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A homogeneous mixture model is used to study cavitation over a circular cylinder
at two different Reynolds numbers (Re= 200 and 3900) and four different cavitation
numbers (σ = 2.0, 1.0, 0.7 and 0.5). It is observed that the simulated cases fall
into two different cavitation regimes: cyclic and transitional. Cavitation is seen to
significantly influence the evolution of pressure, boundary layer and loads on the
cylinder surface. The cavitated shear layer rolls up into vortices, which are then
shed from the cylinder, similar to a single-phase flow. However, the Strouhal number
corresponding to vortex shedding decreases as the flow cavitates, and vorticity
dilatation is found to play an important role in this reduction. At lower cavitation
numbers, the entire vapour cavity detaches from the cylinder, leaving the wake
cavitation-free for a small period of time. This low-frequency cavity detachment is
found to occur due to a propagating condensation front and is discussed in detail.
The effect of initial void fraction is assessed. The speed of sound in the free stream
is altered as a result and the associated changes in the wake characteristics are
discussed in detail. Finally, a large-eddy simulation of cavitating flow at Re = 3900
and σ = 1.0 is studied and a higher mean cavity length is obtained when compared to
the cavitating flow at Re= 200 and σ = 1.0. The wake characteristics are compared to
the single-phase results at the same Reynolds number and it is observed that cavitation
suppresses turbulence in the near wake and delays three-dimensional breakdown of
the vortices.
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1. Introduction
Cavitation is a phenomenon where liquid is abruptly converted into vapour when

the pressure drops below the vapour pressure. Although cavitation on lifting bodies
has been extensively studied both experimentally (e.g. Franc & Michel 1988; Arndt
et al. 2000; Laberteaux & Ceccio 2001) and numerically (e.g. Kubota, Kato &
Yamaguchi 1992; Coutier-Delgosha et al. 2007; Schnerr, Sezal & Schmidt 2008),
relatively fewer studies exist for bluff bodies. Figure 1 shows the schematic of a
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Cavitated shear layer Vapour in vortex core

FIGURE 1. Schematic of vortex shedding and vapour formation in flow over a circular
cylinder at low Reynolds number.

low-Reynolds-number cavitating flow over a cylinder. As the liquid accelerates past
the bluff body, pressure drops in the shear layer, resulting in cavitation inception.
The shear layer then rolls up into vortices and, depending on the conditions, the
vortices can also cavitate. These vortices are shed from the body into the relatively
high-pressure region in the wake. Here the vapour in the vortices collapses, resulting
in pressure waves (also referred to as shock waves by many authors), which propagate
both downstream and upstream. Cavitation behind bluff bodies can be categorized into
three types (Fry 1984; Matsudaira, Gomi & Oba 1992): cyclic, fixed and transitional
cavitation. A cyclic cavity sheds from the body periodically. A major portion of a
fixed cavity remains attached to the body while small portions shed from the trailing
edge of the attached portion. A transitional cavity displays both of these phenomena.

While bluff-body wakes have been studied extensively for single-phase flows (e.g.
Roshko 1961; Bearman 1969; Williamson 1988, 1989; Hammache & Gharib 1991),
only a few studies exist that shed light on the effect of cavitation on Kármán shedding
and the near-wake characteristics. Varga & Sebestyen (1972) studied cavitation behind
a circular cylinder with the main objective of understanding the noise generated by
cavitation in water tunnels. Brandner et al. (2010) conducted experiments on a sphere
and observed periodic shedding caused by re-entrant jets. A few other studies (e.g.
Rao, Chandrasekhara & Seetharamiah 1972; Rao & Chandrasekhara 1976; Selim
1981) measured the shedding frequencies and cavity lengths in order to predict the
effect of cavitation on the noise produced by a cavitating flow over a cylinder. Fry
(1984) conducted detailed experiments on the flow past a cylinder to study the effect
of free-stream velocity and cavitation number on the sound spectrum. He observed
that the sound was correlated with the vortex shedding, and that larger cavities
produced more sound upon collapse. Matsudaira et al. (1992) experimentally studied
Kármán vortex cavities and found that regions of high impulse pressures occurred
periodically behind the cylinder and were synchronized with the vortex shedding
frequency. Balachandar & Ramamurthy (1999) studied the effect of cavitation on the
base pressure coefficient and proposed a scaling based on wake parameters which
unifies the wake pressure distribution for several cavitation numbers. Saito & Sato
(2003) observed that cavities that collapse near solid walls generate high impact on
the walls due to their proximity to the walls. They also observed three patterns of
cavity collapse: three-dimensional (3D) radial, axial and two-dimensional (2D) radial.
Seo, Moon & Shin (2008) used direct numerical simulation (DNS) to compute sound
produced by a cavitating flow over a cylinder at Re = 200 and found that the main
source of noise in the cavitating flow was the collapse of vapour cavities.

The wakes of 2D wedges are another canonical configuration that have been
studied experimentally, and differ from cylinder wakes in some respects. Young &



Near-wake characteristics of cavitating flow over a circular cylinder 455

Holl (1966) measured vortex shedding frequency behind 2D symmetric wedges and
concluded that cavitation had a negligible effect on the frequency when the cavitation
number was decreased from inception to half the incipient value. They also found
that the shedding frequency reduced as choking conditions were approached. The flow
over a wedge is relatively independent of Reynolds number unlike flow over circular
cylinders. Also the dependence of the shedding frequency on cavitation number is
different. Rao & Chandrasekhara (1976) observed that the vortex shedding frequency
for cylinders increased to large values when choking conditions were approached.
Also for symmetric wedges, the existence of a maximum in the variation of Strouhal
number with cavitation number is well established (Young & Holl 1966; Belahadji,
Franc & Michel 1995) unlike that for cylinders.

Another class of interesting flow in the field of separated cavitating flows is flow
over axisymmetric nose-shaped objects. The fundamental difference in these objects
from a cylinder is that there is a boundary layer reattachment which modulates
the adverse pressure gradient experienced by the cavity closure. Arakeri & Acosta
(1973) studied the effect of viscosity on cavitation inception on axisymmetric bodies
and showed the presence of a laminar separation region upstream of the inception
location. They also showed that the cavity became unstable and intermittent if the
separation region was removed by tripping. Katz (1982, 1984) studied cavitation on
axisymmetric bodies that underwent laminar separation and demonstrated that surface
pressure fluctuations are independent of Reynolds numbers much like flow over a
symmetric wedge. He also showed that, for a hemispherical body, the separation
zone was smaller when compared to that of cylinders and that the inception region
is located within the reattachment zone. Arakeri (1975) developed a semi-empirical
approach to predict the location of cavity detachment over smooth bodies undergoing
laminar separation and obtained good predictions for flow over a sphere, and so did
Franc & Michel (1985) for circular and elliptical cylinders.

The objective of this paper is to study the effect of cavitation on the near-wake
characteristics of a cylinder. We consider two Reynolds numbers and four different
cavitation numbers. Two interesting phenomena are observed: a low-frequency cavity
detachment; and a reduction in vortex shedding frequency with decreasing cavitation
number. In single-phase flows, Gerrard (1966) characterized vortex shedding frequency
using two important length scales: the vortex formation length, and the wake
diffusion width. Strykowski & Sreenivasan (1990) showed that introduction of a
strategically placed control cylinder resulted in an increased diffusion, causing vortex
shedding suppression. They showed that vortex shedding frequency can be reduced
and eventually completely suppressed. Mittal & Raghuvanshi (2001) and Dipankar,
Sengupta & Talla (2007) performed numerical studies that confirmed the control
cylinder experiments. In this study, we analyse the effect of cavitation in reducing
the vortex shedding frequency.

Also, the effect of cavitation nuclei which are included in the simulations in the
form of initial vapour volume fraction is studied. Cavitation nuclei are known to
play an important role in the inception process (Katz 1984; Arndt & Maines 2000;
Arndt 2002; Hsiao & Chahine 2005). Within the context of homogeneous mixture
models, the initial vapour volume fraction determines the speed of sound which is
very sensitive to vapour volume fraction values <0.1. The dynamics of pressure
waves may therefore be affected even in advanced stages of cavitation.

The Reynolds numbers considered in this study are 200 and 3900, which are low
enough to allow parametric studies. It should be noted that these Reynolds numbers
are low for any experimental measurement to be possible. A circular cylinder is
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chosen as the bluff body, since the Kármán shedding behind a cylinder is well
understood for single-phase flows. The paper is organized as follows. Section 2
explains the physical model used for cavitation, along with the governing equations
for the compressible mixture of water and water vapour. This section also describes
the predictor–corrector algorithm (Gnanaskandan & Mahesh 2014, 2015) used to solve
the governing equations. Section 3 validates the numerical algorithm for flow over a
hemispherical nose-shaped body. Section 4 describes the problem and outlines details
of the computational grid and boundary conditions. Section 5 discusses the effect of
cavitation number and the mechanism of reduction of vortex shedding frequency. In
§ 6, the effect of initial void fraction is discussed in detail. A large-eddy simulation
(LES) of turbulent (Re=3900) flow over a cylinder is presented in § 7 and a summary
in § 8 concludes the paper.

2. Governing equations and numerical method

Cavitation inception studies are often performed using the discrete Lagrangian
approach, while developed cavitation simulations have traditionally preferred a
continuum approach. The most commonly used physical model within the continuum
approach is the homogeneous mixture model (e.g. Kunz et al. 2000; Senocak &
Shyy 2002; Singhal et al. 2002; Shin, Iwata & Ikohagi 2003; Schmidt, Schnerr
& Thalhamer 2009; Gnanaskandan & Mahesh 2015), which is used in the current
simulations. The homogeneous mixture model assumes the mixture of constituent
phases to be a single compressible fluid and the phases to be in thermal and
mechanical equilibrium. Surface tension effects are assumed small and are neglected.

Although the homogeneous mixture approach is the most commonly used physical
model to predict developed cavitation, there are some potential limitations with
this model particularly pertaining to cavitation inception. Cavitation inception
in homogeneous models depends only on the difference between local pressure
and vapour pressure. However, other factors that influence inception such as
non-condensible gases, size of nuclei and their distribution are not accounted for in
this study. Further, discrete bubble dynamics on a scale smaller than the computational
mesh are not represented. Overall, however, the dynamics of cavitation after inception
are captured well by this model, as reflected in our simulations of flow over a
hydrofoil and wedge (Gnanaskandan & Mahesh 2015) and in the validation case
presented in § 3 of this paper.

The governing equations are the compressible Navier–Stokes equation for the
mixture of liquid and vapour, along with a transport equation for vapour. The
governing equations are Favre-averaged and then spatially filtered to perform LES. A
dynamic Smagorinsky model is used for the subgrid terms. The unfiltered governing
equations are

∂ρ

∂t
=− ∂

∂xk
(ρuk),

∂ρui

∂t
=− ∂

∂xk
(ρuiuk + pδik − σik),

∂ρes

∂t
=− ∂

∂xk
(ρesuk −Qk)− p

∂uk

∂xk
+ σik

∂ui

∂xk
,

∂ρY
∂t
=− ∂

∂xk
(ρYuk)+ Se − Sc,


(2.1)
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where ρ, ui, es and p are the density, velocity, internal energy and pressure,
respectively, of the mixture and Y is the vapour mass fraction. The mixture density
is

ρ = ρl(1− α)+ ρgα, (2.2)

where ρl is the density of liquid, ρg is the density of vapour and α is the vapour
volume fraction, which is related to the vapour mass fraction by

ρl(1− α)= ρ(1− Y) and ρgα = ρY. (2.3a,b)

The system is closed using a mixture equation of state (Gnanaskandan & Mahesh
2015):

p= YρRgT + (1− Y)ρKlT
p

p+ Pc
. (2.4)

Here, Rg = 461.6 J kg−1 K−1, Kl = 2684.075 J kg−1 K−1 and Pc = 786.333× 106 Pa
are constants associated with the equation of state of vapour and liquid. The stiffened
equation of state is used for water and the ideal gas equation of state for vapour. The
stiffened equation of state has a form very similar to the ideal gas equation of state.
It is suitable for liquids with non-isentropic changes and is hence chosen in this study.
The expression for es is given by

ρes = ρCvmT + ρ(1− Y)
PcKlT
p+ Pc

, (2.5)

where Cvm = (1 − Y)Cvl + YCvg and Cvl and Cvg are the specific heats at constant
volume for liquid and vapour, respectively. The viscous stress σij and heat flux Qi are
given by

σij =µ
(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
and Qi = k

∂T
∂xi
, (2.6a,b)

where µ and k are the mixture viscosity and mixture thermal conductivity, respectively.
In addition, Se and Sc are source terms for evaporation of water and condensation of
vapour and are given by

Se =Ceα
2(1− α)2 ρl

ρg

max(pv − p, 0)√
2πRgT

,

Sc =Ccα
2(1− α)2 max(p− pv, 0)√

2πRgT
,

 (2.7)

where pv is the vapour pressure, and Ce and Cc are empirical constants whose value
is 0.1 (Saito et al. 2007). Vapour pressure is related to temperature by

pv = pk exp
[(

1− Tk

T

)
(a+ (b− cT)(T − d)2)

]
, (2.8)

where pk= 22.130 MPa, Tk= 647.31 K, a= 7.21, b= 1.152× 10−5, c=−4.787× 10−9

and d= 483.16.
The simulations use the algorithm developed by Gnanaskandan & Mahesh (2015)

to simulate cavitating flows on unstructured grids. The algorithm makes use of a
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novel predictor–corrector approach. In the predictor step, the governing equations are
discretized using a symmetric non-dissipative scheme, where the fluxes at a cell face
are given by

φfc =
φicv1 + φicv2

2
+ 1

2
(∇φ|icv1 ·1xicv1 +∇φ|icv2 ·1xicv2), (2.9)

where 1xicv1 = xfc − xicv1, and ∇φ|icv1 denotes the gradient defined at icv1, which is
computed using a least-squares method. The viscous fluxes are split into compressible
and incompressible contributions and treated separately. Once the fluxes are obtained,
a predicted value q̂n+1

j is computed using an explicit Adams–Bashforth scheme:

q̂n+1
j = q̂n

j +
1t
2
[3 RHSj(q̂

n
)−RHSj(q̂

n−1
)], (2.10)

where RHSj denotes the jth component of the right-hand side of the governing
equations, and the superscript n denotes the nth time step. The final solution qn+1

j at
t+1t is obtained from a corrector scheme

qn+1
j,cv = q̂n+1

j,cv −
1t
Vcv

∑
faces

(F∗f nf )Af , (2.11)

where F∗f is the filter numerical flux of the following form:

F∗fc = 1
2 RfcΦ

∗
fc. (2.12)

Here Rfc is the right eigenvector at the face computed using the Roe average of the
variables from left and right control volumes. The expression for the lth component
of Φ∗, φ∗l, is given by

φ∗lfc = kθ l
fcφ

l
fc, (2.13)

where k is an adjustable parameter and θfc is Harten’s switch function, given by

θfc =
√

0.5(θ̂ 2
icv1 + θ̂ 2

icv2), θ̂icv1 = |βfc| − |βf 1|
|βfc| + |βf 1| , θ̂icv2 = |βf 2| − |βfc|

|βf 2| + |βfc| . (2.14a−c)

Here, βf = R−1
f (qicv2 − qicv1) is the difference between characteristic variables across

the face. For φ`, the Harten–Yee total variation diminishing (TVD) form is used as
suggested by Yee, Sandham & Djomehri (1999):

φ`fc = 1
2Ψ (a

`
fc)(g

`
icv1 + g`icv2)−Ψ (a`fc + γ `fc)β`fc,

γ `fc =
1
2
Ψ (a`fc)(g

`
icv2 − g`icv1)β

`
fc

(β`fc)
2 + ε ,

 (2.15)

where ε= 10−7, Ψ (z)=√δ + z2 (δ= 1/16) is introduced for entropy fixing and a`fc is
an element of the Jacobian matrix. Park & Mahesh (2007) and Gnanaskandan &
Mahesh (2015) proposed a modification to Harten’s switch to accurately represent
under-resolved turbulence for single-phase and multiphase flow mixtures, respectively,
by multiplying θfc by θ ?fc given by

θ ?fc = 1
2(θ

?
icv1 + θ ?icv2)+ |(αicv2 − αicv1)|,

θ ?icv1 =
(∇ · u)2icv1

(∇ · u)2icv1 +Ω2
icv1 + ε

.

 (2.16)
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FIGURE 2. (Colour online) (a) Instantaneous isocontour (α = 0.1) of void fraction, and
(b) time-averaged Cp distribution (——, LES; u, experiment of Rouse & McNown
(1948)).

Gnanaskandan & Mahesh (2015) have evaluated this algorithm for a variety of flows,
including a cavitating shock tube and turbulent cavitating flow over a hydrofoil and a
wedge.

3. Validation: cavitation over a hemispherical nose-shaped body
We consider partial cavitation over a hemispherical nose-shaped bluff body for

validation. We compare our LES results to the experimental results of Rouse &
McNown (1948). The diameter of the hemisphere is D and the length of the
cylindrical body is 50D. The extent of the domain is 50D in all directions. The
Reynolds number based on the diameter of the hemisphere and free-stream velocity
is ReD = 1.36 × 105 and the cavitation number is 0.4. The grid spacing used is
0.002D in both streamwise and wall-normal directions and the grid is clustered
close to the cavity inception region. A uniform grid spacing of 0.01D is used in
the circumferential direction. The solution is initialized with a void fraction of
α0 = 0.01. The non-dimensional time step tu∞/D = 2 × 10−5 and the solution is
advanced in a time-accurate manner. Figure 2(a) shows instantaneous isocontours of
void fraction which vary in the circumferential direction and are unsteady in time.
Figure 2(b) compares the time-averaged Cp distribution to the experimental data
(Rouse & McNown 1948); good agreement is obtained, indicating the suitability of
the method in predicting bluff-body cavitation also.

4. Problem description
Figure 3 shows a schematic of the problem. A circular cylinder of diameter D

is placed at the centre of a circular domain of radius equal to 100D, chosen to
minimize acoustic reflection from the far-field boundaries. The free-stream flow is
spatially uniform and the velocity is in the positive x direction as shown in figure 3.
The subscript ∞ is used to denote free-stream conditions and ρ∞, p∞, u∞ and µ∞
denote free-stream density, pressure, velocity and dynamic viscosity, respectively.
Free-stream conditions are imposed on all far-field boundaries. Acoustically absorbing
boundary conditions (Colonius 2004) are applied in the sponge layer shown in
figure 3. The term −γ (q − qref ) is added to the governing equations, where γ is
zero outside the sponge layer, q denotes the vector of conservative variables and the
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FIGURE 3. Computational domain illustrating sponge layer and region of coarse mesh
(not to scale).

Reynolds number Cavitation number Initial void fraction
(Re) (σ ) (α0)

200 2.0 0.01
200 1.0 0.01
200 0.7 0.01
200 0.5 0.01
200 1.0 0.005

3900 1.0 0.01

TABLE 1. Flow conditions used in the simulations.

subscript ‘ref ’ denotes the reference solution to which the flow inside the sponge
layer is damped, which in this case is the free-stream value. Also the mesh is made
coarse in the far field to further reduce any reflections.

Table 1 lists the flow conditions for all the cases considered in this study. Here,
cavitation number σ = (p∞ − pv)/(0.5ρ∞u2

∞) and the Reynolds number is given
by Re= (ρ∞u∞D)/µ∞. The simulations are initialized with a spatially uniform void
fraction (α0) that nucleates the cavitation. Insensitivity to computational grid and
domain size is demonstrated using two grids and two domain sizes for one case
(Re = 200 and σ = 1.0). The mesh spacing for the fine grid is 0.005D × 0.01D in
the radial and azimuthal directions near the wall and stretches to 0.03D × 0.03D
at approximately 2D downstream and then further stretches to 0.07D × 0.07D at
a distance of 5D downstream. The coarse grid has a near-wall mesh spacing of
0.01D× 0.02D and stretches to 0.05D× 0.05D at approximately 2D downstream. The
corresponding domain radii are 100D and 50D, respectively.

Figure 4 shows the lift and drag coefficients as functions of time for both the grids.
Figure 5 shows the comparison of the mean and fluctuation of void fraction between
the two grids. Note that the solutions show good agreement, and the fine grid and the
larger domain have therefore been used for all the subsequent simulations at Re= 200.
The mesh spacing and the spanwise extent for the 3D simulation are the same as that
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FIGURE 4. Comparison of lift and drag coefficient history showing grid convergence
between two grids and domain insensitivity between two domains: – – – –, coarse grid,
small domain; ——, fine grid, big domain.
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FIGURE 5. Comparison of (a,b) mean void fraction and (c,d) fluctuation in void fraction,
for (a,c) x/D= 0.6 and (b,d) x/D= 2.0: ——, fine grid, big domain;@, coarse grid, small
domain.

in the simulation of Verma & Mahesh (2012) for a single-phase flow at the same
Reynolds number, where good agreement was obtained with experiment. The near-wall
mesh spacing is 0.002D × 0.005D in size and stretches to 0.004D × 0.008D at a
downstream location of 5D. A total of 80 points are used in the spanwise direction.
Since the presence of vapour decreases the effective Reynolds number, this resolution
is deemed sufficient.

The nature of the instantaneous solution is illustrated in figure 6(a) using the
Re = 200 and σ = 1.0 simulation. The void fraction contours show the presence
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FIGURE 6. (Colour online) (a) Instantaneous snapshot showing coloured contours of void
fraction and contour lines showing pressure. (b) Instantaneous Mach-number contour.

of vapour immediately downstream of the cylinder as well as in the core of the
Kármán vortices downstream. The superposed contour lines of pressure show the
presence of ‘pressure waves’, which are compression waves that form when vapour
pockets collapse in the higher-pressure regions downstream of the cylinder. The
speed of sound drops significantly in regions of vapour, resulting in supersonic Mach
numbers in some parts of the flow. Figure 6(b) reveals Mach numbers as high as
6 in the cavitated shear layer immediately downstream of the cylinder. The large
spatial variation in sound speed results in the pressure waves refracting through the
near-field vapour and impinging upon the cylinder. The Re = 3900 flow exhibits
similar qualitative behaviour and is discussed in § 7.

The effect of σ on the time-averaged flow behind the cylinder as well as the
unsteady loads on the cylinder are discussed below (§ 5) for Re= 200. The σ = 0.7
and 0.5 flows exhibit a ‘low-frequency cavity detachment’ phenomenon, where a
pocket of vapour attached to the cylinder sheds downstream. This behaviour is
analysed in § 5.6. The σ value also affects the Kármán vortex shedding frequency,
which is discussed in § 5.7. The influence of α0 is considered in § 6, and LES of the
Re= 3900 flow is discussed in § 7.

5. Effect of cavitation number (σ )
Cavitating flows at three different cavitation numbers (σ = 1.0, 0.7 and 0.5) are

considered and compared to the non-cavitating flow at σ = 2.0. The cavitation number
is varied by changing the free-stream velocity while keeping all other quantities
constant. The flow is seeded with a free-stream void fraction of α0 = 0.01.

5.1. Pressure on the cylinder surface
Figure 7(a) shows the mean pressure coefficient on the cylinder surface. Here,
θ = 0◦ and 180◦ correspond to the leading-edge stagnation point and trailing edge,
respectively. In the absence of cavitation, the pressure coefficient decreases to its
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FIGURE 7. (Colour online) (a) Time-averaged Cp on the cylinder, and (b) time-averaged
distribution of σlocal on the cylinder: ——, σ = 2.0; – – – –, σ = 1.0; – · – · –, σ = 0.7;
— · · —, σ = 0.5.

minimum value at approximately 80◦ as the flow accelerates from the stagnation
point, then increases as the flow decelerates, prior to becoming approximately
constant in the wake region at the trailing edge. Cavitation is seen to decrease
the magnitude of minimum Cp, with lower values of σ causing a larger decrease in
magnitude. This is because, once flow cavitates (close to the minimum Cp location),
the pressure in the vapour region remains close to the vapour pressure; it does not
further decrease with fluid acceleration. The upstream flow therefore sees lower values
of favourable pressure gradient and the downstream flow experiences approximately
constant pressure.

Defining σlocal=2(p−pv)/ρ∞u2
∞ and σ∞=2(p∞−pv)/ρ∞u2

∞ yields σlocal=Cp+σ∞.
Figure 7(b) reveals small values for σlocal downstream of the minimum Cp location on
the cylinder surface for the cavitating flows. Also, for σ = 1.0 the mean pressure is
always above the vapour pressure, whereas for σ =0.7 and 0.5, the mean pressure falls
below the vapour pressure and recovers to values slightly above the vapour pressure
near the trailing edge of the cylinder. High-density fluid can therefore be present near
the trailing edge, in the mean flow. This behaviour is illustrated in figure 8, which
shows contours of instantaneous and mean void fraction. Since, when σ = 1.0, only
the instantaneous pressure falls below the vapour pressure, vapour is observed largely
in the core of the Kármán vortices. In contrast, when σ = 0.7 and 0.5, since the mean
pressure in the near wake is also below the vapour pressure, vapour is also present
in substantial portions of the near wake. Figure 9 shows the variation of mean void
fraction and mixture density along the cylinder surface from the leading edge towards
the trailing edge. Note the presence of higher-density fluid near the trailing edge, and
that the mean void fraction is not necessarily 1 due to vapour unsteadiness. Although
vapour decreases the density of the mixture, the density is still skewed towards the
liquid due to its significantly higher value.

5.2. Velocity divergence due to cavitation
Cavitation causes density change, which implies a considerable change in the
divergence of the velocity field. Figure 10 shows the mean velocity divergence
(∇ · V) contours for all the cavitating cases. Expansion caused due to cavitation
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the cylinder surface as a function of azimuthal location: σ = 2.0 (black), σ = 1.0 (red),
σ = 0.7 (green), σ = 0.5 (blue).

can be seen as positive divergence and, as the flow cavitates more, the region of
positive ∇ · V also increases due to the increased amount of vapour. It is interesting
to note a compression region (negative ∇ · V) downstream of the expansion region,
and the magnitude of this compression region appears to decrease as the cavitation
number reduces. This behaviour can be understood by revisiting the mean void
fraction contours in figure 8. For σ = 1.0, there is a large decrease in void fraction
corresponding to the region of negative divergence. This is a result of the cavitating
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FIGURE 10. (Colour online) Contours of divergence of velocity field for (a) σ = 1.0,
(b) σ = 0.7 and (c) σ = 0.5.

vortex being shed from the body, which takes away vapour from close to the body,
leading to a sharp decrease in void fraction in the mean. However, we observe that,
for σ = 0.7 and 0.5, the void fraction does not decrease as much as in σ = 1.0, since
for these cases the cavitating vortex sheds from the attached cavity at a downstream
location. Thus this compression region is an indication of some amount of vapour
being converted back to water.

5.3. Boundary layer on the cylinder surface
The pressure along the cylinder surface affects the evolution of the boundary layer.
Figure 11 shows boundary layer velocity profiles at four different azimuthal locations
for σ = 2.0 and 0.5. Mean values are shown on top and root mean square values
on the bottom. The azimuthal locations θ = 70◦, 90◦, 110◦ and 130◦ are chosen
to represent regions of favourable pressure gradient, minimum pressure, adverse
pressure gradient and separated flow, respectively. Figure 11 contrasts only σ = 2.0
(non-cavitating) and 0.5 (cavitating) cases for clarity. Here, uθ is the tangential
velocity and r is the normal distance from the cylinder at any given azimuthal
location. Cavitation causes expansion (positive dilatation) at the inception location,
which causes the flow upstream to decelerate as seen in figure 11. For instance,
the maximum velocity in the boundary layer (uθmax/u∞) drops to a value of 1.10
for σ = 0.5 from a value of 1.34 for σ = 2.0 at an azimuthal location of 70◦. The
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and – – – –, σ = 0.5.

fluctuation levels of the cavitating flow are much lower at the first two locations,
indicating that the flow becomes steady due to cavitation. The location where
maximum velocity in the boundary layer occurs is also shifted away from the wall
for the cavitating flow as a result. The magnitude of the maximum velocity in the
boundary layer (uθmax ) and the location of its occurrence are plotted as a function of θ
in figure 12 for all four cases. Note that the boundary layer thickens with decreasing
cavitation number. Also the magnitude of uθmax initially increases in the favourable
pressure gradient region and then drops after 80◦. The drop in magnitude of uθmax

is rapid for σ = 2.0 after 90◦ when compared to the cavitating flow, which points
to a rapid thickening of the boundary layer leading to separation. The location of
maximum velocity is shifted away from the wall as the flow cavitates more, and this
difference between cavitating and non-cavitating flow increases further as we move
closer to the trailing edge.
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FIGURE 13. (Colour online) Time-averaged skin friction coefficient distribution on the
cylinder: ——, σ = 2.0: – – – –, σ = 1.0; – · – · –, σ = 0.7; — · · —, σ = 0.5.

Figure 13 shows the time-averaged skin friction distribution along the cylinder. The
magnitude of Cf initially increases in the favourable pressure gradient region and then
drops as the boundary layer thickens due to adverse pressure gradient. Note that the
cavitating flows have a reduced skin friction value compared to σ = 2.0 up to 80◦
due to the deceleration caused by the vapour cavity. Flow expansion due to cavitation
also causes the flow downstream of the inception location to accelerate. This can
be seen in the form of a local increase in skin friction coefficient in figure 13 for
σ = 1.0, 0.7 and 0.5 at approximately 80◦. The flow separates under the influence of
adverse pressure gradient at approximately 110◦ for σ = 2.0. The separation location
for the cavitated flows, however, shifts downstream to approximately 120◦ for σ = 1.0
and 0.7 and to approximately 125◦ for σ = 0.5. This behaviour is in contrast to the
observations of Arakeri (1975) and Ramamurthy & Bhaskaran (1977), who found that
the separation point moves upstream as the flow cavitates more. The main reason for
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this discrepancy is the fact that the homogeneous mixture model predicts that the
inception point is upstream of the separation point. The cavitation criterion in the
model is simply based on the difference between the local pressure and the vapour
pressure, and hence cavitation occurs as soon as the pressure drops below the vapour
pressure (although there is a finite rate at which vapour is produced). However, in
reality, cavitation does not occur immediately at the location where the pressure drops
below the vapour pressure, but occurs downstream of the separation point. In the
numerical simulations, with the separation point downstream of the inception point,
the acceleration induced by expansion pushes the separation point further downstream
as the flow cavitates more. In contrast, in the experiments of Arakeri (1975) and
Ramamurthy & Bhaskaran (1977), the separation point is ahead of the inception point
and the cavitation-induced expansion causes flow deceleration upstream leading to an
earlier separation.

5.4. Cavity length
The mean cavity length increases progressively as the cavitation number decreases.
The mean length of the cavity is computed from figure 14(a) as the location
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downstream where α reaches a value of 0.05 after its initial increase. This figure
also shows the maximum α obtained in the near wake. As the cavitation number
decreases, it is expected that more vapour will be formed in the wake. Interestingly,
the αmax is higher for σ = 1.0, when compared to σ = 0.7. This is due to the effect of
the low-frequency cavity detachment when σ = 0.7, which will be discussed in detail
in § 5.6. The root mean square values of void fraction are plotted in figure 14(b)
and show a trend similar to the mean value. The mean cavity length as a function
of cavitation number is shown in figure 14(c) and shows that the length increases as
the cavitation number is reduced. The plot also shows the mean cavity length as a
function of a modified cavitation number σm = (p− pv)/(0.5ρu2

max). Here, umax is the
maximum mean velocity in the boundary layer, which is obtained from figure 12(a).
This modification was first suggested by Rao & Chandrasekhara (1976), who observed
that, when the mean cavity length was plotted against σ , a family of curves were
obtained for different Reynolds numbers for cavitating flow over a circular cylinder.
Hence they introduced the modified cavitation number, which unified the different
families of curves onto a single curve. We observe in figure 14(c) that the mean cavity
length obtained at a lower Reynolds number also collapses onto this experimental fit
if the modified cavitation number is used. Given that the experimental fit is obtained
purely based on experiments at high Reynolds number (typically 105), it is interesting
to see that the data from our low-Reynolds-number simulations also collapse onto
this curve.

5.5. Unsteady loads on the cylinder
Figure 15 shows the unsteady characteristics of the flow in the form of lift and drag
history and their corresponding spectra in the frequency domain. The Strouhal number
( fD/u∞, where f is the vortex shedding frequency) computed from the lift and drag
histories is tabulated in table 2. Further, it is also verified that the same shedding
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Cavitation number Strouhal number Strouhal number
(σ ) (from CL) (from CD)

2.0 0.1984 0.3967
1.0 0.1603 0.3206
0.7 0.1526 0.3042
0.5 0.08–0.103 0.2231

TABLE 2. Strouhal numbers obtained from lift and drag coefficient history.

Strouhal number is obtained from the pressure history at three different points at
x/D = 2.5, 5.0 and 10.0 along the wake centreline (not shown here). The lift and
drag curve for σ = 1.0 in figure 15(a,d) is periodic (but not sinusoidal as in a single-
phase flow) and the cavitating vortices are shed at periodic intervals. The cavitating
vortices in σ = 1.0 shed directly from the body and hence this flow belongs to the
cyclic cavitation category. The Strouhal number for σ = 1.0 is reduced to 0.16 from
a value of 0.19 for a single-phase flow at Re = 200. Apart from the primary peaks,
which correspond to the pressure variation due to vortex shedding, smaller secondary
peaks are also observed in the lift curve. These secondary peaks correspond to those
instants when a pressure wave impinges on the cylinder. The lift and drag histories
for σ = 0.7 and 0.5 in figure 15(b,e) and (c,f ) are quasi-periodic, with more than one
frequency being observed. Further, the magnitude of the fluctuations is also reduced
when compared to σ = 1.0, pointing to a more steady behaviour near the cylinder
as the flow cavitates more. The cavitating vortex does not shed directly from the
body as in σ = 1.0, but from the trailing edge of the cavity attached to the cylinder.
The Strouhal number corresponding to this shedding is 0.15 for σ = 0.7. At σ = 0.5,
the vortex shedding becomes intermittent and a peak is observed between Strouhal
numbers of 0.08 and 0.11. Thus decreasing cavitation number has two main effects
on the unsteady loads: vortex shedding frequency is reduced, the mechanism of which
will be discussed in § 5.7; and the magnitude of unsteady loads on the cylinder is also
reduced, pointing to a more steady behaviour near the cylinder.

Figure 16 illustrates the dynamics of vapour cloud collapse and the subsequent
pressure wave formation for σ = 1.0. This figure shows void fraction contours,
pressure contours and the corresponding instant in the load cycle for various instants
of time. Figure 16(a,e,i) shows the impending collapse of the vapour cavity and
figure 16(b,f,j) shows the subsequent collapse of the cavity, leading to two separate
smaller regions of vapour denoted as Cav 1 and Cav 2. This collapse causes a pressure
wave (Wav 1) that propagates outwards. By this time, the separated cavity (Cav 2)
also collapses, leading to another pressure wave (Wav 2), as shown in figure 16(c,g,k).
Figure 16(d,h,l) shows the fully formed vapour cavity on the top half of the cylinder
and this entire cycle repeats itself. This process of cloud collapse and pressure wave
formation is similar for both σ = 0.7 and 0.5, except for a low-frequency detachment
of the vapour cavity in the wake in these two cases.

5.6. Low-frequency cavity detachment in σ = 0.7 and 0.5
For σ = 0.7 and 0.5, in addition to the vortex shedding from the trailing edge of the
attached cavity, the entire attached vapour cavity also gets detached as a part of the
cycle. As a result, the near wake is cavitation-free for a small interval of time. For
σ = 0.7 this cavitation-free time period is approximately 20tu∞/D and for σ = 0.5
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FIGURE 17. (Colour online) Time history of lift showing two phenomena in a single cycle
for (a) σ = 0.7 and (b) σ = 0.5: ——, CL; – – – –, CD.

it is approximately 30tu∞/D. The frequency corresponding to this detachment can be
observed as a peak in the drag spectra in figure 15(b,c) and is computed to be 0.0218
for σ = 0.7 and 0.0102 for σ = 0.5. The lift curves in figure 17(a,b) suggest that
there are two distinct parts within one cycle: one with a relatively low variation in
CL and another with a higher variation in CL. The first part with low CL variation
corresponds to the time when the vapour cavity is attached to the body. Since the
pressure in the vapour region is close to the vapour pressure, the variation in CL is



472 A. Gnanaskandan and K. Mahesh

very small. As the vapour cavity detaches, water in the wake causes higher variations
in the lift coefficient.

The mechanism behind this detachment is illustrated in figure 18, where a series of
snapshots show the presence of a propagating condensation front that causes cavity
detachment from the base of the cylinder. Figure 18(a,c) shows the propagation of
the condensation front towards the low-pressure base. This causes the pressure in
the base to increase, which can be seen as a small patch of high-density fluid near
the base of the cylinder (figure 18e). This causes the vapour cavity to detach, as
seen in figure 18(g). The detached cavities advect downstream, leaving the near-wake
cavitation free for a while. The presence of a condensation front can also be seen
from the line plots in the figure. The pressure increase and the corresponding void
fraction decrease close to x/d = 2.0 seen in figure 18(b,d) is the condensation front.
Figure 18( f,h) also shows the presence of high-density (low-void-fraction) fluid near
the base once the cavity detaches.

The low-frequency cavity detachment in σ = 0.7 means that the entire near wake
is cavitation-free for a while. This effectively reduces the time-averaged void fraction
in those regions where cavitation is absent during some part of the cycle. Hence the
maximum time-averaged void fraction of σ = 0.7 is lower than that of σ = 1.0, as
seen in figure 14(a). This cavitation-free period is a substantial part of one cycle for
σ = 0.7 (20tu∞/D out of 45tu∞/D) when compared to the σ = 0.5 (30tu∞/D out of
100tu∞/D) where the cavitation-free period is for a lesser amount of time in the cycle.
Thus this effect is not pronounced in σ = 0.5 when compared to σ = 0.7.

5.7. Mechanism of vortex shedding frequency reduction
At low Reynolds number, the vorticity transported into the wake from the boundary
layers on the cylinder is diffused away from the shear layer predominantly by
viscous action. As the Reynolds number increases, viscous diffusion alone cannot
keep up with the increased vorticity production from the boundary layers, and so
vortices break away at regular intervals, constituting vortex shedding (Strykowski &
Sreenivasan 1990). Gerrard (1966) observed vortex street formation to be a function
of two length scales: the formation length and diffusion length. The formation length
lf is defined as the distance downstream of the cylinder along the centreline where
the streamwise velocity fluctuations are maximum, and the diffusion length ld is
the width to which the free shear layers diffuse. He found that the vortex shedding
frequency could be reduced if the shear layer vorticity was reduced over a critical
diffusion length, which in turn increases the formation length.

In order to understand the mechanism of vortex shedding suppression due to
cavitation, we first compute the formation length (lf ) by plotting the streamwise
velocity fluctuations in figure 19 for σ = 2.0, 1.0, 0.7 and 0.5. The formation length
is seen to increase with decreasing cavitation number, which signifies a reduction in
shedding frequency (Gerrard 1966). It is also worthwhile to note that the magnitude
of the streamwise velocity fluctuation also increases as the flow cavitates. This points
to higher oscillations at the cavity closure as σ is lowered. Also shown in figure 19
are the instantaneous vorticity contours, showing fewer vortices being shed over a
given distance as the cavitation number is reduced.

Figure 20 shows the mean vorticity distribution in the top half of the shear
layer. The arguments presented here can be applied to the bottom half also by
symmetry. Note that the magnitude of negative vorticity in the top shear layer
decreases progressively as the cavitation number decreases. Thus cavitating flow has
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lesser vorticity across a given shear layer width and the reason for this reduction is
explained below using the vorticity equation,

∂ω

∂t
=−(v · ∇)ω+ (ω · ∇)v −ω(∇ · v)+ 1

ρ2
(∇ρ ×∇p)+∇× ∇ · τ

ρ
. (5.1)
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For a constant-density non-cavitating flow, the vorticity dilatation term (ω(∇ · v)) and
the baroclinic vorticity ((1/ρ2)(∇ρ ×∇p)) terms are zero. However, for a cavitating
flow, these values are non-zero. Figure 20 shows the contribution of the mean
baroclinic vorticity term. At the inception location, baroclinic vorticity is produced
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Cavitation number Circulation Formation length
(σ ) (Γ ) (lf /D)

2.0 4.80 1.45
1.0 4.03 2.35
0.7 3.08 4.19
0.5 2.78 7.01

TABLE 3. Values of circulation Γ and formation length lf .

because pressure becomes a function of both vapour mass fraction and density,
thus causing a misalignment between pressure and density gradients. The baroclinic
term produces more negative vorticity on the top half for all the cavitating cases thus
increasing the total vorticity in the shear layer. The main reason for vorticity reduction
is the vorticity dilatation term. As seen in figure 10, there is a large region of positive
divergence (expansion) corresponding to the vapour region. The magnitude of vorticity
dilatation is also shown in figure 20. Note that this term appears in the right-hand
side of the vorticity equation with a negative sign. The blue region corresponds to
vorticity dilatation, which reduces the vorticity in the shear layer. The compression
region (discussed in § 5.2) causes the vorticity to increase downstream, shown as the
red contours: however, the larger influence of the expansion region results in a net
decrease in vorticity.

To quantify the extent of vorticity reduction, the circulation in the shear layer
is computed as

∮
V · dl over a rectangular domain from 0.5 < x/D < 4.0 and

0 < y/D < 1.0, where the centre of the cylinder lies at the origin. As the flow
cavitates more, the amount of circulation decreases, pointing to reduced vorticity in
the shear layer. Table 3 lists the values of circulation and the corresponding formation
lengths for all the cases. Thus the presence of vapour in the wake causes dilatation
of vorticity, resulting in a reduction of the vortex shedding frequency.

6. Effect of initial void fraction
In this section, we discuss the effect of initial void fraction (α0) on the flow field

by simulating σ = 1.0 flow with α0= 0.005 and comparing it to α0= 0.01. The initial
void fraction values of 1 % and 0.5 % are large compared to those used in controlled
experiments. However, these values are chosen to reduce the acoustic stiffness of the
system. The main effect of changing α0 is the change in free-stream speed of sound.
At a temperature of 293 K and a pressure of 1 bar, the speed of sound in a mixture
with α0 = 0.01 is 100.24 m s−1, while that at α0 = 0.005 is 141.07 m s−1. Hence
pressure waves propagating in the medium will travel at these substantially different
speeds, which would affect related phenomena. However, phenomena that are driven
largely by inertia (e.g. cavitation in shear layer, vortex shedding) are not expected to
vary significantly.

6.1. Mean Cp and Cf distributions on the cylinder
The time-averaged Cp distribution and Cf distribution are shown as a function of θ
in figure 21(a,b) for both α0 = 0.01 and 0.005. Note that neither Cp nor Cf vary
significantly for different α0. The time-averaged load on a cylinder is predominantly
due to the alternate vortex shedding, which is not affected significantly by change in
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FIGURE 21. (a) Time-averaged Cp distribution on the cylinder, and (b) time-averaged Cf
distribution on the cylinder: ——, α0 = 0.01;E, α0 = 0.005.
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FIGURE 22. (Colour online) Mean void fraction contour for (a) α0 = 0.01 and
(b) α0 = 0.005.

acoustic speed. The inflection point (at θ = 80◦) in the Cf curve that indicates the
cavity inception location (as discussed in § 5) also remains unchanged between the
two flows. Figure 22 shows the mean void fraction contours for both the flows. The
cavity shape and cavity length (lcav/D= 2.71) remain largely unaffected. According to
the continuity equation, ∂uj/∂xj=−(1/ρ)(Dρ/Dt), the divergence of velocity depends
on the material derivative of density. The main contribution to density change comes
from the phase change, which has a time scale of its own due to the finite rate. Since
phase change does not occur on the acoustic scale, changing the speed of sound does
not significantly affect the divergence of velocity and hence its interplay with the
boundary layer is also largely unaffected. Figure 23 shows contours of mean velocity
divergence for both α0 = 0.01 and 0.005. The contours are identical, confirming the
fact that velocity divergence is not affected by the initial void fraction.
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6.2. Unsteady loads on the cylinder
The effect of changing α0 on the unsteady loads is investigated in figure 24(a,b).
The lift and drag history shown in figure 24(a) is very similar to the α0 = 0.01 case
(figure 15a), and the corresponding shedding Strouhal number obtained in figure 24(b)
is also unaltered. The only effect of reducing α0 below 0.005 is an increase in the
speed of sound in the medium, effectively reducing the Mach number of the flow,
which is not expected to affect the shedding characteristics significantly. Figure 24(c)
shows a single lift and drag cycle for both the cases. It can be observed that the time
period and the magnitude of the primary peak of the cycle are the same. However,
the pressure wave impingement causes a higher pressure increase for α0 = 0.005,
leading to a larger secondary peak, as can be observed from the inset in figure 24(c).
This implies that a stronger pressure wave is produced due to vapour collapse for
α0 = 0.005 and this aspect is investigated further.

6.3. Pressure waves due to cavity collapse
To understand the effect of α0 on pressure waves, the pressure history at three different
locations (x/D= 2.5, 5.0 and 10.0) along the wake centreline is examined in figure 25
for both the flows. There are adequate numbers of time samples (≈50) within each
peak to resolve it accurately. Note that higher values for pressure peaks are obtained
for α0 = 0.005. This change in pressure can be explained as follows. For an inviscid,
isentropic flow, the pressure perturbation due to an acoustic wave is

p− p= c2(ρ − ρ)= ρ c2S= Z cS, (6.1)

where c is the mean speed of sound, Z ≡ ρ c is the acoustic impedance and
S ≡ (ρ − ρ)/ρ is the condensation ratio. The time history of pressure perturbation
scaled by ρ c2 is shown in figure 26(a,b) for both the cases. It can be observed that
the peak values of the scaled pressure perturbation are similar for both the flows,
indicating similar values of condensation ratio S. To obtain the same condensation
ratio in a less compressible medium (higher Z and c), a higher pressure rise would
be required, explaining the larger pressure peaks for α0 = 0.005. Thus the major
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FIGURE 27. Time history of vapour volume fraction at three different locations along the
wake centreline for (a) α0 = 0.01 and (b) α0 = 0.005: ——, x/D= 2.5; – – – –, x/D= 5.0,
E, x/D= 10.0.

consequence of changing α0 seems to be to produce a pressure wave that has a
higher pressure rise across it, but produces the same amount of density change in
the medium. The similarity in S for both α0 can be explained using figure 27, which
shows the vapour volume fraction history corresponding to the pressure history in
figures 25 and 26. The vapour volume fraction drops from a value of approximately
0.6 to the free-stream value at the time instant where the pressure spike occurs in
figure 25. Since the free-stream values are at least an order of magnitude less (0.01
and 0.005) than 0.6, the change in vapour volume fraction produced is almost the
same for both the flows, which explains the density change also being similar for
both the flows.

The difference in the average speed of a pressure wave as it travels between two
points can also be observed from figure 25. Waves move faster when α0= 0.005 due
to the higher speed of sound. The average speed of the pressure wave is computed
and tabulated along with the average speed of sound in table 4. To compute these
quantities it is assumed that the speed does not change between the probe locations.
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Location Initial void fraction Avg. condensation wave speed Avg. sound speed

(x/D) (α0) (uc/u∞) (c/u∞)

2.5–5.0 0.01 8.3 8.0
5.0–10 0.01 6.8 7.0
2.5–5.0 0.005 17.0 18.0
5.0–10 0.005 10.0 9.5

TABLE 4. Average speed of pressure wave and sound speed.

Although this assumption is not strictly valid, it gives a sense of the propagation speed
of the pressure waves with respect to the sound speed (c). The expression for the
speed of sound in a liquid–gas mixture is obtained using the equation of state and
Gibbs equation and is given by

c2 = C1T

C0 − C1

Cpm

,

C0 = 1− (1− Y)ρKlT
Pc

(p+ Pc)2
,

C1 = RgY −Kl(1− Y)
P

p+ Pc
,

Cpm = YCpg + (1− Y)Cpl.


(6.2)

The relationship used for the speed of sound follows the established dependence of
sound speed on void fraction (Gnanaskandan & Mahesh 2015). It is observed that the
pressure waves travel almost at the local speed of sound in the medium.

Pressure fluctuation levels of the two cavitating flows are compared to the
pressure fluctuations in a non-cavitating flow in figure 28. The difference in the
contours downstream of the cylinder on either side of the centreline is evident. The
‘cell’-shaped structures formed in the cavitating cases (figure 28b,c) are the result of
the pressure fluctuations caused by the pressure waves due to cavity collapse, which
are absent in a single-phase flow. The structures are localized in space due to the
fact that the pressure wave impinges with the vortices only at specific points in space.
This interaction causes the residual vapour in the vortex core to collapse, leading to a
momentary increase in pressure followed by a recovery back to a lower pressure due
to the rotation of the vortices. Since this happens until the pressure waves decay and
the vapour in the vortices is destroyed completely, a train of ‘cell’-shaped structures
can be observed until approximately 20D. Such behaviour would be absent if the
wake only had advecting vortices or propagating pressure waves: it is a result of
their interaction. Figure 29 shows the variation of pressure fluctuations along the
streamwise direction at three different y locations as marked in figure 28(b) for both
the cavitating flows. Both the wake centreline plot (y/D = 0.0) and the cut through
the vortex core (y/D = 0.7) show several cycles of cavity growth and collapse, and
in each cycle the crest corresponds to the collapse of a bubble and each trough is
the cavity at its maximum regrown state. The absence of vapour at y/D= 2.0 means
that pressure fluctuation change is not as substantial as inside the vortices. The
propagation speed of the wave is also different and can be observed from the figure.
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FIGURE 28. (Colour online) Comparison of pressure fluctuation (p′2) contour for
(a) non-cavitating flow, and cavitating flow with (b) α0 = 0.01 and (c) α0 = 0.005.

Owing to a larger speed of sound, the pressure wave for α0= 0.005 travels faster and
impinges with the vortex at a more upstream location than in the α0 = 0.01 flow.

7. Large-eddy simulation of turbulent cavitating flow at Re= 3900

LES of turbulent cavitating flow at Re = 3900 and α0 = 0.01 is performed. The
topology used for the simulation is similar to the lower-Reynolds-number cases; the
grid however is 3D and more refined in the near wake. The averaged statistics are
obtained over 10 shedding cycles and satisfactory convergence is obtained in the
near-wake region. The number of samples is further increased by averaging along
the spanwise direction and also about the wake centreline to improve convergence.
Figure 30 shows the instantaneous vortical structures in the form of Q-criterion
coloured by void fraction; 3D flow structures of varying scales can be observed. The
shear layer breaks up into smaller spanwise structures. The flow structures in the
near wake, especially in the vapour cavity, appear to be larger when compared to
the flow structures observed by Verma & Mahesh (2012) (figure 16 in their paper)
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FIGURE 30. (Colour online) Isocontours of Q= 2 coloured by void fraction.

in single-phase flow. This is because of the effective lowering of Reynolds number
by the presence of vapour. Further, small vapour pockets can be seen trapped in the
smaller-scale vortices downstream of the wake. Although the flow is 3D inside the
vapour cavity immediately downstream, breakdown to finer scales occurs downstream
of the cavity closure. Figure 31 shows instantaneous contours of Mach number,
showing supersonic Mach numbers in the shear layer. Cavitation in wake vortices
also causes locally supersonic Mach numbers there. The contour lines of pressure
show distorted fronts of pressure waves. Turbulence causes different points in the
wave fronts to have different speeds, resulting in their distortion.

7.1. Comparison of Re= 3900 cavitating flow to Re= 200 cavitating flow
Figure 32 compares the mean void fraction for Re= 3900 to the Re= 200 flow. There
are minor differences in the cavity shape; the major change, however, is the fact that
vapour is distributed uniformly in the wake for the turbulent case as opposed to only
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FIGURE 32. (Colour online) Mean void fraction contour for (a) Re = 3900 and
(b) Re= 200.

in the vortices for the laminar case. The length of the cavity (lcav/D) is 3.04 for the
high-Reynolds-number flow, while it is only 2.71 for the low-Reynolds-number flow.
Also note the presence of a larger fraction of vapour in the wake for Re= 3900. Thus
increasing Reynolds number at the same cavitation number makes the flow cavitate
more, resulting in a larger cavity dimension. This observation is also in line with that
of Rao & Chandrasekhara (1976). The presence of an increased amount of vapour also
affects the Cp and Cf distributions. Figure 33(a,b) compares the time-averaged Cp and
Cf distributions of Re= 3900 at σ = 1.0 with the Re= 200 flow at the same cavitation
number. Also shown in the figure are the Cp and Cf distributions from the single-phase
flow at Re= 3900, which will be discussed in § 7.2. When compared to the Re= 200
flow, the minimum Cp location is shifted upstream, pointing to the inception location
moving upstream. The magnitude of the minimum Cp is also reduced in the Re=3900
flow, which is also consistent with the increased amount of vapour. The Cf curve
for the Re = 3900 flow in figure 33(b) shows a different behaviour when compared
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FIGURE 33. (a) Time-averaged Cp distribution along the cylinder and (b) time-averaged
Cf distribution along the cylinder: ——, Re= 3900 single-phase flow; – – – –, Re= 3900
cavitating flow; and – · – · –, Re= 200 cavitating flow.
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FIGURE 34. Boundary layer profile at four azimuthal locations of (a) θ = 70◦, (b) 90◦,
(c) 110◦ and (d) 130◦: ——, Re= 200; and – – – –, Re= 3900.

to the Re = 200 flow. The main difference is that there is a marked difference in
the inflection point in the Cf curve. This is due to the fact that the deceleration
upstream of the inception location and acceleration downstream of inception caused
by cavitation explained in § 5.3 is subdued at Re= 3900 when compared to Re= 200
due to 3D effects. This also results in the separation location being shifted upstream
(95◦) for the Re= 3900 flow since the acceleration effect present in the Re= 200 flow
is now reduced.

The mean boundary layer evolution of the high-Reynolds-number flow is compared
with the low-Reynolds-number flow in figure 34. At an azimuthal location of 70◦, the
Re = 3900 flow has a higher magnitude for maximum velocity, which is consistent
with the reduced amount of deceleration due to cavitation inception. Further, the
location of maximum velocity is also shifted closer to the wall for the Re = 3900
flow. The maximum velocity at 90◦ is lower for Re = 3900 since the flow is closer
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FIGURE 36. (Colour online) (a) Mean velocity divergence contour. (b) Mean vorticity
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to the separation point and is decelerating much more than the Re= 200 flow at the
same location. The flow separates at approximately 95◦ and instances of separated
flow can be observed at the downstream locations.

The lift and drag history and their power spectral density are plotted in figure 35.
The secondary peaks due to pressure wave impingement are not as prominent as they
were in the Re=200 flow. The presence of an increased amount of vapour in the wake
presumably reduces the effect of pressure wave impingement. The Strouhal number
corresponding to vortex shedding frequency is 0.167, and the reason for the Strouhal
number reduction from the single-phase value of 0.2 is very similar to that for the 2D
flow and is depicted in figure 36(a,b). The mean velocity divergence contour shows an
expansion region corresponding to vapour formation. A compression region is found
immediately downstream of the expansion similar to the Re= 200 flow. The expansion
region causes vorticity dilatation that can be observed in figure 36(b). As in the Re=
200 flow, this vorticity dilatation is the main reason for the vorticity reduction which
reduces the vortex shedding frequency.
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FIGURE 37. Comparison of vertical profiles at streamwise stations downstream of the
cylinder at Re= 3900:u, Verma & Mahesh (2012); ——, present results.

7.2. Comparison of Re= 3900 cavitating flow to Re= 3900 non-cavitating flow
Figure 35(a,b) also compares the Cp and Cf distributions of Re= 3900 cavitating flow
with that of the single-phase results of Verma & Mahesh (2012) at the same Reynolds
number. Cavitation decreases the magnitude of minimum Cp when compared to the
single-phase Cp and the flattening of the Cp curve is due to the presence of vapour,
similar to the discussion in § 5.1. The Cf curve comparison shows that the separation
location is shifted downstream compared to the single-phase flow. The reason for this
shift is the same as discussed in § 5.3.

Figures 37 and 38 compare the mean velocity profiles and turbulence intensity
profiles, respectively, in the wake for the cavitating case at Re = 3900 to the
single-phase results of Verma & Mahesh (2012) at the same Reynolds number.
The streamwise velocity profiles at all stations show a wider wake profile for the
cavitating flow. The station x/D= 3.0 shows the maximum difference in the vertical
velocity profile since it corresponds to the cavity closure region. Inside the cavity
(except at x/D= 1.06), larger values of vertical velocity are obtained. The maximum
value for u′u′ occurs downstream (x/D = 3.0), pointing to a larger formation length.
Inside the cavity, the values for v′v′ are much smaller than those obtained for the
single-phase flow. However, the cavity closure at x/D = 3.0 is highly unsteady with
higher fluctuation values in both streamwise and vertical velocities. The u′v′ curve
shows a similar trend to the mean vertical velocity profiles. Overall, cavitation seems
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FIGURE 39. (Colour online) Magnitude of vortex stretching in the symmetry plane for
(a) cavitating flow and (b) non-cavitating flow.

to have delayed the complete 3D breakdown of the Kármán vortices by effectively
lowering the Reynolds number in the wake. This fact is corroborated in figure 39,
which shows the instantaneous magnitude of vortex stretching in the symmetry
plane for the multiphase and single-phase flows. Note that the vortex stretching
magnitude in the wake is reduced in a cavitating flow. Hence formation of vapour
suppresses turbulence, yielding highly correlated spanwise structures in the near wake
in figure 30.

8. Summary

A numerical method based on the homogeneous mixture model and characteristic-
based filtering is used to study cavitation on a circular cylinder at two Reynolds
numbers and several cavitation numbers. The simulated cavitation numbers correspond
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to two different regimes based on how the cavity is shed into the wake. The
dynamics of cavity formation and collapse leading to pressure waves is captured
in the simulations and discussed in detail. A scaling for cavitation number based
on maximum velocity in the shear layer is found to collapse the cavity length as a
function of cavitation numbers at different Reynolds numbers onto a single curve. In
the cyclic regime (σ = 1.0) of cavitation, the cavity detaches from the body itself
at the shedding frequency, while in the transitory regime of cavitation (σ = 0.7 and
0.5), a low-frequency cavity detachment phenomenon is observed in addition to the
shedding frequency. Cavitation is found to significantly modify the vortex shedding
frequency, and vorticity dilatation due to vapour is found to be responsible for this
shedding frequency reduction. This effect is further verified by computing circulation
in the wake, which shows that vorticity reduces as the cavitation number is lowered.

The effect of initial void fraction is assessed. It is found that changing the initial
void fraction does not affect the general dynamics of cavity formation. However, the
speed of sound is altered significantly and this leads to pressure waves travelling
at different speeds. The compressibility and acoustic impedance of the medium are
altered but the condensation ratio in the medium shows a similarity for different
free-stream void fraction values. The pressure fluctuation contours show spatially
local phenomenon due to the interaction between condensation waves and vortices at
specific locations in space.

Finally, LES of cavitating flow at Re = 3900 reveals that the length of the mean
cavity obtained at higher Reynolds number is higher than that at low Reynolds
number for the same cavitation number. The vortex shedding frequency is again
lower compared to a single-phase shedding frequency and vorticity dilatation is again
found to be an important factor in reducing the vorticity in the wake. Cavitation
effectively reduces the Reynolds number in the near wake, suppresses turbulence and
delays the 3D breakdown of Kármán vortices.

Acknowledgements
This work was supported by the United States Office of Naval Research under

ONR grant N00014-11-1-0497 with Dr K.-H. Kim as technical monitor. Computing
resources were provided by the Arctic Region Supercomputing Center of HPCMP and
the Minnesota Supercomputing Institute.

REFERENCES

ARAKERI, V. H. 1975 Viscous effects on the position of cavitation separation from smooth bodies.
J. Fluid Mech. 68 (4), 779–799.

ARAKERI, V. H. & ACOSTA, A. J. 1973 Viscous effects in the inception of cavitation on axisymmetric
bodies. Trans. ASME J. Fluids Engng 95 (4), 519–527.

ARNDT, R. E. A. 2002 Cavitation in vortical flows. Annu. Rev. Fluid Mech. 34 (1), 143–175.
ARNDT, R. E. A. & MAINES, B. H. 2000 Nucleation and bubble dynamics in vortical flows. Trans.

ASME J. Fluids Engng 122 (3), 488–493.
ARNDT, R. E. A., SONG, C. C. S., KJELDSEN, M., HE, J. & KELLER, A. 2000 Instability of

partial cavitation: a numerical/experimental approach. In Proceedings of the 23rd Symposium
on Naval Hydrodynamics, pp. 519–615. National Academies Press.

BALACHANDAR, R. & RAMAMURTHY, A. S. 1999 Pressure distribution in cavitating circular cylinder
wakes. J. Engng Mech. 125 (3), 356–358.

BEARMAN, P. W. 1969 On vortex shedding from a circular cylinder in the critical Reynolds number
regime. J. Fluid Mech. 37 (3), 577–585.



490 A. Gnanaskandan and K. Mahesh

BELAHADJI, B., FRANC, J.-P. & MICHEL, J.-M. 1995 Cavitation in the rotational structures of a
turbulent wake. J. Fluid Mech. 287, 383–403.

BRANDNER, P. A., WALKER, G. J., NIEKAMP, P. N. & ANDERSON, B. 2010 An experimental
investigation of cloud cavitation about a sphere. J. Fluid Mech. 656, 147–176.

COLONIUS, T. 2004 Modeling artificial boundary conditions for compressible flow. Annu. Rev. Fluid
Mech. 36, 315–345.

COUTIER-DELGOSHA, O., STUTZ, B., VABRE, A. & LEGOUPIL, S. 2007 Analysis of cavitating flow
structure by experimental and numerical investigations. J. Fluid Mech. 578, 171–222.

DIPANKAR, A., SENGUPTA, T. K. & TALLA, S. B. 2007 Suppression of vortex shedding behind a
circular cylinder by another control cylinder at low Reynolds numbers. J. Fluid Mech. 573,
171–190.

FRANC, J.-P. & MICHEL, J.-M. 1985 Attached cavitation and the boundary layer: experimental
investigation and numerical treatment. J. Fluid Mech. 154, 63–90.

FRANC, J.-P. & MICHEL, J.-M. 1988 Unsteady attached cavitation on an oscillating hydrofoil.
J. Fluid Mech. 193, 171–189.

FRY, S. 1984 Investigating cavity/wake dynamics for a circular cylinder by measuring noise spectra.
J. Fluid Mech. 142, 187–200.

GERRARD, J. H. 1966 The mechanics of the formation region of vortices behind bluff bodies.
J. Fluid Mech. 25 (2), 401–413.

GNANASKANDAN, A. & MAHESH, K. 2014 Large eddy simulation of sheet to cloud cavitation. In
Proceedings of the 30th Symposium on Naval Hydrodynamics, pp. 1–13.

GNANASKANDAN, A. & MAHESH, K. 2015 A numerical method to simulate turbulent cavitating
flows. Intl J. Multiphase Flow 70, 22–34.

HAMMACHE, M. & GHARIB, M. 1991 An experimental study of the parallel and oblique vortex
shedding from circular cylinders. J. Fluid Mech. 232, 567–590.

HSIAO, C.-T. & CHAHINE, G. L. 2005 Scaling of tip vortex cavitation inception noise with a bubble
dynamics model accounting for nuclei size distribution. Trans. ASME J. Fluids Engng 127
(1), 55–65.

KATZ, J. 1982 Cavitation inception in seperated flows. PhD thesis, California Institute of Technology.
KATZ, J. 1984 Cavitation phenomena within regions of flow separation. J. Fluid Mech. 140, 397–436.
KUBOTA, A., KATO, H. & YAMAGUCHI, H. 1992 A new modelling of cavitating flows: a numerical

study of unsteady cavitation on a hydrofoil section. J. Fluid Mech. 240, 59–96.
KUNZ, R. F., BOGER, D. A., STINEBRING, D. R., CHYCZEWSKI, T. S., LINDAU, J. W., GIBELING,

H. J., VENKATESWARAN, S. & GOVINDAN, T. R. 2000 A preconditioned Navier–Stokes
method for two-phase flows with application to cavitation prediction. Comput. Fluids 29 (8),
849–875.

LABERTEAUX, K. R. & CECCIO, S. L. 2001 Partial cavity flows. Part 1. Cavities forming on models
without spanwise variation. J. Fluid Mech. 431, 1–41.

MATSUDAIRA, Y., GOMI, Y. & OBA, R. 1992 Characteristics of bubble-collapse pressures in a
Karman-vortex cavity. JSME Intl J. 35 (2), 179–185.

MITTAL, S. & RAGHUVANSHI, A. 2001 Control of vortex shedding behind circular cylinder for flows
at low Reynolds numbers. Intl J. Numer. Meth. Fluids 35 (4), 421–447.

PARK, N. & MAHESH, K. 2007 Numerical and modeling issues in LES of compressible turbulence
on unstructured grids. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and
Exhibit, AIAA Paper, pp. 1–18.

RAMAMURTHY, A. S. & BHASKARAN, P. 1977 Constrained flow past cavitating bluff bodies. Trans.
ASME J. Fluids Engng 99 (4), 717–726.

RAO, B. C. S. & CHANDRASEKHARA, D. V. 1976 Some characteristics of cavity flow past cylindrical
inducers in a venturi. Trans. ASME J. Fluids Engng 98 (3), 461–466.

RAO, B. C. S., CHANDRASEKHARA, D. V. & SEETHARAMIAH, K. 1972 A high-speed photographic
study of vortex shedding behind circular cylinders of cavitating flows. In Proceedings of 2nd
International JSME Symposium Fluid Machinery and Fluidics, pp. 293–302.

ROSHKO, A. 1961 Experiments on the flow past a circular cylinder at very high Reynolds number.
J. Fluid Mech. 10 (3), 345–356.



Near-wake characteristics of cavitating flow over a circular cylinder 491

ROUSE, H. & MCNOWN, J. S. 1948 Cavitation and pressure distribution: head forms at zero angle
of yaw. State University of Iowa, Studies in Engineering, Bulletin 32. Published by the State
University of Iowa.

SAITO, Y. & SATO, K. 2003 Cavitation bubble collapse and impact in the wake of a circular cylinder.
In Proceedings of the 5th International Symposium on Cavitation, pp. 1–6.

SAITO, Y., TAKAMI, R., NAKAMORI, I. & IKOHAGI, T. 2007 Numerical analysis of unsteady behavior
of cloud cavitation around a NACA0015 foil. Comput. Mech. 40 (1), 85–96.

SCHMIDT, S. J., SCHNERR, G. & THALHAMER, M. 2009 Inertia controlled instability and small scale
structures of sheet and cloud cavitation. In Proceedings of the 7th International Symposium
on Cavitation, pp. 1–14.

SCHNERR, G. H., SEZAL, I. H. & SCHMIDT, S. J. 2008 Numerical investigation of three-dimensional
cloud cavitation with special emphasis on collapse induced shock dynamics. Phys. Fluids 20
(4), 1–9.

SELIM, S. M. 1981 Cavitation erosion in fluid flow. PhD thesis, University of Southampton.
SENOCAK, I. & SHYY, W. 2002 A pressure-based method for turbulent cavitating flow computations.

J. Comput. Phys. 176 (2), 363–383.
SEO, J. H., MOON, Y. J. & SHIN, B. R. 2008 Prediction of cavitating flow noise by direct numerical

simulation. J. Comput. Phys. 227 (13), 6511–6531.
SHIN, B. R., IWATA, Y. & IKOHAGI, T. 2003 Numerical simulation of unsteady cavitating flows

using a homogenous equilibrium model. Comput. Mech. 30 (5–6), 388–395.
SINGHAL, A. K., ATHAVALE, M. M., LI, H. & JIANG, Y. 2002 Mathematical basis and validation

of the full cavitation model. Trans. ASME J. Fluids Engng 124 (3), 617–624.
STRYKOWSKI, P. J. & SREENIVASAN, K. R. 1990 On the formation and suppression of vortex

shedding at low Reynolds numbers. J. Fluid Mech. 218, 71–107.
VARGA, J. J. & SEBESTYEN, G. Y. 1972 Determination of hydrodynamic cavitation intensity by noise

measurement. In Proceedings of the 2nd International JSME Symposium on Fluid Machinery
and Fluidics, pp. 285–292.

VERMA, A. & MAHESH, K. 2012 A Lagrangian subgrid-scale model with dynamic estimation of
Lagrangian time scale for large eddy simulation of complex flows. Phys. Fluids 24 (8),
85–101.

WILLIAMSON, C. H. K. 1988 Defining a universal and continuous Strouhal–Reynolds number
relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids 31 (10),
2742–2744.

WILLIAMSON, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a
circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579–627.

YEE, H. C., SANDHAM, N. D. & DJOMEHRI, M. J. 1999 Low-dissipative high-order shock-capturing
methods using characteristic-based filters. J. Comput. Phys. 150 (1), 199–238.

YOUNG, J. O. & HOLL, J. W. 1966 Effects of cavitation on periodic wakes behind symmetric
wedges. Trans. ASME J. Fluids Engng 88 (1), 163–176.


	Numerical investigation of near-wake characteristics of cavitating flow over acircular cylinder
	Introduction
	Governing equations and numerical method
	Validation: cavitation over a hemispherical nose-shaped body
	Problem description
	Effect of cavitation number (σ)
	Pressure on the cylinder surface
	Velocity divergence due to cavitation
	Boundary layer on the cylinder surface
	Cavity length
	Unsteady loads on the cylinder
	Low-frequency cavity detachment in σ= 0.7 and 0.5
	Mechanism of vortex shedding frequency reduction

	Effect of initial void fraction
	Mean Cp and Cf distributions on the cylinder
	Unsteady loads on the cylinder
	Pressure waves due to cavity collapse

	Large-eddy simulation of turbulent cavitating flow at Re = 3900
	Comparison of Re = 3900 cavitating flow to Re = 200 cavitating flow
	Comparison of Re = 3900 cavitating flow to Re = 3900 non-cavitating flow

	Summary
	Acknowledgements
	References




