe experiments of McKeon
et al. (2004).

obtained using functional forms for the mean-velocity profiles (laminar and turbulent).
For instance, using a law-of-the-wall-wake mean-velocity formulation, such as that
given by Perry, Marusic & Jones (2002) (their equation (4.6)) it can be shown that

〈V̄x〉 − V̄1

Uτ

≈ − 1

κ
, (3.11)

where V̄1 and Uτ are the non-dimensional centre-line and skin-friction velocities
respectively and

V̄1

Uτ

=
1

κ
ln Reτ + A +

1

κ

(
2Π − 1

3

)
; (3.12)

here we take κ = 0.41, A = 5.0 and the Coles wake factor Π = 0.2. From (3.2) we
can show that the laminar bulk velocity 〈Ul〉 = 2Re2

τ /3, and using (3.7) for regular
channel flows, with (3.11) and (3.12), we obtain

〈Ul − V̄x〉 = 〈zuw〉 = 2
3
Re2

τ − 2

κ
Reτ (ln Reτ + C), (3.13)

where P = 8Re2
τ and C = κA + 2Π − 4/3 = 1.117, using the values given above.

Figure 2 shows for comparison the bulk velocities for laminar and turbulent flows
for varying levels of Reτ . The solid line is obtained using the above expressions for
channel flows. For a typical practical Reynolds number Reτ = 105 the ratio 〈Ul〉/〈V̄x〉
is seen to be over 1000.† The ratio of the laminar and turbulent velocities is also
a convenient way of illustrating how 〈zuw〉 changes with Reτ , and a corresponding
plot is shown in figure 3; the asymptotic trend is equivalent to the condition that the

† This example is in the spirit of A. N. Kolmogorov who, as explained by Barenblatt (2005),
would start his course on turbulence at Moscow State University by asking the students what the
flow rate of the Volga river would be if by some miracle it became laminar. The answer is striking,
with surface velocities in the hundreds of kilometres per second.
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Figure 3. Formulation for 〈zuw〉 (using (3.13)) as a function of Reτ . The solid circles
correspond to the DNS data as in figure 2.

Reynolds shear stress uw approaches a linear function as ReB → ∞, in which case it
directly follows that 〈zuw〉 → 2Re2

τ /3. As in figure 2, the formulation is seen to agree
very well with data obtained from direct numerical simulations (DNSs), where 〈zuw〉
values are computed directly.

Similar agreement can be obtained using other formulas in the literature. For
example, the dashed line in figure 2 is obtained using Cf = 0.073Re−1/4

B and Cf l
=

12/ReB from Dean (1978). The present authors prefer using log-law-based expressions
such as (3.12), from which Dean’s formula deviates at high Reτ . Also shown in the
figure is the corresponding curve for pipe flow, obtained using (3.12) with the same
constants, which is seen to agree very well with the experimental data of McKeon
et al. (2004) obtained in the Princeton superpipe across a large range of Reynolds
number. (Here for pipe flow 〈Ul〉 = Re2

τ /2 and 〈V̄x〉 = 2Reτ (V̄1/Uτ − 3/2κ). More
refined log-law based expressions are given in McKeon, Zagarola & Smits 2005.)

4. Drag comparisons
For a fully developed flow with statistical stationarity, the net skin-friction drag is

simply obtained from a balance with the pressure gradient forces. That is,

2τ̂0(4L2) = ρP̂ (4L2d)

where τ̂0 and P̂ are the dimensional average wall-shear stress and the driving pressure
gradient respectively. From this it follows that the bulk skin-friction coefficient Cf =
2τ̂0/(ρÛ 2

B), where ÛB is the dimensional bulk velocity, is related to P by

Cf =
P

Re2
B

. (4.1)

Using (3.6), (3.2) and (4.1) for a given Reynolds number, 〈Ul〉 = 〈V̄x〉 = ReB , we
obtain

Cf − Cf l
=

12

Re2
B

〈z(uw + VxVz)〉. (4.2)

Equation (4.2) is equivalent to the result obtained by Fukagata et al. (2002), according
to which the drag reduction is dependent on the weighted integral of the Reynolds
shear stress. Bewley & Aamo (2004) derived a related quantity for V̄z = 0 (case 3).
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As expected, the criterion for achieving sublaminar drag with control for a fixed
volume flux is equivalent to exceeding the volume flux of laminar flow for a fixed
pressure gradient. Both depend on 〈z(uw + VxVz)〉. Therefore, from (3.7) and (3.9) we
may also conclude that for regular channel flows and flows with crossflow control
strategies (cases 1 and 2)

Cf − Cf l
� 0. (4.3)

For case 3, where V̄z = 0, (3.10) holds and therefore the controlled flow can produce
sustained sublaminar skin-friction levels if and only if

Γ > 〈|∇u|2〉 + 〈[uw − 〈uw〉]2〉.

4.1. Implications for control strategies

Equation (3.10) gives the criterion for achieving sustained sublaminar drag; from it
we may identify the relevant control parameter Γ = [φ(p′ + φ2/2)]∓, which is solely
defined on the walls of the channel. The criterion does not directly yield a practical
design strategy but does provide insights into strategies that have been proposed in
the literature.

In (3.10), Γ relates to the power input of the control signal, and as expected
increasing Γ decreases the net skin-friction drag. However, it may be noted that
maximizing Γ requires a control strategy that sums the contributions from the
opposing walls. Therefore, in order to consider a physical interpretation for Γ we
restrict our attention to the bottom wall in flows with symmetric actuation. In this
case we require that [φ(p′ + φ2/2)]− be positive. For any periodic blowing and suction
(as was used by Min et al. 2006) φ3 yields zero when averaged, and therefore the only
contribution to Γ can come from p′φ. We therefore require that blowing (positive φ)
be accompanied by an increase in pressure, while suction (negative φ) be accompanied
by a decrease in pressure at the wall.

It is known from studies on jets in crossflow (e.g. Muppidi & Mahesh 2005) that a
crossflowing jet yields high levels of pressure, especially at the leading edge of the jet;
i.e. a positive value of φ yields positive values of p′. Similarly, high levels of suction
will modify the local flow to resemble a point sink. The external flow accelerates
toward the source of suction, in order to conserve mass; the acceleration sets up a
favourable pressure gradient in the direction of the suction and therefore decreases
the pressure at the source of suction. Negative values of φ therefore produce negative
values of p′ and so the resulting product is positive.

To test this interpretation, direct numerical simulations were carried out for
idealized flows with blowing and suction into a cross-stream, using the numerical
approach as described by Muppidi & Mahesh (2005). The geometry is that of a two-
dimensional channel with dimensions 20×10×1 per unit slot width, in the streamwise,
wall-normal and spanwise directions respectively. The width of the slot extends over
the entire span, over which periodic conditions are imposed. Free-stream Dirichlet
conditions are prescribed at the top boundary, and convective boundary conditions
are prescribed at the outflow. Note that the domain height is large enough not to
affect the solution. A top-hat profile is prescribed for the jet through the slot, and
a uniform crossflow is prescribed at the inflow. Along the bottom wall, the uniform
crossflow forms a boundary layer whose thickness with respect to the jet is small.
The simulation results therefore depend essentially upon the parameter rs, where r

denotes the velocity ratio of the jet and the crossflow and s denotes the slot width.
While these flows are simplified, the general trends are expected to hold very near

the blowing and suction ports since Γ is a quantity evaluated exactly at the wall.
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Figure 4. Numerical-simulation results for two-dimensional blowing and suction into a
crossflow, moving from right to left. The blowing and suction flows are initially applied
uniformly across 0 � x/s � 1. The wall velocities and pressures here are normalized by the
crossflow velocity. Note that the average value of p′φ on the wall for both blowing and suction
is positive.

The results are shown in figure 4 where, for both blowing and suction, p′φ is found
to be positive provided that the level of blowing and suction is sufficiently high. For
instance, in figure 4 the ratio of φ and the crossflow speed was 0.5, while a ratio of
0.1 was found to be insufficient to produce a positive p′φ value.

The above mechanism for generating high p′φ values on the bottom wall is
consistent with the approach used by Min et al. (2006), who demonstrated sublaminar
drag using a travelling wave blowing and suction strategy with

φ = a cos[α(x − ct)], (4.4)

where c is the wave speed. Relatively high levels of blowing and suction were required
by Min et al. (2006) to achieve sublaminar drag combined with upstream travelling
waves (c negative). The control flow was also implemented on both walls in varicose
mode, i.e. the upper and lower walls have blowing and suction in phase at the same
streamwise location. This symmetric actuation is consistent with adding the effects
from the top and bottom walls while an upward-travelling wave increases the relative
velocity between the jet and the crossflow, which means that for the same jet velocity
φ, the stagnation pressure p′ at the leading edge of the jet would be higher; i.e.
the upward-traveling wave generates higher positive levels of p′φ. Conversely, a
downward-traveling wave would, for small phase speeds, decrease the relative velocity
and thereby decrease the stagnation pressure at the jet leading edge. The resulting
value of p′φ would be smaller and therefore less effective in reducing drag. If the
downstream wave speed is large enough, then the crossflow would have to accelerate
in the streamwise direction to occupy the region evacuated by the jet; the acceleration
would decrease the pressure in the vicinity of the jet, i.e. p′φ would be negative, and
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the drag would actually increase. This is consistent with what Min et al. (2006) found
for positive values of c.

Considering (3.10) and the expression for Γ it would seem that the control strategy
used by Min et al. (2006) could perhaps be further improved by modifying the control
to yield positive and negative values of φ3 on the bottom and top walls respectively.
This would require that the input control flow be skewed. Since from the results in
figure 4 it appears that suction has a higher contribution to p′φ than does blowing,
this would indicate that possibly using a symmetric varicose blowing and suction
upstream-travelling waveform that is biased towards more intense suction (while still
maintaining φ̄ = 0) might be beneficial.

5. Concluding remarks
For turbulence control, it is necessary to understand how to achieve sublaminar

levels of drag at high Reynolds numbers. For the general blowing and suction control
strategy (case 3) this relates directly to 〈zuw〉. Figure 3 shows that 〈zuw〉 has very
high values at high Reynolds numbers (since it increases nominally with Re2

τ ), which
makes relaminarization or sublaminar drag reduction by control difficult. Min et al.
(2006) achieved sublaminar conditions at Reτ ≈ 120, but at high Reynolds numbers
figure 2 shows that 〈zuw〉 would be many orders of magnitude higher. However, a
control scheme need not relaminarize a flow from a high Reynolds number but could
instead modify the Reynolds shear-stress profile in such a way as to minimize the
weighted integral 〈zuw〉. Iwamoto et al. (2005) used this strategy recently and showed
that small changes to uw in the near-wall region at high Reynolds number can lead
to substantial reductions in skin friction.

Comparison of the volume flux for laminar and turbulent flows for a given pressure
gradient also highlights that, in general, reducing the turbulence level in flows driven
by a steady energy source can lead to significant increases of mean velocity. Another
example of this, which in the authors’ opinion is worth mentioning, relates to the
modification of turbulence by the transport of small particles (Gore & Crowe 1989).
Barenblatt, Chorin & Prostokishin (2005) considered such a mechanism to explain
why accelerated levels of wind speed exist in tropical cyclones in regions near the water
surface, where ocean spray droplets reside. Here it is believed that the turbulence
energy that goes into suspending the particles in the flow leads to a reduction in
the flow turbulence intensity and consequently dramatic increases in the mean wind
speed. Similar mechanisms may explain why sand storms are typically associated with
high sustained wind speeds, which allow the storm to travel over very long distances.
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