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The objective of this paper is to develop a numerical method for simulating multiphase cavitating flows
on unstructured grids. The multiphase medium is represented using a homogeneous mixture model that
assumes thermal equilibrium between the liquid and vapor phases. We develop a predictor–corrector
approach to solve the governing Navier–Stokes equations for the liquid/vapor mixture, together with
the transport equation for the vapor mass fraction. While a non-dissipative and symmetric scheme is
used in the predictor step, a novel characteristic-based filtering scheme with a second order TVD filter
is developed for the corrector step to handle shocks and material discontinuities in non-ideal gases
and mixtures. Additionally, a sensor based on vapor volume fraction is proposed to localize dissipation
to the vicinity of discontinuities. The scheme is first validated for simple one dimensional canonical prob-
lems to verify its accuracy in predicting jump conditions across material discontinuities and shocks. It is
then applied to two turbulent cavitating flow problems – over a hydrofoil using RANS and over a wedge
using LES. Our results show that the simulations are in good agreement with experimental data for the
above tested cases, and that the scheme can be successfully applied to both RANS and LES methodologies.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

Cavitation refers to the formation of vapor when pressure in a
liquid drops below vapor pressure. The importance of understand-
ing cavitation lies in its occurrence in a wide variety of applications
such as valves, injectors and propulsor blades. The numerical sim-
ulation of cavitating flows is inherently challenging since these
flows possess a wide range of length and time scales. Additionally,
the formation of vapor is often followed by growth of vapor cavi-
ties which not only vary in size but also form and collapse at differ-
ent rates, making their prediction difficult.

The most commonly used physical model to simulate cavitating
flows is the homogeneous mixture model. It treats the mixture of
water and vapor as a single compressible fluid, and solves a sepa-
rate transport equation for the mass fraction of vapor (Shin et al.,
2003; Kunz et al., 2000; Ahuja et al., 2001; Schnerr et al., 2008;
Liu et al., 2004; Saito et al., 2007; Seo and Lele, 2009; Seo et al.,
2008; Singhal et al., 2002; Senocak and Shyy, 2002; Adams and
Schmidt, 2013; Schmidt et al., 2009). The key differences between
commonly used physical models lie in the constitutive equation of
state and the mass transfer model. Frikha et al. (2008) provide a
review of the different mass transfer models used. Almost all of
the simulations mentioned above have used the RANS methodol-
ogy. However in recent times, DES and LES are also being consid-
ered as viable options (Arndt et al., 2000; Bensow and Bark,
2010; Dittakavi et al., 2010; Kinzel et al., 2007; Ji et al., 2013;
Wang and Ostoja-Starzewski, 2007). Also, most past simulations
invoke the isothermal assumption for cavitation in water. It is
known that this assumption is not valid for thermosensitive fluids
like cryogenic fluids where an energy equation needs to be solved
(Hosangadi and Ahuja, 2005; Zhang et al., 2008; Goncalvès and
Patella, 2010). In this study, we use the homogeneous mixture
approach with a non-barotropic equation of state for water. In
order to maintain a general framework, we have solved an energy
equation. In the current investigation, we have focused on hydro-
dynamic cavitation. The method however, can be applied to ther-
mosensitive fluids as well. The latent heat of evaporation is not
considered in this study. Although the specific latent heat of evap-
oration varies from low values near the critical point to appreciable
values near 1 atm and 25 �C, the mass of vapor produced by cavi-
tation is small with respect to the mass of liquid; the amount of
latent heat absorbed by vapor formation is therefore negligible.
In the examples considered, the vapor mass fraction does not
exceed 0.0003.

A turbulent cavitating flow has a broadband spectrum which
requires non dissipative numerical schemes (Mahesh et al., 2004;
Hou et al., 2005) to represent small scales accurately. However,
non-dissipative schemes can become unstable at high Reynolds
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numbers. Furthermore, cavitation is characterized by large gradi-
ents in density and strong pressure waves formed during vapor
cloud collapse. Accurate representation of turbulence in the pres-
ence of these strong gradients is a significant challenge and requires
appropriate discontinuity capturing methods. Classical monotonic
discontinuity-capturing methods are too dissipative and not suit-
able for turbulent simulations. Modern discontinuity capturing
methods like total variation diminishing (TVD) schemes, essentially
non-oscillatory (ENO) schemes and monotone upstream-centered
schemes for conservation laws (MUSCL) typically incur higher com-
putational cost for achieving higher order of accuracy in the vicinity
of discontinuities. Further, these schemes require special treatment
near boundaries (Yee et al., 1999). Yee et al. (1999) proposed a class
of filters called ‘characteristic filters’, that add the dissipative part of
a traditional shock capturing method to a non-dissipative base
scheme. They developed this method for ideal gases on structured
grids; Park and Mahesh (2007) proposed an extension to unstruc-
tured grids. Numerical boundary conditions for these filters can
be same as the existing base schemes, which is an added advan-
tage. Further, the characteristic filter can be applied to the solu-
tion once, after a full time step, and hence is considerably
cheaper than the TVD, ENO and MUSCL schemes (Lo et al.,
2010). A simple linear filter was first proposed by Gustafsson
and Olsson (1995), which provides a linear second order dissipa-
tion. Yee et al. (1999) then used a second order non-linear TVD
filter that takes into account the different wave characteristics
of the Euler equations. Both lower order TVD or higher order
ENO/WENO type terms can be used as characteristic filters. Lo
et al. (2010) observed that WENO type filters perform marginally
better than lower order TVD filters and also found WENO type fil-
ters to be insensitive to the tunable parameters that appear in the
shock capturing scheme. Both Park and Mahesh (2007) and Lo
et al. (2010) observed that the original combination of TVD filter
and Harten’s artificial compression method (ACM) switch (Harten,
1983) proposed by Yee et al. (1999) was not able to distinguish
between turbulent fluctuations and shocks, and hence proposed
modified switch terms.

In this paper, we extend the characteristic based filtering method
to non ideal gases and a mixture of fluids to simulate multiphase
cavitating flows on unstructured grids. A predictor–corrector
method is used where the predictor step is non-dissipative and
the corrector step computes the jump conditions across the discon-
tinuities. The dissipation is spatially localized to reduce dissipation
away from the discontinuities. We propose an additional modifica-
tion to this localization term applicable in multiphase flows. The
governing equations are spatially Favre filtered for LES. The addi-
tional terms arising out of spatial filtering are modeled using a
Dynamic Smagorinsky model. The paper is organized as follows.
Section ‘Governing equations’ outlines the governing equations
along with the source terms for evaporation of water and condensa-
tion of vapor. Section ‘Numerical method’ discusses the predictor–
corrector algorithm along with the spatial and temporal discretiza-
tion schemes. The characteristic based filtering applied as a correc-
tor step is also discussed in this section. Validation simulations are
presented in Section ‘Results’, and a brief summary in Section ‘Sum-
mary’ concludes the paper.

Governing equations

We use a homogeneous mixture model that assumes thermal
and mechanical equilibrium between the phases i.e. there is no slip
velocity or temperature difference between the phases. Also, sur-
face tension effects are ignored. The constituent phases are treated
as a single compressible fluid whose density

q ¼ qlð1� aÞ þ qga; ð1Þ
where ql is the density of liquid and qg is the density of vapor. a is
the vapor volume fraction which is related to the vapor mass frac-
tion (Y) by

qlð1� aÞ ¼ qð1� YÞ and qga ¼ qY: ð2Þ

The governing equations are the Navier–Stokes equations along
with a transport equation for the mass fraction of vapor:

@q
@t
¼ � @

@xk
qukð Þ;

@qui

@t
¼ � @

@xk
quiuk þ pdik � rikð Þ;

@qY
@t
¼ � @

@xk
qYukð Þ þ Se � Sc;

ð3Þ

where q;ui and p are density, velocity and pressure respectively of
the mixture. For energy transport, both total energy and internal
energy forms are considered. Their relative merits and demerits
are discussed in Section ‘Multiphase non cavitating shock tube’.
The internal energy form is used for the results shown unless spec-
ified otherwise.
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@t
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@xk
ET þ pð Þuk � rikui � Qkf g;
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@xk
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@xk
þ rik

@ui

@xk
:

ð4Þ

Here ET and es are total energy and internal energy respectively.

qes ¼ qlelð1� aÞ þ qgega; where

el ¼ CvlT þ
Pc

ql
;

eg ¼ CvgT;

qes ¼ qCvmT þ qð1� YÞ PcKl

pþ Pc
and

ET ¼ qes þ
1
2
qukuk:

ð5Þ

Here, el and eg are the internal energies of liquid and gas respec-
tively. Cv l and Cvg are the specific heats at constant volume for
liquid and vapor respectively and Cpl and Cpg are the specific heats
at constant pressure. The system is closed using a mixture equation
of state based on stiffened equation of state for water and ideal gas
equation for vapor.

p ¼ YqRgT þ ð1� YÞqKlT
p

pþ Pc
: ð6Þ

Here, Rg = 461.6 J/Kg K, Kl = 2684.075 J/Kg K and Pc = 786.333 � 106

are constants associated with the equation of state of vapor and
liquid. The density and speed of sound predicted by the stiffened
equation of state is compared with the National Institute of Stan-
dards and Technology (NIST) data in Fig. 1(a) and a good agreement
is observed. However the stiffened equation of state underpredicts
the value of specific heat at constant volume Cvl (predicts it to be
1500.3 J/Kg K as opposed to the NIST value of 4157.4 J/Kg K). This
is not seen as a serious drawback in the current study because, heat
transfer effects within the liquid phase are small in hydrodynamic
cavitation at ambient pressure and temperature. The proposed
numerical method however can be applied to more complicated
equations of state for water like the Tait equation of state. The
stiffened equation of state is chosen due to its simplicity. Since
internal energy is a function of both pressure and temperature,
we need to obtain these variables using Eqs. (5) and (6). Solving
these two equations simultaneously yields a quadratic equation
ap2 þ bpþ c ¼ 0, where



Fig. 1. (a) Comparison of density and speed of sound in water with NIST data, � : NIST data, —— : Present. (b) Comparison of speed of sound in water–air mixture to
experiment, h: Henry et al. (1971), � : Semenov and Kosterin (1964), M : Karplus (1957), —— : Present (0.1 MPa), ———— : Present (0.2 MPa).
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a ¼ Cvm;

b ¼ CvmPc þ ð1� YÞPcKl � ½ð1� YÞKl þ YRg �qes and
c ¼ �YRgPcqes:

ð7Þ

The pressure is obtained as the positive root of this quadratic equa-
tion and temperature is then computed from either Eq. (5) or Eq.
(6). The viscous stress rij and heat flux Qi are given by

rij ¼ l @ui

@xj
þ @uj

@xi
� 2

3
@uk

@xk
dij

� �
and ð8Þ

Q i ¼ k
@T
@xi

;

where the mixture viscosity and mixture thermal conductivity are
defined as

l ¼ llð1� aÞð1þ 2:5aÞ þ lga and ð9Þ
k ¼ klð1� aÞ þ kga:

To perform LES, Eq. (3) are first Favre filtered spatially:
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:

ð10Þ

Here, the tilde quantities are Favre averaged quantities and sik; qk

and tk are subgrid scale (SGS) terms namely: SGS stress, SGS heat
flux and SGS scalar flux. These terms are modeled using the
Dynamic Smagorinsky model (DSM) (Germano et al., 1991):

sij �
dij

3
skk ¼ �2CSðx; tÞqD2 eS��� ���fS�ij ;

skk ¼ 2CIðx; tÞqD2 eS��� ���2;
qi ¼ �q

CSðx; tÞD2 eS��� ���
PrT

@T
@xi

;

ti ¼ �q
CSðx; tÞD2 eS��� ���

ScT

@Y
@xi

;

ð11Þ

where jSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

p
and S�ij ¼ Sij � 1=3Skkdij. The model coefficients

Cs;CI; PrT and ScT are determined by the Germano identity
(Germano et al., 1991). For example,
CSD
2 ¼ 1

2

L�ijM
�
ij

D E
M�

ijM
�
ij

D E ;
L�ij ¼

dqui � quj

q

� �
�
dqui �dqujbq ;

M�
ij ¼

d
q eS��� ���fS�ij � bq bD

D

 !2ceS��� ���cfS�ij ;
ð12Þ

where, �h i denotes spatial average over homogeneous direction(s)
and the caret denotes test filtering. Test filtering is defined by the
linear interpolation from face values of a control volume, which is
again the interpolation from two adjacent cell center values (Park
and Mahesh, 2007):

b/ ¼ 1
Nface

X
no of face

/f ¼
1

2Nface

X
no of face

ð/icv1 þ /icv2Þ; ð13Þ

where Nface is the number of faces for a given control volume.
Speed of sound

The expression for the speed of sound in a liquid–gas mixture is
obtained using the equation of state and Gibbs equation and is
given by

a2 ¼ C1T

C0 � C1
Cpm

; where

C0 ¼ 1� ð1� YÞqKlT
Pc

ðpþ PcÞ2
;

C1 ¼ RgY � Klð1� YÞ p
pþ Pc

and

Cpm ¼ YCpg þ ð1� YÞCpl:

ð14Þ

The change in speed of sound with gas volume fraction at given
temperature and pressure obtained using the above relation, is
compared to experimental results (Henry et al., 1971; Semenov
and Kosterin, 1964; Karplus, 1957) in Fig. 1(b). This sound speed
is obtained assuming that there is no mass transfer between the
phases and hence is the non-equilibrium sound speed. Note the
good agreement with experiments; also the effect of gas volume
fraction in changing the acoustic characteristics of water is evident.
Note that the sound speed in the mixture ranges from 1480 m/s for
pure water to 30 m/s for certain values of gas volume fraction.
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Cavitation source terms

In case of cavitating flows, Se and Sc are source terms for evap-
oration of water and condensation of vapor and are given by

Se ¼ Cea2ð1� aÞ2 ql

qg

maxððpv � pÞ; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRgT

p ; ð15Þ

Sc ¼ Cca2ð1� aÞ2 maxððpv � pÞ; 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pRgT

p ;

where a is the volume fraction of vapor and pv is the vapor pressure.
Ce and Cc are empirical constants. Saito et al. (2007) have shown
that the source terms are not very sensitive to the values of these
empirical constants and arrive at an optimum value of 0.1 for both
the constants. Vapor pressure is related to temperature by

pv ¼ pk exp 1� Tk

T

� �
ðaþ ðb� cTÞðT � dÞ2Þ

� �
; ð16Þ

where pk = 22.130 MPa, Tk = 647.31 K, a = 7.21, b = 1.152 � 10�5,
c = �4.787 � 10�9, d = 483.16.

Numerical method

The numerical method adopts a novel predictor corrector
approach. In the predictor step, Eq. (3) are discretized using a col-
located, cell-centered finite volume method. Fig. 2(a) illustrates the
storage of variables and the notation used. The solution is first
advanced using a non-dissipative predictor step. The characteristic
based filter is then applied as a corrector.

Predictor step

A predicted value is first obtained by solving Eq. (3) using a
symmetric and non-dissipative scheme. The convective fluxes at
the face are estimated using a symmetric average with a gradient
term using Taylor series expansion to obtain

/f c
¼ /icv1 þ /icv2

2
þ 1

2
r/jicv1 � Dxicv1 þr/jicv2 � Dxicv2� 	

; ð17Þ

where Dxicv1 ¼ xfc � xicv1, and r/jicv1 denotes the gradient defined
at icv1. The viscous term is split into two parts, rij ¼ r1

ij þ r2
ij , where

r1
ij ¼

l
Re

@ui
@xj

and r2
ij ¼

l
Re

@uj

@xi
� 2

3
@uk
@xk

dij

� �
. r2

ij can be interpreted as a

‘compressible’ contribution, since it vanishes in the incompressible
limit. The ‘incompressible’ component r1

ij is computed by

1
V cv

X
faces

l
Re

� �
f

@ui

@xj

����
f

njAf ¼
1

Vcv

X
faces

l
Re

� �
f

@ui

@n

����
f

Af : ð18Þ

Here, the normal gradient at the face is computed by

@/
@n
¼

/ifn2 � /ifn1

df
; ð19Þ
Fig. 2. (a) Schematic of the collocated finite volume method. (b) Sche
where ifn1 (ifn2) is the projection of icv1 (icv2) onto the extension
of normal vector n and df is the distance between ifn1 and ifn2 as
illustrated in Fig. 2(b). /ifn1 is given by

/ifn1 ¼ /icv1 þr/jicv1 � ðxifn1 � xicv1Þ; ð20Þ

where the linear least-square method is used to determine the gra-
dientr/ at icv1. Viscosity at the cell face is obtained using Eq. (17)
and a least square reconstruction. Thus, the incompressible part
corresponds to a compact-stencil method. r2

ij;f is constructed by

the interpolation of r2
ij

���
icv1

and r2
ij

���
icv2

using Eq. (17).

Discrete positivity of viscous dissipation

The viscous term in the internal energy equation corresponds to
the viscous dissipation term and by the second law of thermody-
namics, should always remain positive. This term is therefore re-
written to discretely ensure positivity. Note that

rik
@ui

@xk
¼

4@u
3@x

@u
@y þ @v

@x
@u
@z þ @w

@x

@u
@y þ @v

@x
4@v
3@y

@v
@z þ @w

@y

@u
@z þ @w

@x
@v
@z þ @w

@y
4@w
3@z

0BB@
1CCA

@u
@x

@u
@y

@u
@z

@v
@x

@v
@y

@v
@z

@w
@x

@w
@y

@w
@z

0BB@
1CCA

can be re-written as

rik
@ui

@xk
¼ 4

3
@u
@x

� �2

þ @v
@y

� �2

þ @w
@z

� �2
" #

þ @u
@y
þ @v
@x

� �2

þ @u
@z
þ @w
@x

� �2

þ @v
@z
þ @w
@y

� �2

: ð21Þ

This sum of squares is strictly positive and hence viscous dissipa-
tion remains discretely positive at all times. Eq. (21) also has fewer
operation counts when compared to computing the scalar product
of two tensors.

Time advancement

Two time advancement schemes are implemented: a second-
order explicit Adams–Bashforth scheme and a second order segre-
gated implicit Crank–Nicholson scheme. For the Adams–Bashforth
scheme,

qnþ1
j ¼ qn

j þ
Dt
2

3rhsjðqnÞ � rhsjðqn�1Þ

 �

; ð22Þ

where rhsj denotes jth component of the right hand side of the gov-
erning equation, and the superscript n denotes the nth time step. In
the segregated implicit method, the governing equations are dis-
cretized using the Crank–Nicholson method. For example, the dis-
crete continuity equation is

qnþ1
cv � qn

cv
Dt

Vcv ¼ �
1
2

X
faces

ðqVNÞnf Af �
1
2

X
faces

ðqVNÞnþ1
f Af : ð23Þ
matic for computation of face normal gradient for viscous terms.
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The face value can be written as the sum of the neighboring control
volume values as qf ¼

qcvþqnbr
2 . On rearrangement,

qnþ1
cv 1þ Dt

4Vcv

X
faces

Vnþ1;k
Nf

Af

" #
þ Dt

4Vcv

X
faces

qnþ1
nbr Vnþ1;k

Nf
Af

" #

¼ � Dt
2Vcv

X
faces

qn
f Vn

Nf
Af

" #
: ð24Þ

The above equation is solved iteratively to obtain an estimate for
qnþ1;k for all the control volumes, where k is the outer loop variable.
The other equations are solved similarly to obtain qunþ1;k

i ;qenþ1;k
s

and qYnþ1;k for all the control volumes. This step is repeated until

the difference between ðkþ 1Þth time variables and kth time vari-
ables becomes negligible, thus coupling the equations using an
outer iteration. All results presented in this paper use explicit time
advancement.
Corrector step: characteristic-based Filter

The predictor step described in the previous section does not
explicitly add dissipation and hence cannot capture discontinuities
(both shocks and material discontinuities). An external discontinu-
ity capturing mechanism is therefore provided. Yee et al. (1999)
developed a characteristic based filtering method for ideal gases
on structured grids which was extended to ideal gases on unstruc-
tured grids by Park and Mahesh (2007). In this paper, a character-
istic based filtering method is developed for mixtures of fluids and
non ideal gases on unstructured grids. Note that any time integra-
tion scheme can be used in the predictor step and it will not affect
the implementation of the corrector step. Once a physical time step
Dt is advanced to obtain the solution bqnþ1 from qn, the final solu-
tion qnþ1 at t þ Dt is obtained from a corrector scheme

qnþ1
cv ¼ bqnþ1

cv �
Dt
Vcv

X
faces

ðF�f :nf ÞAf ; ð25Þ

where F�f is the filter numerical flux of the following form

F�fc ¼
1
2

RfcU
�
fc: ð26Þ

Here Rfc is the right eigenvector vector at the face computed using
Roe-average of the variables from left and right control volumes.
The expression for the lth component of U�;/�l is given by

/�lfc ¼ khl
fc/

l
fc; ð27Þ

where k is an adjustable parameter. The value of k is problem
dependent and its effect on the results is demonstrated in Section
‘One dimensional cavitating tube’. hfc is the Harten’s switch function
given by

hfc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ðbh2

icv1 þ bh2
icv2Þ

q
;

bhicv1 ¼
j bfc j � j bf 1 j
j bfc j þ j bf 1 j

;

bhicv2 ¼
j bf 2 j � j bfc j
j bf 2 j þ j bfc j

:

ð28Þ

Here, bf ¼ R�1
f ðqicv2 � qicv1Þ is the difference between characteristic

variables across the face. f 1 and f 2 in a structured grid are the face
neighbors in the corresponding direction (i.e. in the direction of the
face normal). This definition is not possible in an unstructured grid,
hence the concept of most parallel faces was introduced in Park and
Mahesh (2007). Fig. 2(a) illustrates this concept. For /‘, the Harten-
Yee TVD form is used as suggested by Yee et al. (1999).
/‘
f c
¼ 1

2
W a‘f c

� �
g‘icv1 þ g‘icv2

� 	
�W a‘f c

þ c‘f c

� �
b‘f c
;

c‘f c
¼ 1

2

W a‘f c

� �
g‘icv2 � g‘icv1

� 	
b‘f c

b‘f c

� �2
þ �

;
ð29Þ

where � ¼ 10�7 and WðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ z2
p

. d ¼ 1=16 is introduced for the
entropy fixing (Yee et al., 1999). a‘f c

is the element of the jacobian

matrix. For a structured grid, the value of the limiter function gicv
can be defined at the cell centers using the value of a at faces. Defin-
ing this in an unstructured grid will require interpolation. To avoid
this, we define g at the faces. This is more natural because Eq. (29)
require only symmetric average 1

2 gicv1 þ gicv2ð Þ and difference
1
2 gicv2 � gicv1ð Þ of g between the neighboring control volumes. Thus
the expression of g is given by

gþ‘f c
� 1

2
minmod b‘f 1

;b‘f c

� �
þminmod b‘f c

;b‘f 2

� �n o
;

g�‘f c
� 1

2
minmod b‘f 2

;b‘f c

� �
�minmod b‘f 1

; b‘f c

� �n o
:

ð30Þ

The expressions for /‘
f c

and c‘f c
can now be written as

/‘
f c
¼ W a‘f c

� �
gþ‘f c
�W a‘f c

þ c‘f c

� �
b‘f c
;

c‘f c
¼

W a‘f c

� �
g�‘f c

b‘f c

b‘f c

� �2
þ �

;
ð31Þ

This approach avoids any interpolation between cell center and
faces and hence, on Cartesian grids will be equivalent to the expres-
sion proposed for structured grids by Yee et al. (1999). In order to
determine the eigenvectors of the system, the flux Jacobian matrix
needs to be computed. First the expression for pressure needs to be
expressed in terms of solution variables qj ¼ ðq;qui;qET ;qYÞ. Note
that total energy is used here even though internal energy is solved
in the predictor step, since jump conditions need to be obtained for
conservative variables. Eq. (7), when expressed in terms of the solu-
tion variables q becomes

a ¼ Cvlðq1 � q6Þ þ Cvgq6;

b ¼ CplPcðq1 � q6Þ þ CvgPcq6

� ½ðq1 � q6ÞKl þ q6Rg � q5 � 0:5
q2

2 þ q2
3 þ q2

4

q1

� 

and

c ¼ �q6RgPc q5 � 0:5
q2

2 þ q2
3 þ q2

4

q1

� 

:

ð32Þ

@p
@qj

is then obtained as

@p
@qj
¼ �

p2 @a
@qj
þ p @b

@qj
þ @c

@qj

h i
2apþ b

: ð33Þ

Once the flux Jacobian matrix is obtained, the eigenvector vector
matrix Rij and its inverse R�1

ij can be evaluated.

Modification of Harten’s switch
Yee et al. (1999) made use of Harten’s switch hfc to spatially

localize the dissipation. Park and Mahesh (2007) showed that
for a single phase flow, hfc proposed by Yee et al. is excessively
dissipative. They make use of a temporally decaying isotropic
turbulence problem to show that hfc affects resolved turbulence,
and propose a modified localization term based on divergence
and vorticity (Ducros et al., 1999). In order to evaluate the perfor-
mance of this term and the Harten’s switch in multiphase flows, we
perform LES of decaying isotropic turbulence in a mixture of water
and vapor. The simulation is performed on a coarse grid of 323

volumes with an initial Taylor micro scale Reynolds number
Rek ¼ urmsk=m ¼ 68:7. The initial spectrum is given by



Fig. 3. (a) Comparison of temporal decay of kinetic energy obtained using original Harten’s switch and modified singlephase switch to results obtained using no shock
capturing. (b) Radial energy spectrum at t=te ¼ 4:0 obtained using original Harten’s switch and modified singlephase switch compared to results obtained using no shock
capturing. h: No shock capturing, ———— : Harten’s switch, —— : Modified switch.
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Fig. 4. (a) and (b) Streamwise velocity contours for modified single phase and multiphase switch respectively. (c) Variation of modified singlephase switch and v-velocity
along the h ¼ 0 line. (d) Variation of modified multiphase switch and v-velocity along the h ¼ 0 line. —— : V-velocity, ———— : Switch.
EðkÞ ¼ 16

ffiffiffiffi
2
p

r
u2

0

k0

k
k0

� �4

exp �2k2
=k2

0

� �
; ð34Þ

and the initial fluctuation Mach number is 0.001. The pressure fluc-
tuations are such that the flow does not cavitate. Even in the
absence of any discontinuities, the result is found to be dissipative
thereby affecting the resolved turbulence as shown in Fig. 3. Hence
hf c

is modified using a sensor based on Ducros et al. (1999) to pre-
vent excessive dissipation.
hf c
¼ hf c

hH

f c
;

hH

f c
¼ 1

2
hH

icv1 þ hH

icv2

� 	
;

hH

icv1 ¼
ðr � uÞ2icv1

ðr � uÞ2icv1 þX2
icv1 þ �

:

ð35Þ

Here X is the vorticity magnitude and � ¼ 10�7 is a small positive
value. The modified term, henceforth called as modified single
phase switch, limits dissipation away from discontinuities. This is



Fig. 5. (a) Schematic for air–water shock tube. (b) Variation of pressure after the first time step. (c) Variation of temperature after the first time step. ( ): Total energy form,
( ): Internal energy form.
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clearly seen in Fig. 3 which shows kinetic energy (q) decay and the
radial energy spectrum. te is the eddy turnover time.

However, even this modification causes problems in a cavitat-
ing flow. Consider an inviscid cavitating vortex on a square domain
of dimensions 100R x 100R. The initial velocity field is

u ¼ �Cðy� ycÞ
R2 expð�r2=2Þ and

v ¼ Cðx� xcÞ
R2 expð�r2=2Þ: ð36Þ

Here r2 ¼ ððx� xcÞ2 þ ðy� ycÞ
2Þ=R2 and R ¼ 1, C ¼ 5:0; xc ¼ yc ¼ 50R.

Constant density, pressure and temperature are specified initially.
Fig. 6. Comparison of numerical and analytical results for (a) density, (b) velocity, (c) p
Analytical. (e) Conservation error percentage as a function of time.
As the solution evolves, pressure in the center of the vortex drops
below vapor pressure and the flow cavitates. As the vortex cavitates,
the value of the modified singlephase switch becomes very small
because of the large vorticity there. Hence numerical oscillations
are encountered as shown in Fig. 4(a). Fig. 4(c) shows the variation
of v-velocity and the modified singlephase switch along the h ¼ 0
line. Note the oscillation in v-velocity and the very small value of
the switch at the corresponding location. This oscillation increases
with time and causes the solution to become unstable. As a remedy,
an additional term is added to the modified single phase switch.

hH

f c
¼ 1

2
hH

icv1 þ hH

icv2

� 	
þ j ðaicv2 � aicv1Þ j ð37Þ
ressure and (d) mass fraction of air, � : 1000 cells, M : 500 cells, h: 200 cells, —— :



Fig. 7. Comparison of present numerical results and numerical results of Saurel and Lemetayer (2001) for (a) density, (b) velocity, (c) pressure and (d) volume fraction of
vapor, � : Present, —— : Saurel and Lemetayer (2001). (e) Effect of k on velocity near a discontinuity, h: k� 2:0;M: k� 4:0; �: k� 8:0.

Fig. 8. Comparison of quantities before and after bubble collapse. (a) density, (b) pressure and (c) velocity, —— : Before collapse, } : After collapse.
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This additional term prevents the switch from reaching very small
values inside the cavitating vortex. Note that the additional term
automatically goes to zero in single phase regions and hence termed
as modified multiphase switch. Its effect is clearly seen in Fig. 4(b)
in terms of an oscillation-free solution. Fig. 4(d) shows that the pro-
posed modification prevents the switch from reaching very small



Fig. 10. Instantaneous dissipative flux for (a) continuity equation, (b) u-momentum
equation.

Fig. 11. Geometry and computational domain for wedge.
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values inside the vortex. When applied to the turbulent problem
discussed above, it yields identical results to the form proposed
by Park and Mahesh (2007).

Results

We evaluate the proposed algorithm for a variety of flows. In
Section ‘Multiphase non cavitating shock tube’, a multiphase shock
tube problem is discussed. This problems helps in determining the
accuracy of the shock capturing scheme in computing the jump
conditions. In Sections ‘One dimensional cavitating tube’ and
‘One dimensional reflecting-cavitating tube’, one dimensional cav-
itating problems are discussed. Finally in Sections ‘RANS of turbu-
lent cavitating flow over a hydrofoil’ and ‘LES of turbulent
cavitating flow over a wedge’, the algorithm is validated for turbu-
lent cavitating flows.

Multiphase non cavitating shock tube

A two phase shock tube with water and compressed air
(Lagumbay et al., 2007; Abgrall and Karni, 2001) is simulated.
We use this problem to demonstrate the advantage of the internal
energy equation over the total energy equation in the predictor
step. The driver section contains liquid water at high pressure,
the driven section contains compressed air at lower pressure and
the interface is present at x=L = 0.7 initially. The problem is stiff;
the density and pressure differ by ratios of 20 and 104 respectively
across the discontinuities. The computational domain is discretized
uniformly using 1000 volumes and a time step of 1� 10�8 s is
used. The initial conditions are given by

Q ¼ ½q;u; P; c;Y �;
Q W ¼ ½1000;0;1:5:109;4:4;0:0�;
Q A ¼ ½50;0;1:0:105;1:4;1:0�:

ð38Þ

Fig. 5(a) shows a schematic of the problem and Figs. 5(b) and (c)
show the temperature and pressure obtained at the material dis-
continuity at the end of the predictor step of the very first iteration.
It clearly shows that internal energy equation is able to produce an
oscillation-free solution while the total energy equation does not,
for the same time step. This is because a primitive variable formu-
lation is less prone to aliasing errors. Consider the pressure term in

the total energy equation. This term @ðpujÞ
@xj

has a product inside the

derivative and associated aliasing as opposed to the term p @uj

@xj
in

the internal energy equation. Also a spatial derivative of a linear
term (as in the internal energy equation) will be more accurate
than that of a quadratic product (as in the total energy equation),
Fig. 9. (a) Comparison of pressure co-efficient (Cp) distribution to experiment, � : Shen
due to its lower spatial order. Further, Karni (1994) has demon-
strated the effectiveness of using primitive variables in suppressing
the pressure oscillations across a material discontinuity. Hence
solving for internal energy which is a primitive variable helps in
reducing these errors. However conservation errors will be large
if a primitive variable is used to compute jump conditions. Hence
the corrector step which computes the jump conditions uses total
energy which is obtained at the end of the predictor step using
Eq. (5). Fig. 6 shows the comparison between numerical and exact
solution at 240 ls. Three different grids are used: 200, 500 and
1000 volumes. The solutions for all three grids agree with the
and Dimotakis (1989), M : Present. (b) Mean void fraction (a) contour for r ¼ 1:0.



Fig. 12. Sequence of events leading to cavity destabilization, Left: Span averaged void fraction contour, Right: Isocontours of void fraction ða ¼ 0:2Þ.
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Fig. 13. Variation of non-dimensional cavity length with time in one cycle, —— :
Experimental fit (Callenaere et al., 2001), h: Present.
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analytical results; improvement in accuracy with grid refinement
can also be observed. The shock wave initially at x=L = 0.7 on inter-
action with the contact discontinuity, reflects as an expansion
wave which travels in water. Fig. 6(e) shows that the usage of
internal energy equation in the predictor step does not cause any
significant conservation errors. The maximum conservative error

obtained as
j
P

V
ET�
P

V
ETinitial jP

V
ETinitial

is found to be less than 1% for the finest

grid.
One dimensional cavitating tube

This test problem involves a one dimensional tube consisting
of water initially at atmospheric pressure and two streams mov-
ing away from the center at 100 m/s. The computational domain
is discretized uniformly using 1000 volumes and a time step of
1� 10�6 s is used. This problem has been previously investigated
by many authors (Saurel and Lemetayer, 2001; Liu et al., 2004;
Barberon and Helluy, 2005). We compare our results with the
results obtained using a multi fluid approach by Saurel and
Lemetayer (2001) in Fig. 7. The expansion at the center causes
a vapor bubble to be produced as soon as the pressure reaches
vapor pressure. Thus two interfaces are created dynamically due
to the rarefaction waves. The mixture density, pressure, velocity
and vapor volume fraction at the end of 1860 ls are compared
with numerical results from Saurel and Lemetayer (2001) and
the results agree very well with each other. Further, the effect
of k, the adjustable parameter has been demonstrated. The
Fig. 14. Comparison of average volume fraction to experimental values at different stream
velocity profile obtained using three different values of k (2, 4
and 8) is magnified near a discontinuity and plotted in Fig. 7(e).
For lower values of k, small oscillations are observed which gets
smoothed out at higher values. This is clearly the effect of
increased dissipation. Apart from this, no other significant differ-
ences are observed.

One dimensional reflecting-cavitating tube

This case is similar to the previous problem but with the ends of
the tube closed instantaneously at t ¼ 0. This causes shock waves
at the ends which propagate towards the center in addition to
the rarefaction wave moving away from the center. This problem
is used to demonstrate shock-bubble interaction and robustness
of the method in handling bubble collapse. The computational
domain is discretized uniformly using 1000 volumes and a time
step of 1� 10�8 s is used. The initial conditions are identical to
the previous problem. Liu et al. (2004) have studied this problem
although with a different equation of state. The end walls act as
reflecting boundaries causing a shock at time t ¼ 0 and a cavitation
bubble is formed at the center due to the expansion. The shock
wave and the rarefaction wave meet as they travel in opposite
directions and after interaction continue to travel with a mitigated
strength. Fig. 8 shows two instances of time, one before vapor bub-
ble collapse and one after collapse. Before collapse, the vapor bub-
ble can be clearly seen at the center. The shock wave on interaction
with the interface leads to a stronger discontinuity in velocity and
pressure. After collapse, the center of the tube is filled with water
which can be seen from the density curve. The condensation waves
travel outward from the center which is also clearly seen in the
pressure curve. The results agree qualitatively with Liu et al.
(2004), and also demonstrate that the numerical method is able
to handle bubble collapse well.

RANS of turbulent cavitating flow over a hydrofoil

We consider a turbulent cavitating flow over a hydrofoil. Shen
and Dimotakis (1989) conducted experiments on this hydrofoil
and our numerical results are compared against their experimental
results. The hydrofoil section used is NACA 66 (mod) with a camber
ratio of 0.02 and a thickness ratio of 0.09. The Reynolds number
based on chord length c is 2� 106, the angle of attack is 4 degrees
and the cavitation number r ¼ p1�pv

0:5q1u2
1

is 1.0. At this cavitation

number, a leading edge cavity, also referred as partial sheet cav-
ity/open cavity (Leroux et al., 2004; Laberteaux and Ceccio, 2001)
is observed in the experiment. A streamwise grid spacing of
0.0005c is used near the stagnation region to capture cavitation
wise locations, � : Experiment (Prof. Ceccio, private communication), —— : Present.
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inception and the wall normal spacing is 0.0008c. The governing
equations Eq. (3) are Reynolds averaged giving rise to Reynolds
stress terms, which are modeled using the Spalart–Allmaras eddy
viscosity model (Spalart and Allmaras, 1992). Fig. 9(a) shows the
time averaged pressure coefficient distribution along the chord
for both the suction and pressure sides. The results are seen to
agree well with the experimental results. Fig. 9(b) shows the mean
void fraction contour showing the presence of a sheet cavity near
the leading edge. This result also agrees with the conclusions of
Leroux et al. (2004), that a quasi-stable partial sheet cavity is
formed for cavity lengths less than half the chord length.

As discussed in the introduction section, localization of dissipa-
tion is essential to accurately simulate turbulent flows. To assess

this effect, the filter flux
F�fc
Vcv

is computed and plotted separately
for both continuity and u-momentum equations alone for the pur-
pose of illustration, where F�fc ¼ 1

2 RfcU
�
fc . Fig. 10(a) clearly shows

that the filter fluxes are active only near the cavity inception and
cavity closure locations where the density gradient is maximum.
Similar trends can be observed even in the u-momentum equation
in Fig. 10(b). Further, small values of filter flux are seen in the cav-
itating vortices that are shed from the cavity closure. This behavior
shows that the dissipation is localized to the vicinity of
discontinuities.
LES of turbulent cavitating flow over a wedge

Next, we consider LES of sheet to cloud cavitation over a wedge.
The Reynolds number based on the maximum wedge height
(h = 1 in.) and a bulk velocity of 7.9 m/s is approximately
0:2� 106. The domain is extended both upstream (up to a length
of 20h) and downstream (up to a length of 40h) of the wedge,
and sponge boundary conditions are used to minimize reflections
from the boundaries. No slip boundary conditions are imposed
on top and bottom walls. Periodic boundary conditions are
enforced in the spanwise boundaries. Fig. 11 shows the geometry
of the wedge considered. The upstream cavitation number at the
station marked as 1 in Fig. 11 is 2.0. Velocity, pressure and density
are specified at the inflow to obtain the correct experimental con-
ditions at Station 1. An exit pressure is specified while other quan-
tities at the outflow are extrapolated from the interior of the
domain. The minimum near wall spacing is 0.002h in both normal
and streamwise directions near the wedge. The span is discretized
uniformly using 80 cells. The sequence of events leading to sheet to
cloud cavitation is depicted in Fig. 12. The left hand side figures
show the span averaged void fraction contours while the right
hand side figures show three dimensional isocontours of void frac-
tion. A fully formed cavity first develops up to a length x=h ¼ 2:6,
where h is the height of the wedge (Fig. 12(a)). It then pinches
off close to the trailing edge, shedding a small secondary cloud
Fig. 15. Dissipative flux showing localization near cavity interface, closure and
inside cloud cavity.
(Fig. 12(b)). The main cavity then pinches off close to the leading
edge, and finally a new sheet cavity starts to form (Fig. 12(c) and
(d)).

The Strouhal number corresponding to this behavior St ¼ flmax
Uinf

is
computed to be 0.28, which lies within the acceptable range of
0.25–0.4 (Callenaere et al., 2001). Here, lmax is the maximum mean
length of the cavity and Uinf is the free stream velocity just before
the apex of the wedge. The cavity length obtained at various time
instances is compared with experimental data of Callenaere et al.
(2001) in Fig. 13. Here, the length of the cavity (l) plotted along
the abscissa is normalized using the maximum cavity length
(lmax=h ¼ 2:6) and the time (t) is normalized using the time period
of the entire cycle (T), which is about 21 ms for this case. The sheet
cavity grows up to its maximum length until about 0.65T. A small
secondary cloud is then shed, which is not normally captured in
RANS simulations (Seo and Lele, 2009). Leroux et al. (2004) have
observed such secondary cloud shedding also in a hydrofoil geom-
etry. After a small period of cavity regrowth, an abrupt change in
cavity length is observed when the cloud pinches off from the main
cavity at l=lmax ¼ 0:3.

The mean volume fraction values at three different streamwise
locations are compared with X-ray measurements from experi-
ments (Ganesh and Ceccio, personal communication) in Fig. 14
and a reasonable agreement is obtained. The simulations slightly
overpredict the maximum void fraction value at the first two loca-
tions, but the shape of the cavity is predicted well. At the third
location near the cavity closure the simulations slightly underpre-
dict the maximum void fraction value. Fig. 15 shows the dissipative
flux in the continuity equation, to illustrate localization of dissipa-
tive flux. It can be observed that the dissipation is significant only
at the cavity interface, cavity closure and inside the cloud cavity.
The dissipative fluxes for other equations also show similar behav-
ior and hence are not shown here.
Summary

A numerical method is developed to simulate multiphase cavi-
tating flows. A homogeneous mixture model is used to model the
multiphase mixture as a single compressible fluid. The internal
energy form of energy equation is used and is shown to discretely
outperform the total energy form. A characteristic-based filter is
developed to handle shocks and material discontinuities. A predic-
tor corrector method is adopted where the predictor step is non-
dissipative and the corrector step is independent of the base
scheme in the predictor step. A sensor based on vorticity, diver-
gence and volume fraction is used in the corrector step to prevent
excessive dissipation away from the discontinuities. The method is
first validated for canonical one dimensional problems and the
accuracy of the shock capturing scheme is demonstrated. The
method is then applied to study two turbulent cavitating flows
using both RANS and LES methodologies. The cases represent two
different types of cavitation namely leading edge cavitation and
sheet to cloud cavitation. Good agreement with experimental
results is demonstrated for both the cases and it is shown that
the method can be used with both RANS and LES methodologies.
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