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ABSTRACT

We review the direct numerical simulation (DNS) of turbulent flows. We stress
that DNS is a research tool, and not a brute-force solution to the Navier-Stokes
equations for engineering problems. The wide range of scales in turbulent flows
requires that care be taken in their numerical solution. We discuss related numer-
ical issues such as boundary conditions and spatial and temporal discretization.
Significant insight into turbulence physics has been gained from DNS of certain
idealized flows that cannot be easily attained in the laboratory. We discuss some
examples. Further, we illustrate the complementary nature of experiments and
computations in turbulence research. Examples are provided where DNS data
has been used to evaluate measurement accuracy. Finally, we consider how DNS
has impacted turbulence modeling and provided further insight into the structure
of turbulent boundary layers.

1. INTRODUCTION

Turbulence has been the victim of many colorful descriptions over the years,
from Lamb’s (1916) scholarly “chief outstanding difficulty of our subject”
to Bradshaw’s (1994) inspired “invention of the Devil on the seventh day of
creation.” This apparent frustration results largely from the mixture of chaos and
order and the wide range of length and time scales that turbulent flows possess.
The complex behavior of turbulence is the consequence of a fairly simple set
of equations—the Navier-Stokes equations. However, analytical solutions to
even the simplest turbulent flows do not exist. A complete description of a
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turbulent flow, where the flow variables (e.g. velocity and pressure) are known
as a function of space and time can therefore only be obtained by numerically
solving the Navier-Stokes equations. These numerical solutions are termed
direct numerical simulations (DNS in short), and are the subject of this paper.

The instantaneous range of scales in turbulent flows increases rapidly with the
Reynolds number. As a result, most engineering problems, e.g. the flow around
a car, have too wide a range of scales to be directly computed using DNS. The
engineering computation of turbulent flows therefore relies on simpler descrip-
tions: Instead of solving for the instantaneous flow-field, thestatisticalevolu-
tion of the flow is sought. Approaches based on the Reynolds-averaged Navier-
Stokes (RANS) equations are the most prevalent (see Speziale 1991 for a review)
and involve computing one-point moments such as mean velocity and turbulent
kinetic energy. Another approximation, large eddy simulation (LES), is inter-
mediate in complexity between DNS and RANS. Large eddy simulation directly
computes the large energy-containing scales, while modeling the influence of
the small scales (see Lesieur & M´etais 1996, and Moin 1997 for a review).

Statistical descriptions suffer from the curse of closure, i.e. the equations
describing the statistical evolution of the flow contain terms that cannot be ob-
tained from the Navier-Stokes equations and therefore require modeling. As
the complexity of the computed flows increases, improvement in the turbulence
models is often sought. This search for better turbulence models, and better pa-
rameterization of the turbulence, is what drives most turbulence research. DNS
is a tool in this endeavor, in which it complements the time-trusted methodology
of experimental research.

The capabilities of this relatively new tool are impressive, and this article
reviews its contributions to turbulence research. However, the fraternity of
turbulence researchers is large and the areas of interest are diverse. In the
interest of brevity, this review is restricted to the DNS of three-dimensional,
fully turbulent, nonreacting, nongeophysical flows. Both incompressible and
compressible flows are discussed. Transitional flows constitute an important
application of DNS; however, the review by Kleiser & Zang (1991) allows
their omission from this article. Computation of reacting flows is discussed
by Poinsot & Vervisch elsewhere in this volume. The reader interested in the
Reynolds stress modeling of turbulence will find the reviews by Reynolds (1976)
and Speziale (1991) useful, while the theory and application of LES may be
found in Lesieur & Métais (1996) and Moin (1997).

This paper is organized as follows. We provide a brief history of DNS in
section 1.1. We emphasize the changes that have occurred since the review
article by Rogallo & Moin (1984). The broadband nature of turbulence requires
care to be taken in its numerical computation; section 2 therefore discusses
some of the issues involved. Significant insight into turbulence physics has
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been gained from DNS of certain idealized flows that cannot be easily attained
in the laboratory. These studies, termed novel numerical experiments, are
discussed in section 3. Section 4 then presents some examples that illustrate
how experiments and computations can complement each other. The impact of
DNS on turbulence modeling is discussed in section 5, followed in section 6
by the study of boundary layer structure using DNS. We conclude the paper in
section 7.

1.1 Background
The foundations of DNS were laid at the National Center for Atmospheric
Research (see Fox & Lilly 1972 for a review). The beginnings were humble:
Orszag & Patterson (1972) performed a 323 computation of isotropic turbu-
lence at a Reynolds number (based on Taylor microscale) of 35. Although
the resolution used appears inadequate by today’s standards, the calculations
demonstrated how spectral methods could actually be used to perform large-
scale computations of three-dimensional turbulence. The next major step was
taken by Rogallo (1981), who combined a transformation of the governing
equations with an extension of the Orszag-Patterson algorithm to compute ho-
mogeneous turbulence subjected to mean strain. Rogallo’s study examined the
effects of mean shear, irrotational strain, and rotation on homogeneous turbu-
lence. The results were compared to theory and experimental data and used to
evaluate several turbulence models. Rogallo’s pioneering work set the standard
for DNS of homogeneous turbulence. Subsequent homogeneous DNS have
essentially used his algorithm.

The earliest computed flows were inhomogeneous in only one direction. The
computing resources in the late 1970s did not allow DNS of wall-bounded tur-
bulence; however, coarse-grid computations of free-shear layers (e.g. Riley
& Metcalfe 1980) could be performed. Wall-bounded flows could clearly not
be ignored; LES was therefore used (e.g. Moin & Kim 1982) to compute the
simplest such flow—the fully developed plane channel. The results were then
used to study the physics of near-wall turbulence (see Rogallo & Moin 1984).
Despite the good qualitative agreement of flow visualization results with ex-
periment, there was some concern about drawing definitive conclusions from a
simulation that contained ad hoc models. It was not until 1987 that DNS of the
plane channel was performed (Kim et al 1987). Interestingly, the plane channel
DNS was actually preceded by DNS of the flow in a curved channel by Moser &
Moin (1987). The channel flow has proven to be an extremely useful framework
for the study of wall-bounded turbulence. Subsequent studies have modified
the channel configuration to examine the response of wall-bounded turbulence
to factors such as rotation (Kristoffersson & Andersson 1993), mean three-
dimensionality (Moin et al 1990), transpiration (Sumitani & Kasagi 1995),
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transverse curvature (Neves & Moin 1994), heat transfer (Kasagi et al 1992),
and riblets (Choi et al 1992). The next major step was taken by Spalart (1986,
1988), who developed an ingenious method to compute the turbulent flat-plate
boundary layer under zero and favorable pressure gradients. Spalart’s boundary
layer data have been widely used by workers in the field.

The computations outlined above were all homogeneous in the streamwise
direction (in the coordinate system of solution); periodic boundary conditions
were therefore imposed along that direction. Computing flows that are inho-
mogeneous in the streamwise direction requires turbulence to be specified at
the inflow plane. A recent advance has been the development of methods to
specify this inflow turbulence. As a result, reasonably complex flows, e.g. the
flow over a backstep (Le & Moin 1994), and flat plate boundary layer separation
(Na & Moin 1996) have been computed.

In contrast to its incompressible counterpart, DNS of compressible turbulent
flows is fairly recent. The early 1980s saw DNS of homogeneous compress-
ible turbulence being initiated (Feiereisen et al 1981). However, it was not
until a decade later that serious study of compressible homogeneous turbulence
(isotropic and sheared) was undertaken (Erlebacher et al 1990, Blaisdell et al
1993, Lee et al 1991, Sarkar et al 1991). Wall-bounded flows such as the com-
pressible channel (Coleman et al 1995) and turbulent boundary layer (Rai et al
1995) have only recently been attempted. High-speed turbulent mixing layers
have been the focus of much experimental attention; DNS of this flow was re-
cently performed by Vreman et al (1996). Shock waves feature prominently in
compressible flows; recent DNS (Lee et al 1993, Mahesh et al 1997) has exam-
ined their interaction with turbulence. An exciting new development has been
the field of computational aeroacoustics, where both the fluid motion and the
sound it radiates are directly computed (see Tam 1995, Lele 1997 for reviews).
Computational aeroacoustics is still in its infancy; the sound from a canonical
flow such as a perfectly expanded supersonic jet has only just been computed
(J Freund, SK Lele & P Moin, unpublished information). Figure 1 shows re-
sults for a Mach 1.9 jet from their massive computations using 640× 270× 128
mesh points.

In tracing the evolution of DNS over the past decade, one observes that
the complexity of the computed flows has noticeably increased, but that their
Reynolds numbers are still low. Incompressible flows were the focus of at-
tention a decade ago; compressible, even reacting, flows are being computed
today. Another development has been the increased investigation of turbulence
physics by computing idealized flows that cannot easily be produced in the
laboratory. As the geometry of the flows has evolved, so have the numerical
methods. Current computations typically use finite-difference schemes, or a
combination of spectral and finite-difference schemes, in contrast to the fully
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Figure 1 The sound radiated by a Mach 1.9 circular jet. Contours of vorticity (black) are overlaid
on dilatation contours (gray). The computations were performed by J Freund, SK Lele & P Moin
(unpublished information).

spectral algorithms used earlier. Finite element methods, and the use of un-
structured grids are also being explored. These changes over the past decade
have been accompanied by a significant improvement in computer hardware. A
desktop computer like the 200 MHz Pentium Pro is about five times faster than
the CDC7600 used by Orszag & Patterson in 1972 and the available memory is
about two orders of magnitude greater. Currently available parallel machines
like the 64 processor SP-2 are about 100 times faster than the 64 processor
ILLIAC-IV used in the early 1980s.

2. NUMERICAL ISSUES

Numerical methods for the direct simulation of turbulence are required to accu-
rately reproduce its evolution over a wide range of length and time scales. This
section discusses some of the issues involved. Spatial discretization is consid-
ered in section 2.1. A discussion of time advancement in section 2.2 is followed
in section 2.3 by an examination of the boundary conditions. Emphasis is placed
on the specification of turbulence at inflow boundaries. Compressible turbulent
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flows often interact with shock waves; section 2.4 considers their computa-
tion. Cost considerations restrict DNS to low Reynolds numbers; section 2.5
discusses this issue.

2.1 Spatial Resolution
The range of scales that need to be accurately represented in a computation is
dictated by the physics. The grid determines the scales that are represented,
while the accuracy with which these scales are represented is determined by
the numerical method.

What are the largest and smallest scales that need to be resolved? Along
statistically inhomogeneous directions, physical parameters such as channel
width, boundary layer thickness, or mixing layer thickness determine the largest
scales. Along homogeneous directions, where periodic boundary conditions are
imposed, two-point correlations of the solution are required to decay nearly to
zero within half the domain, to ensure proper statistical representation of the
large scales. The Kolmogorov length scale,η = (ν3/ε)1/4, is commonly quoted
as the smallest scale that needs to be resolved. However, this requirement is
probably too stringent. The smallest resolved lengthscale is required to be
of O(η), not equal toη. Spectral DNS (listed in Table 1) shows very good
agreement with experiments even though the Kolmogorov lengthscale is not
resolved. Table 1 lists the resolution used in these computations. It appears
that the relevant requirement to obtain reliable first and second order statistics is
that the resolution be fine enough to accurately capture most of the dissipation.
The smallest lengthscale that must be accurately resolved depends on the energy
spectrum, and is typically greater than the Kolmogorov lengthscale; e.g. Moser
& Moin (1987) note that most of the dissipation in the curved channel occurs
at scales greater than 15η (based on average dissipation).

Table 1 Resolution (in Kolmogorov units) used in spectral simulations
of some homogeneous and wall-bounded flows.η at the wall is used for
the wall-bounded flows.a

Flow Resolution inη

Curved channel (MM) 1z = 3.75,1r = 0.13,rc 1θ = 11.25
Plane channel (KMM) 1x = 7.5,1y = 0.03,1z = 4.4
Boundary layer (S) 1x = 14.3,1y = 0.33,1z = 4.8
Homogeneous shear (RMR) 1x = 7.8,1y = 3.9,1z = 3.9
Isotropic turbulence (W) 1x = 4.5,1y = 4.5,1z = 4.5

aMM, KMM, S, RMR, and W denote Moser & Moin 1987, Kim et al 1987,
Spalart 1988 (Rθ = 1410), Rogers et al 1986 (Run C128U), and Wray’s (AA Wray,
unpublished information) DNS of Comte-Bellot & Corrsin’s (1971) experiment,
respectively.
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The resolution requirements are of course influenced by the numerical method
used. Spectral methods were used by all the computations quoted in Table 1.
Differencing schemes with larger numerical error would require higher resolu-
tion to achieve the same degree of accuracy. Spatial discretization error has two
primary (coupled) components: differentiation error, and error associated with
the nonlinearity of the governing equations. Fourier analysis, and the concept
of the “modified wavenumber” is useful in quantifying the differentiation error.
Consider a single Fourier mode in one dimension, namelyf = eikx. Discretize
f on a domain of length 2π , using a uniform mesh ofN points. The mesh
spacingh= 2π/N. The exact first derivative off at thejth node isikeikx j ; the
numerically computed derivatives will be of the formik ′eikx j . k ′ is a function
of k andh, and is called the modified wavenumber for the first derivative oper-
ator; e.g.k′ = sinkh/h for the second-order central difference scheme. The
difference betweenk ′ andk provides the differentiation error as a function of
the resolution of the wave.

The physics (e.g. dissipation spectrum) dictates the smallest wavenumber
that needs to be resolved, and the accuracy with which it needs to be repre-
sented. Assume for example, that a wave with wavelength 3η is required to be
differentiated with at least 5% accuracy. It is straightforward to show, using
the modified wavenumber, that the second-order central difference requires a
mesh spacing equal to 0.26η to meet this requirement, while the fourth-order
central difference, sixth-order Pad´e, and Fourier spectral schemes require mesh
spacings of 0.55η, 0.95η, and 1.5η respectively; i.e. the lower accuracy of the
second order scheme translates into greater resolution requirements.

Differentiation error is only part of the error at small scales. There are two
other sources of error that result from nonlinearity. The nonlinear terms in the
equation produce a triadic interaction between the scales. The evolution of
scales near the cut-off (λ = 2h) is therefore influenced by scales that are beyond
the cut-off (λ < 2h), and are hence not represented by the grid. DNS requires
that the resolution be fine enough for this error to be small. A more serious,
and potentially catastrophic, source of error is aliasing. When functions are
represented in terms of a finite number of basis functions (e.g. Fourier modes),
nonlinear operations generate modes that are not in the set of modes being
represented. A discrete representation mistakes these higher order modes for
modes in the set. The contribution from these higher order modes is therefore
improperly added to the modes in the set. This process is termed aliasing.
The small scales have larger levels of aliasing error. Finite difference schemes
typically have lower levels of aliasing error than spectral methods.

Aliasing error can cause either numerical instability or excessive turbulence
decay. For example, Kim et al (1987) had to remove the aliasing errors (dealias-
ing) in order to compute the turbulent flow in a plane channel. The turbulence
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was found to decay if dealiasing was not performed. Prior to this work, alias-
ing errors were thought to cause only numerical instability. As shown by Zang
(1991), Kravchenko & Moin (1996), and Blaisdell et al (1996), the aliasing
error in non-Galerkin formulations depends upon the analytical form of the
nonlinear terms prior to discretization. When central differences are used, the
skew-symmetric form of the nonlinear terms ([u j ui, j + (ui u j ), j ]/2), is seen
to have lower levels of aliasing error for both incompressible and compress-
ible DNS. The compressible equations contain division by density, and the
viscosity-temperature relation, as two additional sources of aliasing. Lee et al
(1992b) propose solving for the specific volume to avoid the aliasing resulting
from division. With the exception of their work, little attention seems to have
been devoted to these additional aliasing sources in the compressible equations.

For finite-difference schemes, the combination of higher levels of differen-
tiation error and lower levels of nonlinear truncation and aliasing error deter-
mines the overall error at the small scales. This error, in conjunction with the
spectrum of the solution, dictates the resolution requirements. A rule of thumb
is that second-order central difference schemes require about twice the resolu-
tion (in each direction) to achieve the same results as a spectral DNS. Studies
in plane channel flow (Choi et al 1992, Kristoffersen & Andersson 1993) show
noticeable differences in the fluctuating shear stress, and higher-order quanti-
ties such as vorticity, between the second-order schemes and spectral methods.
Turbulent kinetic energy profiles are seen to be less sensitive.

2.2 Time Advancement
A wide range of time scales puts turbulent flows into the category of stiff
systems for time advancement. Stiff systems are routinely encountered in CFD
calculations of steady aerodynamic flows, where they are handled using implicit
time advancement algorithms and large time steps. It is tempting to adopt a
similar practice in DNS. Unfortunately, the requirement of time accuracy over
a wide range of scales does not permit very large timesteps in DNS. Use of
large timesteps implies that the small scales can have large errors, which can
corrupt the solution.

Von Neumann analysis may be used to illustrate the effect of time advance-
ment on the error at different scales. Consider the one-dimensional advection
equation (ft + c fx = 0) on a periodic domain. The solution may be represented
as a summation of Fourier modes. Consider a single Fourier mode. Spatial dif-
ferencing yields the ordinary differential equation,d f̂ /dt = −ik ′ f̂ , wherek ′

denotes the modified wavenumber discussed in section 2.1. It is straightforward
to obtain the (complex) amplification factor (ratio of the solution at consecutive
timesteps),σ = f̂ n+1/ f̂ n, when the above ODE is numerically integrated. The
amplification factor thus obtained is a function ofk ′h and the CFL number,
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c1t/h. The amplitude and phase errors introduced by the time-discretization
may therefore be examined as a function ofkh for different values of the CFL
number. Note that the amplitude ratio of the exact solution is unity. Figure 2
examines the error in amplitude when a combination of the sixth-order Pad´e
scheme and fourth-order Runge-Kutta scheme is used for spatial differencing
and time advancement, respectively. The strong influence of timestep on the
small scale error is apparent. Note also that the fully discretized equations now
have a dissipative character, although the spatial discretization is nondissipative.

Does this imply that only explicit time advancement may be used for DNS?
Not necessarily. The range of frequencies that need to be accurately repre-
sented is dictated by the physics. The grid, spatial differencing scheme, and
the solution determine the range of frequencies represented by the discrete
equations. Implicit time advancement becomes attractive when the discrete
equations represent frequencies far higher than those required by the physics.
A common practice in incompressible DNS of wall-bounded flows is to use
implicit time advancement for the viscous terms and explicit time advancement

Figure 2 The influence of discrete time-advancement on small-scale accuracy. The amplitude ratio
is plotted as a function of resolution. The sixth order Pad´e scheme is used for spatial differencing,
while the fourth order Runge-Kutta scheme is used for time advancement. Solid CFL= 0.5, dashed
CFL= 1. The stability limit is CFL= 1.43.
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for the convection terms. Integrating factors may be used for the viscous term in
homogeneous incompressible computations (Rogallo 1981). A general state-
ment about the appropriateness of using implicit time advancement for the
convection terms cannot be made. For example, Choi & Moin (1994) exam-
ined the possibility of using a fully implicit algorithm in turbulent channel
flow. Very large timesteps were found to cause the turbulence in the channel
to decay to a laminar state. At timesteps small enough for time accuracy to
be maintained, the overhead associated with the implicit algorithm made it un-
competitive with explicit time advancement for the convection terms. However,
in computations of the flow over riblets (Choi et al 1992), the grid clustering
around the peaks of the riblets required a fully implicit algorithm for economical
calculations.

2.3 Boundary Conditions
Specifying boundary conditions at open boundaries is a difficult issue in DNS.
Given a turbulent flow, the only “correct” boundary condition at an arbitrary
surface in the flow is the solution itself. But if the solution is already known,
why compute the flow?

Consider incompressible flow. Statistically homogeneous directions such
as the spanwise direction in a two-dimensional boundary layer are straightfor-
ward to treat—periodic conditions are imposed. Accurate and efficient ways
of treating the far-field of vortically compact flows such as boundary layers,
mixing layers, and wakes also exist (see e.g. Rogallo & Moin 1984, Spalart
et al 1991, Corral & Jim´enez 1995). The major difficulty is posed by the inflow
and outflow boundary conditions. Fully developed flows such as the turbulent
channel or pipe are homogeneous in the streamwise direction, but this is not
the case for most flows. If complex flows are to be computed, turbulent inflow
and outflow boundary conditions are required.

Early DNS circumvented this problem by appealing to Taylor’s hypothesis.
The turbulence was assumed to be homogeneous in the streamwise direction,
as a result of which it evolved statistically in time (temporal simulations). A
convection velocity was then used to relate the temporal evolution of the sim-
ulation to the spatial evolution seen in experiments. This approach works very
well for a limited class of flows; examples include decaying grid turbulence,
homogeneous shear flows, plane mixing layers, and turbulence passing through
axisymmetric contractions and expansions. Note that the mean flow is constant
in the streamwise direction in temporal simulations, i.e., the mean streamlines
are parallel. Nonparallel effects that are present in the laboratory are therefore
not represented. Spalart (1988) devised an ingenious coordinate transformation
to overcome this limitation in DNS of the turbulent boundary layer. The trans-
formation allowed periodic boundary conditions to be used in the streamwise
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direction while generating a statistically stationary turbulent flow whose statis-
tics corresponded to a single experimental streamwise station.

However, Spalart’s approach is restricted to flows whose mean streamwise
variation is small as compared to the transverse variation. DNS of more complex
flows must specify turbulent inflow and outflow boundary conditions. The
earliest methods for specification of inflow turbulence (Le & Moin 1994, Lee
et al 1992a) essentially generated a three-dimensional, divergence-free field of
random fluctuations that was homogeneous in the streamwise direction and had
prescribed second order statistics. This field of turbulence was then convected
through the inflow plane using Taylor’s hypothesis. In addition, the disturbances
were randomized in time to prevent them from being time-periodic. The inflow
disturbances evolved into “realistic” turbulence after a fairly large distance [e.g.
50 displacement thicknesses in the inlet channel of Le & Moin’s (1994) DNS
of the backstep]. However, they did allow computations such as flow over a
backstep, and isotropic turbulence/shock wave interaction to be performed for
the first time. The method of generating inflow turbulence has improved since
then. As opposed to convecting a field of random numbers, recent DNS (e.g. Na
& Moin 1996, Akselvoll & Moin 1996, Mahesh et al 1997) have convected an
instantaneous turbulent field obtained from a separate temporal simulation. The
evolution distances are noticeably shorter; e.g. 20 displacement thicknesses in
Na & Moin’s computations. A wide range of flows have been computed using
this approach. Work on the inflow specification is still in progress; e.g. Lund
et al (1996) present a simplified version of Spalart’s approach, which shows
promise as an inflow turbulence generator.

Compressibility introduces additional boundary-condition issues. Charac-
teristic analysis (see e.g. Poinsot & Lele 1992) must be used in compressible
DNS to determine the number of boundary conditions required. Acoustic waves
from the domain interior can influence the solution at the inflow plane. If this
influence is not accounted for in the inflow specification, acoustic waves will
reflect from the inflow boundary back into the solution domain. Moreover,
the validity of Taylor’s hypothesis is suspect for compressible flows. Because
acoustic waves and the vortical field travel at different speeds in the linear limit,
using a single convection velocity for the inflow turbulence is valid only for
low levels of compressibility (turbulent Mach number,Mt < 0.5 for isotropic
turbulence according to Lee et al 1992a). Fortunately, most compressible flows
of current interest are well below this level of turbulent compressibility. The
outflow boundary conditions in compressible DNS are similarly required to
suppress nonphysical reflections/generation of acoustic waves at the outflow
plane. Considerable work on nonreflecting boundary conditions has been per-
formed by workers in aeroacoustics (see Lele 1997 for a review). Typically,
formulations used in aeroacoustics are used by current compressible DNS.
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2.4 Shock Waves
Shock waves in compressible turbulent flows pose severe challenges to DNS.
Consider the interaction of isotropic turbulence with a normal shock wave. At
low Reynolds numbers, the three-dimensional energy spectrum of the turbu-
lence may be approximated byE(k) ∼ (k/k0)

4 e−2(k/k0)
2
, wherek0 denotes the

wavenumber at which the spectrum peaks. Assuming that the change in the
upstream Mach number caused by the turbulent fluctuations is small, the shock
thickness may be approximated by its laminar value (Thompson 1984); i.e.

cδ

ν
= 6.89

M − 1
, (1)

whereδ, c andM denote the shock thickness, the mean upstream sound speed,
and mean upstream Mach number, respectively. Denoting the Kolmogorov
length scale of the upstream turbulence byη, it is straightforward to show that

η

δ
= 0.13

M − 1

Mt

√
Rλ , (2)

where Mt = 31/2urms/c denotes the fluctuation Mach number andRλ is a
Reynolds number defined asRλ = urmsλ/ν.

The numerical methodology to compute shock waves (see e.g. Hirsch 1990)
has primarily been developed for steady aerodynamic flows, where the shock
may be idealized as a discontinuity. Allowing physical viscosity to determine
the shock-thickness in these flows would therefore be prohibitively expensive.
Also, the Navier-Stokes equations themselves are generally considered invalid
within shocks whose normal Mach number exceeds 2 (Sherman 1955). This has
resulted in the popular use of “shock-capturing” schemes, in which numerical
viscosity is used to smooth out the shock while ensuring that the jump conditions
across the shock are satisfied. Equation 2 indicates that caution should be
exercised when using shock-capturing schemes in turbulent flows. At low mean
Mach numbers and turbulence Reynolds numbers, the shock thickness is seen
to be comparable to the Kolmogorov scale. For example, ifRλ andMt are 40
and 0.1 respectively,η/δ can be as low as 4, for a mean upstream Mach number
of 1.5. Under these conditions, unless the local resolution is fine enough, a
shock-capturing scheme would also dissipate the dynamically important scales
of the turbulence, adversely influencing the computations.

Most schemes designed for steady aerodynamic flows are too dissipative for
turbulence computations (see e.g. Hannappel et al 1995). Recent DNS (Lee
et al 1994, Hannappel & Friedrich 1995, Mahesh et al 1997) have used the high-
order, so-called essentially non-oscillatory (ENO) schemes (Harten & Osher
1987; Shu & Osher 1988, 1989) to treat the shock front. However, even ENO
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schemes as high as sixth-order can be too dissipative for the turbulence (Lee et al
1997) if caution is not exercised. Current DNS of shock/turbulence interaction
(Lee et al 1997, Mahesh et al 1997) restricted the shock-capturing algorithm
to a small region around the shock wave (to capture the shock front distortion)
and used local mesh refinement there to ensure that the shock-capturing did not
significantly dissipate the turbulence. Figure 3 shows a result from Lee et al’s
(1997) computations.

2.5 How High aReIs High Enough?
An acknowledged limitation of DNS is its restriction (by cost considerations)
to low Reynolds number. This often leads to questions about the relevance
of DNS to external aerodynamics. One hears astronomical estimates (based
on N ∼ R9/4

T ) for the computing time required should DNS be performed at
real-life Reynolds numbers. There is the implicit assumption that for DNS to
be useful at these high Reynolds numbers, they should be performed at similar
Reynolds numbers. However, there are two questions that are not very often
raised: “How high a Reynolds number is high enough?” and “What are the
objectives of the computations?”

Figure 3 Contours of vorticity in the interaction of two-dimensional turbulence with a Mach-2
shock wave. The mean flow is from left to right. Solid and dashed lines correspond to positive
and negative vorticity, respectively. The instantaneous shock front is illustrated by superposing
contours of constant negative dilatation. Adapted from Lee et al (1997).
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Consider the incompressible zero-pressure-gradient boundary layer. The
Reynolds number dependence is commonly emphasized by noting that tur-
bulence statistics, scaled in the conventional inner or outer variables, do not
collapse at different Reynolds numbers. The mean velocity collapses well (see
e.g. the review article by Fernholz & Finley 1996) forRθ > 5000, but col-
lapse of the scaled turbulence stresses is unsatisfactory. Using arguments such
as these to suggest that the flow is strongly Reynolds-number–dependent is
perhaps misleading. The observed dependence on Reynolds number is a con-
sequence of the scaling used; it does not imply that the essential physics has
undergone significant change.

Compilation of data from a wide variety of experiments by Chapman (1979)
shows a distinct separation between the energy-containing and dissipating
scales, as proposed by Kolmogorov (1941). The small scales exhibit a univer-
sality (for energy) when scaled with Kolmogorov variables. The experimental
data suggest that turbulent boundary layers scale in this manner at moderate
Reynolds number. Fernholz & Finley (Figure 84, 1996) show that the stream-
wise spectrum ofu2 aty+ = 200 in aRθ = 2470 boundary layer exhibits a small
subrange withk−5/3 behavior. Also, when scaled with Kolmogorov variables,
the spectrum collapses at the small scales with data obtained at Reynolds num-
bers greater by two orders of magnitude. Increasing the Reynolds number is
seen merely to increase the extent of thek−5/3 range. Note thatRθ = 2470 is
approximately a factor of two greater than Spalart’s (1988) Reynolds number
of 1410, a lot more comforting than the factors of 1000 that comparison to
real-life Reynolds numbers would suggest is required.

The required separation between the energetic and dissipative scales is a
matter of contention. Results from recent DNS (e.g. Kim et al 1987, Spalart
1988, Le & Moin 1994) suggest that accurate computation of the mean flow and
second order statistics does not require significant scale separation. However,
features that depend strongly on the smaller scales—such as intermittency or
higher-order statistics—might require a wider separation for the results to hold
at higher Reynolds number. As stated earlier, the purpose of the computations is
an important question to raise. Our view of DNS is that of a research tool, and not
a brute force solution to the Navier-Stokes equations for practical applications.
The objective is not to reproduce real-life flows (say the flow over an airplane),
but to perform controlled studies that allow better insight, scaling laws, and
turbulence models to be developed.

The detailed Reynolds stress budgets from DNS provide valuable information
on the relative magnitudes of the terms and their possible scaling. For example,
the DNS of Kim et al (1987) in the plane channel, and the boundary layer
of Spalart (1988) show that production balances dissipation near the wall, as
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observed in experiments at significantly higher Reynolds numbers. The very
low Reynolds number of the computation does not significantly influence this
balance. Similarly the good correspondence of the structural features of the flow
with high Reynolds number experiments, such as the near-wall streaks and the
horseshoe vortices away from the wall, suggests that low Reynolds number
computations might be adequate for the study of flow structures. If on the
other hand one wanted to use DNS to rigorously verify local isotropy, as done
experimentally by Saddoughi & Veeravalli (1994), there would be no choice but
high Reynolds number computations. Similarly, free shear layers are known to
possess critical Reynolds numbers at which their behavior undergoes significant
change. Examples include the “mixing transition” in plane mixing layers at a
vorticity thickness Reynolds number of about 5000. Such phenomena are
clearly not amenable to Reynolds number scaling, and lower Reynolds number
computations would be inadequate.

In summary, our response to the question “How high aReis high enough?”
would be “For what?” DNS need not obtain real-life Reynolds numbers to be
useful in the study of real-life applications.

3. NOVEL NUMERICAL EXPERIMENTS

The term novel numerical experiments refers to computations in which the ini-
tial and/or boundary conditions are nonphysical in the sense that they are not
readily attainable in laboratory experiments. The objective of these computa-
tions is to study in detail the influence of isolated physical parameters. Some
examples of these numerical experiments follow.

3.1 Forced Isotropic Turbulence
Attempts by DNS to establish a subrange withk−5/3 behavior in decaying
isotropic turbulence have not been successful with as many as 1283 points.
Recall that the subrange separates the energy-containing and dissipating length
scales. An interesting device has been used by computations seeking to establish
a subrange—the largest resolved scales (typically the first two wavenumbers
in the simulation) are externally forced. The proferred justification for such
large-scale forcing is that if the range of scales being resolved is large enough,
the details of the small scales should not depend upon the details of the forcing.
Details of the forcing may vary (Eswaran & Pope 1988), but the underlying
concept is the same: the forcing mimics the energy transfer to the inertial
subrange from the larger energy-containing scales, that is, the large scales are
modeled while the small scales are resolved (note the contrast to large eddy
simulation). Spectra from forced computations display a noticeable subrange
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with k−5/3 behavior. Because the entire range of scales is not being resolved,
higher Reynolds numbers are attained: Current 5123 computations have aRλ of
nearly 200. An additional consequence of steady forcing is that the turbulence
becomes statistically steady instead of decaying with time.

Forced computations have provided interesting insight into the physics of
the small scales. A simple phenomenological picture of the regions of high
vorticity and dissipation has emerged. Instantaneous fields from DNS (Siggia
1981; Kerr 1985; She et al 90; Vincent & Meneguzzi 1991, 1994; Ruetsch
& Maxey 1991; Jiménez et al 1993) show that the regions of intense vortic-
ity are essentially vortex tubes, as suggested by Kuo & Corrsin (1971). The
radii and lengths of these vortex tubes scale with the Kolmogorov and inte-
gral length scales respectively, while their circulation appears to vary asRλ

1/2.
These vortex tubes have been shown to be a natural product of the turbulence
evolution, and not a consequence of the forcing. They were found absent by
She et al (1990) in a random Gaussian field with the same energy spectrum as
a turbulent field. Despite their intense vorticity, the volume fraction occupied
by the vortex tubes is small. As a result—and this is reminiscent of shocklets
in compressible homogeneous turbulence (Section 5)—they do not contribute
significantly to the overall dissipation. In an interesting demonstration of the
relative insignificance of the vortex tubes to the overall kinetic energy evo-
lution, Jiménez et al (1993) artificially removed the vortex tubes from their
solution (Rλ was 96), switched off the large-scale forcing, and then compared
the subsequent evolution of the flow to that in a computation where the tubes
were retained. The decay rate of kinetic energy was seen to be identical in both
computations.

Three-dimensional visualization of the vorticity and strain rate fields (Rλ

was 83) was used by Kerr (1985) to suggest strong alignment between the
vorticity and strain fields in the regions of intense vorticity. Probability dis-
tribution functions (PDFs) of the alignment between the vorticity vector and
the eigenvectors of the strain rate tensor (Ashurst et al 1987) showed a strong
tendency for the vorticity to align with the eigenvector corresponding to the
intermediate eigenvalue. The largest compressive and extensional strains were
seen to be perpendicular to the axis of the tubes, while a weak stretching was
noted along the axis. A quantitative characterization of the tubes was provided
by Ashurst et al (1987), who showed that the ratio of eigenvalues in the re-
gions of intense dissipation was 1:3:-4, or one compressive and two extensional
strains.

The physical picture that emerges from flow visualization and the PDFs
is one of essentially two-dimensional vortices that are axially stretched. An
interesting demonstration of this notion is provided by PDFs of the alignment
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of the pressure gradient with strain-rate eigenvectors (Jim´enez 1991). Conser-
vation of angular momentum (Ashurst et al 1987) provides an explanation for
the the tendency of the tubes to form when strain rate and vorticity are coupled.
Modeling the vortex tubes as stretched vortices (Ashurst et al 1987, Jim´enez
1991) also explains the observed ratio of eigenvalues.

Recent 5123 computations at aRλ of about 200 (Chen et al 1993, Wang et al
1996) have examined the hypotheses underlying the classical Kolmogorov-
Obukhov (1962) theory of the inertial range. The theory, termed the refined
similarity hypothesis (RSH), makes two assumptions: The velocity difference
1ur over a distancer in the inertial range scales as(r εr )

1/3, and the PDF ofεr

is log-normal (εr denotes the locally averaged dissipation). Some support for
both hypotheses is provided by the computations.

The nonlinear terms in the Navier-Stokes equations transfer energy between
different length scales. Details of the spectral transfer have been explored by
DNS of forced turbulence (Domaradzki & Rogallo 1990, Yeung & Brasseur
1991, Ohkitani & Kida 1992, Zhou 1993). Of particular interest has been
evaluating whether the transfer to a scalek is local (from scales of similar mag-
nitude) or nonlocal (from scales of disparate magnitude). While experiments
can measure the total energy transfer to a scale from other scales in the flow,
details such as the exchange between prescribed scales are hard to measure.
Such interactions can be computed by DNS, albeit at low Reynolds numbers.
Individual triadic interactions (interaction between three Fourier modes) were
examined by some of these studies. These can be misleading, however, since
turbulent eddies are not simple Fourier modes. Analysis of the energy cas-
cade requires summing the various triad interactions, and owing to the large
cancellation among individual triads, the conclusions drawn depend strongly
on which triads are summed. The Kolmogorov (1941) notion of local energy
cascade in the inertial range is not supported (Yeung & Brasseur 1991) when
individual triads are examined, but it is supported when contributions from all
triads at a given scale disparity are summed (Zhou 1993).

A novel use of forced isotropic turbulence has been the study of fundamental
issues pertaining to combustion. Flamelets (thin reacting regions) in premixed
turbulent combustion were modeled by Girimaji & Pope (1992) as passive
propagating surfaces, and their distortion by the turbulence examined. Such
studies have allowed statistics of quantities such as the strain rate experienced by
the flamelets and the evolution of their curvature to be obtained. Along similar
lines, forced turbulence has allowed a detailed study of the turbulent distortion
of material elements (Yeung et al 1990) and passive scalar mixing—recent
studies include Pumir (1994), Jaberi et al (1996), Overholt & Pope (1996), and
Juneja et al (1996).
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3.2 The Minimal Channel
Insight into the dynamics of the near-wall region was provided by computations
of the “minimal channel” by Jim´enez & Moin (1991). This study demonstrated
that the lower order statistics in the near-wall region (y+ < 40) of channel flow
could be reproduced by the dynamics of a model that was far simpler than the
entire turbulent channel.

This simplified model was termed the minimal channel, and was obtained
as follows. Channel-calculations were performed on domains significantly
smaller than that of the entire turbulent channel. Statistics of the mean velocity,
and turbulence intensity were then compared to those from the entire channel.
Good agreement in the near-wall region (y+< 40) was observed for domain
sizes greater than 100 wall units in the spanwise direction, and 250–350 wall
units in the streamwise direction. Smaller domains were found unable to sustain
the turbulence. The smallest domain that sustained the turbulence was termed
the minimal channel.

The minimal channel represents a single unit of near-wall turbulence. It
allows isolation of key structures and study of their dynamics. The good agree-
ment of near-wall statistics despite significant disagreement in the outer region is
an interesting demonstration of the weak statistical and dynamical dependence
of the two regions. Another interesting observation is a very long (Ut/h ≈ 100
whereU = 3Q/4h, andhandQdenote the half-channel height and volume flux,
respectively) cycle of intermittency, during which the turbulence intensities vary
strongly. This regenerating cycle was proposed by Jim´enez & Moin as the basis
for sustenance of turbulence in the channel. Motivated by the flow structures
in the minimal channel, Jim´enez & Moin proposed a simple conceptual model
for the dynamics of near-wall turbulence. Subsequent studies (e.g. Choi et al
1992, Carlson & Lumley 1996) have used the minimal channel to explore issues
related to numerics and control, in a cost-effective manner.

3.3 Shear-Free Boundary Layers
A shear-free boundary layer is the boundary layer over a wall that is at rest
relative to the free-stream. The turbulence in this boundary layer therefore
evolves in the absence of mean shear. A solid wall influences the turbulence in its
vicinity through two important mechanisms: mean shear, and zero penetration.
The motivation behind studying shear-free boundary layers is to understand the
influence of the zero penetration condition on the turbulence.

Shear-free boundary layers have been studied experimentally by Uzkan &
Reynolds (1967) and Thomas & Hancock (1977), while Hunt & Graham (1978)
have used linear analysis to theoretically predict their behavior. DNS of this
flow was recently performed by Perot & Moin (1995a), who performed a further
dissection of the influence of the wall. Three different wall boundary conditions
were studied: a perfectly permeable wall (zero tangential velocity, periodic
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normal velocity), an idealized free surface (zero normal velocity, zero normal
gradients of tangential velocity), and a solid wall (no slip). The perfectly
permeable wall and the idealized free surface allowed the effects of viscosity
and kinematic wall blocking to be studied separately.

A noteworthy result of Perot & Moin’s computations was insight into the
influence of kinematic wall blocking. Prior to this study, the popular notion
was that an impermeable wall would damp the wall-normal fluctuations to zero,
thereby transferring energy to the tangential velocity components. The physical
picture associated with this transfer was “splatting,” where a blob of fluid in
the free stream is squashed by the wall, and transfers energy from the normal
to the tangential components. From the standpoint of the Reynolds averaged
equations, splatting was associated with the near-wall reversal in the sign of the
pressure-strain correlation in the equation forv2 (the wall-normal component
of the Reynolds stress).

However, Perot & Moin found that the pressure-strain correlation was neg-
ligible in their Reynolds stress budgets of the idealized free surface. They
suggested a phenomenological explanation based on visualization of the in-
stantaneous flow field—“anti-splats,” defined as fluid ejected away from the
wall, thereby transferring energy from the horizontal to the vertical compo-
nents of velocity. The pressure-strain correlation was postulated to be a result
of the balance between splats and anti-splats, a balance that they showedis gov-
erned by viscosity. These phenomenological arguments were shown to hold
in the vicinity of solid walls, and then used to develop a model for the slow
pressure-strain correlation tensor (Perot & Moin 1995b). Flow visualization
also inspired a new decomposition of inhomogeneous turbulence, which led to
a model for the dissipation-rate anisotropy.

These computations are good examples of how numerical experiments can
yield physical insight, which is then used to develop better turbulence models.

3.4 The Interaction of Turbulence with Shock Waves
The interaction of shock waves with supersonic turbulent boundary layers has
proven difficult for turbulence models to predict. The experimental data show
that the boundary layer may separate, that the turbulence levels amplify con-
siderably, and that high levels of wall-pressure fluctuations exist in the vicinity
of the shock. Shock wave/boundary layer interaction is influenced by the si-
multaneous presence of factors such as mean shear, bulk compression from the
shock wave, inhomogeneous effects caused by the wall, mean streamline cur-
vature, and unsteady effects caused by separation. Recent DNS has examined
idealized problems that have allowed some of these effects to be studied in iso-
lation. In particular, the influence of mean shear, upstream acoustic waves, and
upstream entropy fluctuations (isobaric fluctuations in temperature and density)
have been examined.
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In order to study the influence of mean shear, Mahesh et al (1996) com-
puted an idealized turbulent shear flow interacting with a Mach 1.2 normal
shock. The mean velocity gradient and Mach number upstream of the shock
wave were uniformly transverse to the shock front. This uniform mean Mach
number allowed easier parameterization of the problem, while ensuring that the
mean flow on both sides of the shock would essentially be in thex–direction.
This idealized problem shows that while normal shocks amplify the kinetic
energy of the turbulence, they suppress the Reynolds shear stressuv. This
effect is corroborated by linear analysis, which shows that vortex lines behind
the shock wave would be closer to the vertical since the shock preferentially
amplifies the transverse vorticity components. This would tend to decrease the
magnitude of shear stress, a behavior not predicted by current Reynolds stress
models.

DNS by Hannappel & Friedrich (1995) of isotropic turbulence interacting
with a Mach 2 normal shock shows that acoustic waves in the upstream tur-
bulence can lead to a suppression of kinetic energy amplification across the
shock. They used this observation to suggest upstream acoustic waves as a pos-
sible reason for experiments in wind-tunnels reporting lower levels of kinetic
energy amplification as compared to shock-tube experiments. This suppressing
influence of upstream acoustic waves is consistent with linear analysis (Mahesh
et al 1995), which shows that it is restricted to moderate mean upstream Mach
numbers (1.25−1.8).

Turbulent velocity fluctuations stir up mean gradients in temperature and den-
sity to produce temperature and density fluctuations. These fluctuations, termed
entropy fluctuations (Kovasznay 1953), are known to dominate the thermody-
namic field in supersonic boundary layers. Experimental data (Fernholz &
Finley 1981) show that the intensity (e.g.Trms/T) of temperature and density
fluctuations in boundary layers is comparable to that of the velocity field. DNS
by Mahesh et al (1997) of Mach 1.3 and Mach 1.8 shocks shows that these up-
stream entropy fluctuations can significantly influence the turbulence evolution
across shocks. In particular, the correlation between the upstream velocity and
entropy field is important. Experimental data show that the correlation coef-
ficient between streamwise velocity and temperature fluctuations is nearly−1
in adiabatic boundary layers. Negative upstream correlation strongly enhances
amplification of the turbulence across the shock. On the other hand, positive up-
stream correlation reduces the kinetic energy amplification. The relative roles
of bulk compression and baroclinic vorticity generation explain this behavior.

3.5 The Far-Field of Turbulent Wakes
Moser et al (1997) have recently examined the self-similarity of plane wakes in
the far-field. The equations governing the first order moments for plane wakes
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are known to admit self-similar solutions in the small-deficit limit, which is
attained at large distances downstream of the body. Experiments (Wygnanski
et al 1986, Marasli et al 1992) have shown that, despite the self-similarity
of the mean velocity profile, quantities in the far-field such as the spread-
ing rate and the Reynolds stresses are significantly affected by such factors
as the body used, and two-dimensional forcing. This apparent dependence of
the wake’s self-similarity on its initial state was the focus of Moser et al’s
study.

DNS of temporally evolving wakes was performed, with three different
initial conditions. The Reynolds number based on the integrated mass-flux
deficit (− ∫∞

−∞(U − U∞) dy) was 2000. Approximately 25 million points
(600× 260× 160) were used to discretize the flow. An unforced wake was first
computed as a baseline for comparison. This computation was initialized by us-
ing two instantaneous realizations of a turbulent boundary layer at a momentum
thickness Reynolds number of 670 (Spalart 1988). The two other computations
were those of two-dimensionally forced wakes; the initial conditions were the
same as the unforced case except the two-dimensional modes ofu andv were
amplified by 5 and 20 in the two cases.

The simulations revealed the same trend as the experiments; i.e. self-
similar states that depended strongly upon the initial conditions were obtained
(Figure 4). The mean velocities from the three cases collapsed with each other,
and with experiment (Weygandt & Mehta 1993) when plotted in similarity
variables. The conventional scaling of the Reynolds stresses (using the max-
imum magnitude of the velocity deficit) did not collapse the data from the
different computations, however; the Reynolds stresses in the forced wakes
were almost an order of magnitude higher. The spreading rate was also ob-
served to be different between the forced and unforced wakes. Similarity
analysis of the mean momentum and Reynolds stress equations guided by the
DNS data suggested alternative scalings that involved the spreading rate of
the wake, and significantly improved the collapse of data from the different
computations.

These computations are an example of how the strict control on the initial and
boundary conditions afforded by DNS can be used to examine the dependence
of a turbulent flow on its history or initial conditions.

3.6 Active Control of Turbulent Flows
The availability of detailed flow fields, and accurate control over the bound-
ary conditions makes DNS a useful testbed to explore control strategies. We
present here some examples that illustrate the use of DNS to control sim-
ple wall-bounded flows. The practical infeasibility of these examples puts
them in the category of numerical experiments. These are essentially “what if”
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Figure 4 Contours of spanwise vorticity in anx – yplane of a plane turbulent wake. The mean
flow is from left to right. Solid and dashed lines correspond to positive and negative vorticity,
respectively. (a) unforced wake; (b) and (c) wakes that are initially forced. Level of initial forcing
is higher in (c) than in (b) . Adapted from Moser et al (1997).

experiments—the type that can be performed without concerns about hardware
or implementation.

A study by Choi et al (1994) examined the efficacy of control applied at
the wall in reducing friction drag in a turbulent channel. Their control strat-
egy was motivated by past work that showed good correlation of near-wall
streamwise vortices with Reynolds stress-producing events (Moin & Spalart
1987, Robinson 1991), and skin friction (Bernard et al 1993, Kravchenko et al
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1993). The velocity at the wall was therefore controlled, with the objective
of suppressing the sweep and ejection events associated with the streamwise
vortices. It was shown that blowing and suction that was opposite in sign to the
wall-normal velocity aty+ = 10, i.e.vwall(x, z) = −v(x, y+ = 10, z), reduced
the drag by about 25%. The primary effect of the control was the lifting of high
shear regions associated with sweeps, away from the wall. Of course, sensing
the instantaneous velocity aty+ = 10 and then applying control is not practi-
cal. What this study does demonstrate, however, is the feasibility of obtaining
significant drag reduction in a fully-developed turbulent flow by controlling its
relevant coherent structures.

Other control strategies based on manipulation of coherent structures have
been explored by Carlson & Lumley (1996) and Jung et al (1992). Carlson &
Lumley performed DNS in the minimal channel to evaluate the control, which
was performed by a Gaussian-shaped actuator (u = w = 0, v = ∂h/∂t , where
h denotes the height of the actuator above the wall), at the wall. The location of
the actuator with respect to the near-wall streaks (Kline et al 1967) was shown
to influence the drag. Actuating the flow below low-speed streaks was observed
to increase the drag, while actuation below high-speed streaks was seen to
decrease it.

The possible use of new concepts, such as neural networks and control theory,
to control turbulent flows is currently being explored. When Choi et al (1994)
applied both sensing and control at the wall, the results were disappointing; the
drag reduction dropped to 6%—about that obtained from passive control devices
such as riblets. Control using wall-actuation alone requires some knowledge
of how the wall-actuation influences the wall shear stress. A novel approach
was developed by Lee et al (1997) who used DNS to train a neural network to
approximate this influence and then provided the optimal wall-actuations that
would minimize the drag. About 20 % reduction in drag was reported.

DNS is currently being used to explore an alternative strategy for control—
the optimal control theory (Abergel & Temam 1990), which combines the
tools of control theory with the Navier-Stokes equations. Conceptually, opti-
mal control minimizes a cost functional which represents a combination of the
quantity being controlled and the cost of control. Details of this procedure
are outlined by Moin & Bewley (1995). Optimal control has the very attrac-
tive feature of rigor. Recent DNS has been quite useful in implementing and
evaluating optimal control theory for wall-bounded flows. Computations by
Moin & Bewley (1995) using optimal control and blowing and suction at the
wall yielded 57% drag reduction in the turbulent channel atReτ = 100 (the
flow was relaminarized), significantly higher than that obtained from the ad
hoc procedures described above. In the future, DNS is expected to play a
central role in simplifying optimal control to where it can be implemented in
practice.
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4. SYNERGY WITH EXPERIMENTS

In this section we provide some examples of synergy between computation and
experiment wherein they complement each other’s strengths.

4.1 Evaluation of Hot-Wire Response in Boundary Layers
Moin & Spalart (1987) used DNS data from a turbulent boundary layer to
estimate the accuracy of cross-wire probes and to quantify the magnitudes of
the different sources of error. A model of a cross-wire to measureu andv, that is,
with the wires in thex–yplane (plane of streamwise and wall-normal directions)
was considered. The influence of the following assumptions (see Perry 1982)
on the error was assessed:u > 0, negligible spanwise velocity, and linearized
calibration based on assumingv � u. The influence of axial wire-cooling,
the angle between the wires (120◦ as compared to 90◦), flying the probe, and
separation between the wires were also quantified. The results showed that
neglecting the spanwise component of velocity was the most significant source
of error. Increasing the wire angle to 120◦ reduced the error in all measured
components by 25% to 50%. Flying the probe was also found to significantly
reduce the error; the error was found to be less than 2% for a probe translating
upstream at half the free-stream velocity.

A subsequent study by Suzuki & Kasagi (1992) used data from DNS of a
turbulent channel (Kuroda 1990) to quantify the errors in near-wall hot-wire
measurements. The influence of sensor length, sensor spacing, and neglect of
the spanwise velocity component on the measurement accuracy were assessed,
and a correction method involving two-point correlations of the velocity fluctu-
ations was prescribed. DNS data from the turbulent channel (Hirschbirg 1992)
was recently used by Pompeo & Thomann (1993), to explain why their four-
wire probe yielded values forvw that were about 50% that ofuv, as opposed
to being zero in a two-dimensional boundary layer. They then used a model
of their probe to “make measurements” from DNS data. The computational
study suggested that large instantaneous spanwise velocity gradients were likely
responsible for the error in their measurements.

4.2 Measurement of Vorticity
DNS data has recently been used to provide probe design criteria and validate
experimental measurements of vorticity in turbulent flows. Consider vorticity
measurements made using thermal anemometry. Velocity data from a multi-
sensor array of hot wires is differenced to obtain the velocity gradients, and
thereby the vorticity. The length of the hot wires (denoted byL) and their
separation distance (denoted byS) significantly influences the accuracy of the
measurements. Analytical bounds onL and S were provided by Wyngaard
(1969), who considered the response of a Kovasznay-type probe and a parallel
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sensor probe (see the Annual Review article by Wallace and Foss 1995) to
isotropic turbulence. Recently, Antonia et al (1993) used DNS data from the
turbulent channel flow (Kim et al 1987) to evaluate both Wyngaard’s analysis,
as well as their experimental measurements. Values of∂u/∂y from the ex-
periments and computation were compared as a function of probe separation
(1y= S). Noticeable error was observed at very small and large separations.
The error at large separations is of course anticipated since the approximation
∂u/∂y ≈ 1u/1y, is only first order accurate in1y. The error at small separa-
tions is a result of noise and calibration errors (Wallace & Foss 1995). Based
on Antonia et al’s comparison with DNS data, Wallace & Foss recommend an
optimal separation distance of 2 to 4 times the Kolmogorov lengthscale.

Other experimental work has used data from DNS of the turbulent bound-
ary layer (Spalart 1988), and the incompressible plane mixing layer (Rogers
& Moser 1994) for validation of vorticity measurements in a similar manner
(Figures 13 and 14 in Wallace & Foss 1995).

4.3 The Backward Facing Step
Le & Moin (1994) computed the turbulent flow over a backward facing step.
When initiated, the objective of these computations was to generate a reli-
able database for a complex flow involving separation and reattachment. The
initial computations had a Reynolds number (based on free-stream velocity
and step height) of 5000, and expansion ratios ranging from 1.33 to 2. These
computations exhibited mean velocity profiles that fell well below the log-law
at distances as large as 19 step-heights downstream of the step. This result
contradicted previous experimental studies (Westphal et al 1984, Kim et al
1978, Adams et al 1984) who reported recovery of the log-law as early as six
step-heights downstream of the step (just downstream of reattachment). Two
possible reasons for the discrepancy were conjectured. Lower Reynolds num-
ber in the computations was suggested, as usual, as one possible reason. The
second conjecture was that the friction velocity in the experiments was incorrect
because it was deduced from the Clauser chart, which implicitly assumes that
the log-law holds.

Jovic & Driver (1994) tested these hypotheses. They performed experiments
at the same Reynolds number and expansion ratio as the computations. Besides
low Reynolds number, an added feature of the Jovic & Driver experiments was
that the Clauser chart was not used. Instead,Cf was directly measured by a laser
interferometer and used to obtainuτ . These experiments confirmed that the com-
putations were correct, that is, the mean velocity profiles did indeed fall below
the log-law in the recovery region. The good agreement with the Jovic & Driver
experiments established confidence in the computations while underscoring the
impropriety of using the Clauser chart in regions of adverse pressure gradients.
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4.4 Near-Wall Measurements
Kim et al (1987) performed DNS of the turbulent channel flow (Rec= 3300).
About four million grid points were used to resolve the flow. Extensive com-
parison of the results to experimental data was performed. In general, good
agreement was found, but an important discrepancy was observed. Large dif-
ferences in the turbulent intensity (rms velocity fluctuations normalized by local
mean velocity) were observed in the near-wall region (y+ < 10). The computed
values ofurms/U andwrms/U approached 0.36 and 0.2 respectively at the wall,
whereas the experimental values (Kreplin & Eckelmann 1979) were about 30
to 50 percent lower. Note that∂u

∂y |rms/
dU
dy ≈ urms/U , and∂w

∂y |rms/
dU
dy ≈ wrms/U

at the wall.
Two experimental studies (Alfredsson et al 1988, Naqwi & Reynolds 1987)

subsequently reexamined the near wall measurements of∂u/∂y and∂w/∂y in
the channel, and found values very close to those obtained in the computations.
Alfredsson et al (1988) obtained a value of 0.4 for∂u

∂y |rms/
dU
dy at the wall and

estimated that∂w
∂y |rms/

dU
dy in their experiments was about 0.2. Their experiments

showed that heat transfer to the fluid via the probe substrate caused significant
differences between the static and dynamic responses of the probes when air
or oil was used as the working fluid. They attributed the lower values in the
previous experiments to the resulting error. Instead of using hot-film probes,
Naqwi & Reynolds (1987) developed a laser wall-fringe-fan device. They
obtained a value of 0.38dU

dy for ∂u
∂y |rms at the wall. Although unable to measure

∂w
∂y |rms sufficiently close to the wall, they reported that it was greater than or
equal to 0.13dU

dy at the wall, in agreement with the computations.
In this example, the computations were used to critically examine exper-

imental data, which then resulted in improved measurements. Since then,
further validation of the DNS data has been provided by the experiments of
Nishino & Kasagi (1989) using a three-dimensional particle tracking velocime-
ter, Niederschulte et al (1990) using LDV, and Durst et al (1995) using LDA.
Existing DNS data for the turbulent channel is now considered reliable enough
to be used as a benchmark by experimental diagnostic techniques (e.g. Durst
et al 1996).

Near-wall values of the kurtosis of the wall-normal velocity have received
recent attention. Computational values for the kurtosis [≈22 in Kim et al’s
(1987) plane channel DNS and 19 in Eggels et al’s (1994) DNS of pipe flow]
are significantly higher than the values from experiments (≈3 e.g. Durst et al
1995). A combined computational and experimental study by Xu et al (1996)
examined this difference. Factors such as inadequate time resolution, implicit
filtering during data collection and insufficient statistical accuracy were noted to
make reliable near-wall measurements of kurtosis difficult. However, indirect
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evidence for the accuracy of the computational values was offered. Data from
DNS of the turbulent channel was first used to determine the signature of events
that contributed to the high kurtosis. It was determined that events with large
values of|v′/vrms| only occurred in the near-wall region (y+ < 10). Pipe flow
experiments with accurate near-wall measurements were then performed and
the data examined for events with a signature similar to the computations. The
experimental data were found to be consistent with the DNS, suggesting that
the high near-wall values of the kurtosis were physical in origin.

5. TURBULENCE MODELING

Some of the most important contributions of DNS have been in phenomeno-
logical modeling for engineering applications. The Reynolds stress equations,
which form the basis for closure of the Reynolds averaged mean flow equa-
tions, contain several terms that must be modeled but are difficult to measure
experimentally. For example, the pressure-strain correlation tensor, which is
of comparable magnitude to the production terms, has not been amenable to
measurement. Similarly, measurements of the dissipation typically require the
assumption of isotropy. This is not so in DNS: All the terms in the Reynolds
stress equations can be directly computed (Figure 5).

Figure 5 The budget of turbulent kinetic energy as a function of wall-normal distance in the
turbulent flow over a backstep. All quantities are normalized byU2

0/h, whereU0 is the freestream
velocity andh is the step height. Adapted from Le & Moin (1994).
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Historically, Rogallo’s (1981) DNS of homogeneous turbulence was the first
to provide complete Reynolds stress budgets for a turbulent flow. He used
the data to evaluate models for the pressure-strain correlation and dissipation.
Since then, DNS data for homogeneous shear flow (Rogers et al 1986) and
axisymmetrically strained flow (Lee & Reynolds 1985) have been widely used
to test models (Hunt 1988, Speziale 1994, Shih 1996). DNS data from wall-
bounded flows have been very useful in providing the near-wall behavior of the
terms in the budget. In fact, the first computed budgets in the plane channel
(Mansour et al 1988) revealed significant near-wall error in the kinetic energy
budgets derived from Laufer’s (1955) classical pipe flow experiments (Figure
5.5 in Townsend 1976).

In the absence of DNS data, the testing of models is somewhat indirect.
For example, a proposed model for the pressure-strain correlation would be
combined with existing models for the other terms, and then results for quantities
such as the pressure coefficient,Cp, or the skin-friction coefficient,Cf , would be
compared to experiment. DNS allows more direct testing of models: A model
for the pressure-strain correlation can be evaluated by direct comparison to DNS
values of the pressure-strain correlation. Suggestions such as Durbin’s (1991)
proposal thatv2, and not the turbulent kinetic energyk, provides the relevant
velocity scale for the eddy-viscosity in wall-bounded flows (i.e.,νt = Cµv2T
whereT is a turbulence time scale) can be directly tested (see e.g. Rodi &
Mansour 1993) by computingCµ and examining its spatial constancy.

If a model is found to perform unsatisfactorily (or satisfactorily for that
matter), answers to the query “why ?” may be sought. A study by Bradshaw
et al (1987) provides a good example. This study examined a central assumption
made by models for the rapid pressure-strain correlation. The so-called rapid
pressure in incompressible flows is given by the relation,

prapid = − 1

4π

∫
V

2
∂Ui

∂xj

∂u′
j

∂xi
G dV, (3)

whereG denotes the Green’s function of the Laplacian. The rapid pressure
therefore depends on thevolume integralof the mean velocity gradient weighted
by the fluctuating gradients. However, in deriving models for the pressure-strain
correlation, it is often assumed thatprapid only depends upon thelocal mean
velocity gradient; i.e. the mean velocity gradient is taken out of the integral in
Equation 3. The appropriateness of this assumption was tested by Bradshaw
et al (1987) in the turbulent channel. The pressure-strain correlation computed
using the pressure obtained from the local approximation was compared to its
exact value. The local approximation was seen to perform well outside of the
viscous sublayer. The correlation of the rapid pressure with its Laplacian was
then examined and found to be high, suggesting a possible explanation for this
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success. The inadequacy of the approximation in the sublayer was explained by
noting that the mean velocity in that region varied over a distance comparable
to the correlation length of the fluctuating gradient.

The availability of DNS data has resulted in novel approaches to model
evaluation. Parneix et al (1996) used an a priori test to evaluate a second moment
closure model applied to the flow over a backstep. The various equations in
the model were individually tested by solving the model equations for one
variable, while fixing the other variables to their DNS values. Such evaluation
for the backstep showed that contrary to popular belief the much-malignedε

equation performed remarkably well; the model equation foruv was the weak
link.

Similarly, DNS allows testing of the concepts behind a model. Compressible
turbulence provides a good example. The growth rate of compressible mixing
layers has been shown by experiments (e.g. Brown & Roshko 1974) to be
lower than that of their incompressible counterparts. Motivated by computa-
tions of two-dimensional forced mixing layers, which showed the formation of
shock waves between the Kelvin-Helmholtz rollers, Zeman (1990) proposed
a phenomenological model for this trend. He contended that at high speeds
“shocklets” form in mixing layers; the large gradients in these shock waves
lead to increased dissipation of the turbulence (manifested by the dilatation
dissipation), and hence lower growth rate of the mixing layer. Zeman’s model
showed good agreement with experimental data for the growth rate. DNS
of homogeneous compressible shear flow (Blaisdell et al 1993, Sarkar et al
1991) showed a similar suppression of turbulence growth rate with increased
compressibility. The DNS database was therefore used by Blaisdell & Zeman
(1992) to test the dynamical significance of shocklets. Instantaneous snapshots
and time evolution of the dilatation dissipation showed that shocklets occurred
too infrequently to make a significant contribution to the dilatation dissipation.
Most of the dilatation dissipation arose from large scale acoustic waves; that is,
while Zeman’s model predictions were correct the background phenomenology
was not.

The early DNS were of simple flows, which turbulence models had already
been calibrated for and could predict successfully. As a result, their impact
was not very pronounced. Currently, however, flows that models are experi-
encing difficulty with are being computed. Turbulence under mean rotation is
a good example. A large amount of experimental and theoretical attention has
been devoted to the subject because of applications such as turbomachinery,
geophysical flows, and internal combustion engines. In practical flows, rota-
tion is complicated by the presence of factors such as body forces other than
the Coriolis force, mean gradients, and wall effects. DNS has been used to
study homogeneous rotating turbulence, and in the process isolate the influence
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of rotation. The subject is fairly rich—recent publications by Bartello et al
(1994) and Cambon et al (1997) review earlier work. The focus of most stud-
ies has been to determine the conditions under which mean rotation produces
anisotropy in initially isotropic turbulence. The DNS results have been used to
parameterize this influence in turbulence models, which have then been applied
to complex flows involving strong rotation.

Other computed flows where models experience difficulty include the three-
dimensional turbulent boundary layer (Moin et al 1990), separated flows such
as the flow over a backstep (Le & Moin 1994), and pressure-gradient–driven
separation on a flat plate (Na & Moin 1996). Compressible turbulent channel
flow (Coleman et al 1995) and shock/turbulence interaction (Lee et al 1993,
1994; Mahesh et al 1997) are additional examples.

6. BOUNDARY LAYER STRUCTURE

Perhaps the most tangible contribution of DNS to our understanding of turbu-
lent boundary layers has been in providing a more realistic view of its structure.
Early simulations of wall-bounded flows were performed at a time (early 1980s)
when interest in coherent structures was at its peak among the research commu-
nity. Most of what was known about boundary layer structure then (e.g. see the
review by Cantwell 1981) was deduced from experiments, with much extrap-
olation from incomplete data. The early large eddy simulation (LES) (Moin
& Kim 1982; Kim 1983, 1985) first reproduced classical experimental results
such as the pulsed hydrogen bubble experiments of Kline et al (1967) and the
VITA technique of Blackwelder & Kaplan (1976). Access to velocity, pressure,
and vorticity fields in three-dimensional space and time allowed DNS to fill in
the gaps in the popular notions of boundary layer structure. In retrospect, this
use of DNS represented a major change in the accepted role of computations
in turbulence research. Instead of merely predicting experimentally measured
statistical correlations, as was common in the engineering research community,
computations were now being used to yield information impossible to obtain
from experiments. The confidence in DNS data has progressed to the point
where modern ideas on coherent structures such as the critical-point notions
of Chong et al (1990) are routinely evaluated using DNS data (Cantwell et al
1997).

Some of the insights into boundary layer structure gained from DNS are
summarized below (see also Moin & Spalart 1987, Robinson 1991). First
consider the turbulence in the near-wall region. The velocity vectors in any
vertical plane normal to the mean flow (y–z) direction show an abundance of
quasi-streamwise vortices in the near-wall region. These vortices are associated
with intense velocity fluctuations and large skin friction at the wall (Bernard et al
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1993, Kravchenko et al 1993). They have also been shown to be responsible
for turbulence generation. The so-called “bursting” event (Kline et al 1967)
which was once considered a central feature in turbulence regeneration may
not be as profound an occurrence as was once thought. DNS data suggests that
the observed bursting event may simply be due to the passage of streamwise
vortices past the measuring station (Kim & Moin 1986). The signature of a
burst as reported in experiments by Kline et al (1967) was the lifting of dye from
the near wall region, oscillation of its trace, and eventual breakdown. Probe
measurements also showed that the bursts were associated with high Reynolds
shear stress. Kim & Moin (1986) demonstrated that these events could be
reproduced by the simple passage of a streamwise vortex over a region of dye
concentration near the wall.

The then-prevalent notion of near-wall structure was that the wall layer was
composed of alternating arrays of elongated counter-rotating streamwise vor-
tices surrounding the wall-layer streaks. The DNS data showed that this was not
true. Although the wall layer is composed of elongated regions of high-speed
and low-speed streamwise velocity, the same is not true of streamwise vorticity.
The streamwise extent of the vortices in the near-wall region is much shorter
(400 wall units), and they are not necessarily in pairs. The large streamwise
length of the streaks (as seen in contours of constantu′) appears to be due to a
sequence of vortices following each other, pumping high-speed fluid toward the
wall and low-speed fluid away from the wall (Sendstad & Moin 1992). Plots
of velocity vectors in planes perpendicular to the mean flow direction along
a randomly chosen low speed streak in turbulent channel flow are shown in
Figure 6. Note that the vortices seen near the streak have alternate signs, and
that the distance between the vertical planes is slightly more than 350 wall units.

Consider the turbulence outside the near-wall region. Away from the wall,
histograms of the inclination angle of the vorticity vector clearly indicate (Moin
& Kim 1985) the predominance of vortical structures inclined at 45◦ to the wall,
as hypothesized three decades earlier by Theodorssen (1955), and later substan-
tiated in laboratory visualizations by Head & Bandyopadhay (1981). Two-point
correlation functions with directions of probe separation along various inclina-
tion angles to the wall also provide strong statistical support for the dominance
of hairpin-like structures inclined at 45◦ to the wall. Vortex lines drawn in in-
stantaneous flow fields show hairpin-like structures; however, often the hairpins
are not symmetric, having only one clearly identifiable leg.

The channel flow computations revealed that the hairpin vortices were of-
ten formed by the rollup of spanwise sheets of vorticityaway from the wall.
This observation resulted in the conjecture that hairpin vortices were simply
a result of turbulent fluctuations perturbing the spanwise vorticity associated
with the mean shear and the stretching of these fluctuations by the mean strain
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Figure 6 Velocity vectors in vertical planes along a randomly chosen low-speed streak aty+ =
5. Figure displays regions whereu ′ < − uτ (top). Vertical lines show the location of the long
low-speed streak in the topmost figure. Horizontal line is the plane of the streak (y+ = 5). This
illustrates that streaks are maintained by a system of staggered vortices. Tick marks are 0.25 units
apart except on the horizontal axis of the figure where they are 0.5 units apart (top). From Sendstad
& Moin (1992).



         

P1: NBL/KKK

November 25, 1997 11:28 Annual Reviews AR049-18

DIRECT NUMERICAL SIMULATION 571

rate. That is to say, hairpin vortices were a consequence of mean shear, and
inhomogeneous effects caused by the wall were not a necessary ingredient in
their formation. The homogeneous shear simulations of Rogers & Moin (1987)
proved this conjecture to be correct. The value ofSq2/ε (S, q2, andε denote the
mean velocity gradient, the trace of the Reynolds stress tensor, and the kinetic
energy dissipation, respectively) in the homogeneous shear computation were
matched to that in the log-region of the channel. Diagnostics similar to those
used in the channel flow were then used to demonstrate the presence of hairpin
vortices inclined at about 45 degrees to the mean flow direction. Inclined vorti-
cal structures in homogeneous shear flow were also observed by Kida & Tanaka
(1994), who pointed out that the distance between them is determined by the
length scale of the initial vorticity fluctuations. Also, a plausible mechanism
for the generation and interaction of the vortical structures was proposed. The
Reynolds stresses and the structure of turbulent shear flows depend onSq2/ε.
Sq2/ε in the near-wall region of channel flow is about 35, as compared to 7 in
the log-region. Computations of homogeneous shear flow at high shear rates
(Sq2/ε ≈ 34) by Lee et al (1990) show the presence of streaks remarkably
similar to those in the near wall region of the turbulent channel, suggesting that
the presence of streaks may also be attributed solely to the mean shear.

DNS has also helped resurrect some early concepts that had not been prop-
erly evaluated because of insufficient data. A couple of examples are provided
below. In the mid 1980s there were concerns about the objectivity of the vari-
ous accounts of coherent structures based on flow visualizations and a lack of
an apparent link between such observations and quantitative models of turbu-
lence. Two decades earlier, Lumley (1967) had proposed an attractive definition
of coherent structures as the eigenfunctions of the two-point velocity correla-
tion tensor. Lumley’s definition (formulated in terms of the proper orthogonal
decomposition, or POD) expressed the turbulent velocity field as a superposi-
tion of these deterministic structures with random coefficients. Moin & Moser
(1989) computed the complete (four dimensional) two-point correlation ten-
sor in turbulent channel flow and extracted its eigenfunctions. The resulting
dominant characteristic eddy was found to contribute as much as 76% of the
total turbulent kinetic energy, and even more to turbulence production. The
dominant characteristic eddy consisted of a pair of counter-rotating vortices
inclined with respect to the wall.

One of the more common approaches to coherent structure analysis is the
conditional averaging method. Conditional averages can be approximated using
the two-point correlation tensor in conjunction with the mean square estimation
technique. The governing equation for the joint probability density function
for the velocity and deformation tensors contains conditional eddies, and there-
fore provides a linkage between turbulence modeling and organized structures.
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Using DNS data of homogeneous shear flow, Adrian & Moin (1988) provided
a detailed evaluation of the stochastic estimation technique for the detection of
instantaneous turbulent structures. By combining this technique with proba-
bility density functions computed using the same database, they were able to
identify the most frequently occurring structures and those that contribute most
to turbulence production.

7. CONCLUDING REMARKS

The contributions of direct numerical simulations to turbulence research in
the last decade have been impressive. The availability of raw DNS data has
spawned a new trend in the field: It has brought together researchers from
diverse disciplines and with diverse viewpoints (e.g. see Hunt 1988). Although
generating data can be time-consuming, analyzing stored data requires only
modest resources. New ideas and theories can therefore be readily tested.

The future of DNS in turbulence research appears bright. In our opinion, the
greatest strength of DNS is the stringent control it allows over the flow being
studied. Exploiting this strength and using it to examine idealized flows such
as those discussed in Section 3 is how DNS is likely to be most useful. The
fundamental areas of aeroacoustics, flow control, high-speed flows, and reacting
flows will likely see significant progress in the next decade. Given the current
trends in computer hardware, the Reynolds numbers in these computations will
at best be modest. The increased computer power will likely be used to improve
statistical samples, and to consider a wider range of other physical parameters.

The Reynolds numbers of the simpler turbulent flows are currently approach-
ing those of the smaller-scale experiments. As an example, the classical exper-
iments on decaying grid turbulence by Comte-Bellot & Corrsin (1971), were
recently computed by AA Wray (unpublished information). The computations
were performed on a parallel machine using a 5123 grid. Excellent agreement
with the experiment was obtained. A novelty of these computations was that
the computed range of scales was actually greater than that measured exper-
imentally. DNS of forced isotropic turbulence has been conducted on 5123

grids by several workers (Jim´enez et al 1993, Chen et al 1993, Wang et al 1996)
interested in the behavior of the small scales. The Reynolds number in these
computations actually exceeds that in most laboratory experiments.

As the flow geometries become more complex, the numerical methods used
in DNS will have to evolve. The computational fluid dynamics community
has much experience with complex geometries, and much can be learned about
gridding techniques from them. However, the significantly higher numerical
fidelity required by DNS must be kept in mind. The analysis and development
of current numerical schemes is largely based on linear equations such as the
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advection and diffusion equations. Nonlinear methods of analysis (e.g. Ghosal
1996) and development are likely to prove very productive. From the standpoint
of computer hardware, parallel computing appears to be the enabling technology
for the next generation of archivable simulations. A significant amount of the
time taken by DNS is spent in computing statistics: As shown by Carati et al
(1996), one of the effective uses of parallel machines is to simultaneously
compute an ensemble of flows, thereby reducing the overall turnaround time.
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