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This paper presents a dynamic one-equation eddy viscosity model for large-eddy
simulation (LES) of compressible flows. The transport equation for subgrid-scale
(SGS) kinetic energy is introduced to predict SGS kinetic energy. The exact SGS
kinetic energy transport equation for compressible flows is derived formally. Each of
the unclosed terms in the SGS kinetic energy equation is modelled separately and
dynamically closed, instead of being grouped into production and dissipation terms,
as in the Reynolds averaged Navier–Stokes equations. All of the SGS terms in the
filtered total energy equation are found to reappear in the SGS kinetic energy equation.
Therefore, these terms can be included in the total energy equation without adding
extra computational cost. A priori tests using direct numerical simulation (DNS) of
decaying isotropic turbulence show that, for a Smagorinsky-type eddy viscosity model,
the correlation between the SGS stress and the model is comparable to that from the
original model. Also, the suggested model for the pressure dilatation term in the SGS
kinetic energy equation is found to have a high correlation with its actual value. In
a posteriori tests, the proposed dynamic k-equation model is applied to decaying
isotropic turbulence and normal shock–isotropic turbulence interaction, and yields
good agreement with available experimental and DNS data. Compared with the results
of the dynamic Smagorinsky model (DSM), the k-equation model predicts better
energy spectra at high wavenumbers, similar kinetic energy decay and fluctuations
of thermodynamic quantities for decaying isotropic turbulence. For shock–turbulence
interaction, the k-equation model and the DSM predict similar evolutions of turbulent
intensities across shocks, owing to the dominant effect of linear interaction. The
proposed k-equation model is more robust in that local averaging over neighbouring
control volumes is sufficient to regularize the dynamic procedure. The behaviour of
pressure dilatation and dilatational dissipation is discussed through the budgets of the
SGS kinetic energy equation, and the importance of the dilatational dissipation term is
addressed.
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1. Introduction
Large-eddy simulation (LES) has gained great success in simulating practical flows

where the Reynolds numbers are usually very high. By calculating the large-scale
fluid motions directly from the filtered Navier–Stokes equations while modelling
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the unresolved motions, LES alleviates the Reynolds number restrictions in direct
numerical simulation (DNS), but preserves the ability to present the instantaneous flow
characteristics and turbulent flow structures. The Smagorinsky model (Smagorinsky
1963; Lilly 1967) is an eddy viscosity model that contains a model coefficient Cs

that must be determined a priori. However, Cs is problem-dependent, and in principle
should be a function of time and space. To avoid the need to prescribe or tune the
model coefficient, Germano et al. (1991) devised the dynamic Smagorinsky model
(DSM), where the model coefficient is dynamically calculated during the simulation
using the resolved scales. The dynamic procedure uses the assumption of scale
invariance by applying the coefficient obtained from the resolved scales to the subgrid
scale (SGS) range. This is referred to as the Germano identity and has become the
basis of several dynamic models.

Many variants of the Smagorinsky model have been developed, such as SGS
kinetic energy models (Lilly 1967; Deardorff 1973; Schumann 1975), spectral eddy
viscosity models (Kraichnan 1976; Chollet & Lesieur 1981) and structure function
models (Yakhot, Orszag & Yakhot 1989; Métais & Lesieur 1992; Smith & Woodruff
1998). The reader is referred to the review papers by Lesieur & Métais (1996) and
Meneveau & Katz (2000) for past SGS model developments. Most of these models
have either been developed for incompressible flows or are restricted to flows with
simple geometries. Relatively few models have been developed for compressible
flows. The compressible DSM model developed by Moin et al. (1991) is still
the most popular model used in simulations of compressible flows. As opposed
to incompressible flows, the SGS kinetic energy has to be modelled explicitly in
compressible LES. The most commonly used model for SGS kinetic energy is
Yoshizawa’s model (Yoshizawa 1986), which is derived from the multiscale direct
interaction approximation (Kraichnan 1964). Speziale et al. (1988) showed that
Yoshizawa’s model is only applicable to compressible flows with small density
fluctuations, and correlates poorly with the DNS results of isotropic turbulence at low
Mach numbers. They suggested that these limitations could be reduced based on Favre-
filtered fields. In compressible DSM, Favre filtering is applied, and Yoshizawa’s model
is naturally generalized for SGS kinetic energy. Furthermore, Yoshizawa’s model is
based on the assumption of local equilibrium, i.e. the production of turbulent energy
equals its dissipation, which is not the case most of the time. It has been shown that
Yoshizawa’s model tends to under-predict the magnitude of the SGS kinetic energy
(Park & Mahesh 2007).

An alternative and original approach to derive SGS kinetic energy is by solving
its transport equation. One-equation SGS models have been extensively used in
incompressible large-eddy simulations (e.g. Lilly 1967; Deardorff 1973; Schumann
1975; Moeng 1984; Yoshizawa & Horiuti 1985; Shaw & Schumann 1992; Mason
1994; Ghosal et al. 1995; Menon & Kim 1996), and have shown success especially
in the prediction of inhomogeneous turbulent flows. For example, Horiuti (1985)
showed that the SGS kinetic energy equation model yielded improved performance
compared to the Smagorinsky model in the simulation of rectangular channel flow. For
compressible LES, works on one-equation SGS models are lacking. Therefore, here we
develop a compressible version of the DSM with SGS kinetic energy equation, which
will be referred to as dynamic k-equation model in the rest of the paper.

The localized dynamic k-equation model (LDKM), developed by Menon & Kim
(1996), is an eddy viscosity model based on the SGS kinetic energy equation for
incompressible flows. Recently, the LDKM has been extended for compressible flows
and applied to the LES of a sonic jet injected into a supersonic cross-flow (Génin &
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Menon 2010). Extra terms were added to the SGS kinetic energy equation to account
for compressibility effects. Both the incompressible and compressible SGS kinetic
energy equations used in the LDKM are simplified or modelled equations that appear
to be adapted from the transport equations for turbulent kinetic energy (Speziale 1991).
A different methodology is used for the dynamic procedure as well. In the current
study, the exact compressible SGS kinetic energy equation is derived formally. Each
of the unclosed terms is modelled separately instead of being grouped into production,
dissipation, etc., so that the contribution of each term can be evaluated individually.
For example, dilatational dissipation and solenoidal dissipation are modelled separately,
unlike in Génin & Menon (2010), who note that modelling them together is subject to
the assumption of low Mach number. Furthermore, all of the extra SGS terms (besides
SGS stress and SGS heat flux) in the filtered total energy equation (Vreman, Geurts
& Kuerten 1995; Garnier, Adams & Sagaut 2009) are found to reappear in the SGS
kinetic energy equation, which allows us to take them into account without adding
extra computational cost. The traditional Germano identity is applied to the dynamic
closure for most SGS terms.

This paper derives the compressible SGS kinetic energy transport equation, and
models the unclosed terms in energy equations and dynamically closes them. The
proposed model is then incorporated into the parallel finite volume Navier–Stokes
solver on unstructured grids developed by Park & Mahesh (2007) and applied to
decaying isotropic turbulence and normal shock–isotropic turbulence interaction. The
LES modelling background and the governing equations are introduced in § 2. Then
§ 3 discusses the derivation and modelling of the compressible SGS kinetic energy
transport equation and the dynamic procedures as well. A priori tests are performed in
§ 4, followed by a posteriori tests (§ 5), where the LES results of isotropic turbulence
and shock–turbulence interaction are presented. In § 6, the budgets of the SGS kinetic
energy equation are evaluated, and the relevance of pressure dilatation and dilatational
dissipation is discussed.

2. LES modelling background
LES decomposes flow variables into resolved (filtered) and SGS (residual) terms.

For example, any flow variable can be decomposed as

φ(x)= φ̄(x)+ φ′(x), (2.1)

where

φ̄(x)=
∫
Ω

G∆(x, y)φ(y) dy (2.2)

denotes the spatial filtering of φ(x), and G∆(x, y) is the kernel of the filter, which
satisfies the normalization condition∫

Ω

G∆(x, y) dy= 1. (2.3)

In practice, especially for an unstructured flow solver, the filter is usually the grid
filter, with the filter width ∆ being a measure of local grid size. The filtered
quantities are solved numerically from the filtered governing equations, which provides
an approximation to the large-scale motions in the flow fields. Within the filtered
governing equations, there are SGS stress terms representing the influence of SGS
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motions on the resolved field. These SGS terms cannot be calculated directly and
therefore are modelled in terms of resolved quantities.

2.1. The filtered Navier–Stokes equations
For compressible flow, the density-weighted (Favre) filtering is applied, i.e.

φ̃ = ρφ
ρ̄
. (2.4)

When Favre filtered, the spatially filtered compressible Navier–Stokes equations take
the form

∂ρ̄

∂t
=−∂(ρ̄ũj)

∂xj
, (2.5)

∂(ρ̄ũi)

∂t
=− ∂

∂xj
(ρ̄ũiũj + p̄δij − σ̃ij + τij), (2.6)

∂

∂t
(ρ̄Ẽ)=− ∂

∂xj
(ρ̄Ẽũj + p̄ũj − σ̃ijũi − Qj + Cpqj)+ H, (2.7)

p̄= ρ̄RT̃, (2.8)

where ρ, ui, p and E are density, velocity, pressure and specific total energy,
respectively. The viscous stress σ̃ij and heat flux Qj are given by

σ̃ij = 2µ̄S̃∗ij, (2.9)

Qj = κ̄ ∂T̃

∂xj
, (2.10)

where µ is the molecular viscosity, κ is the thermal conductivity, S∗ij is the traceless
strain-rate tensor, i.e.

S̃∗ij = S̃ij − 1
3δijS̃kk

= 1
2

(
∂ ũi

∂xj
+ ∂ ũj

∂xi

)
− 1

3
∂ ũk

∂xk
δij, (2.11)

and

τij = ρ̄(ũiuj − ũiũj), (2.12)

qj = ρ̄(T̃uj − T̃ũj) (2.13)

are the SGS stress and SGS heat flux, respectively. In (2.7), the expressions for E and
H are

ρ̄Ẽ = Cvρ̄T̃ + 1
2 ρ̄ũiũi + ρ̄k (2.14)

and

H =− ∂

∂xj

[
1
2
(ρ̄ũiuiuj − ρ̄ũiuiũj)

]
− ∂

∂xj

[
5
3

(
µ̄
˜

uj
∂uk

∂xk
− µ̄ũj

∂ ũk

∂ x̃k

)]

+ ∂

∂xj

[
µ̄
∂k

∂xj

]
+ ∂

∂xj

[
µ̄
∂

∂xi

(
τij

ρ̄

)]
, (2.15)
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where k in (2.14) and (2.15) is the SGS kinetic energy defined by

ρ̄k = 1
2τkk = 1

2 ρ̄(ũkuk − ũkũk). (2.16)

Two assumptions have been made to derive the above equations. First, the filtering
operations and derivatives are assumed to be commutative. Second, the kinematic
viscosity ν, specific heats Cp and Cv, and Prandtl number Pr are assumed to be
spatially uniform over the filter width, so that

σij = 2ρνS∗ij = 2ρ̄νS̃∗ij = 2µ̄S̃∗ij = σ̃ij (2.17)

and

Qj = µCp

Pr

∂T

∂xj
= µ̄Cp

Pr

∂T̃

∂xj
= κ̄ ∂T̃

∂xj
. (2.18)

The SGS stress, SGS heat flux and the first two terms in (2.15) cannot be computed
directly from the resolved quantities. Models for these terms are discussed below.

2.2. Dynamic Smagorinsky model (DSM)
In the compressible DSM, the H term defined by (2.15) is assumed to be small and is
neglected. The SGS stress and SGS heat flux terms are modelled by

τij − δij

3
τkk =−2Csρ̄∆

2|S̃|S̃∗ij, (2.19)

qj =−ρ̄Cs∆
2|S̃|

PrT

∂T̃

∂xj
, (2.20)

and Yoshizawa’s formula is used to model τkk = 2ρ̄k, i.e.

τkk = 2CIρ̄∆
2 |S̃|2, (2.21)

where |S| = √2SijSij. The model coefficients Cs, CI and PrT are determined
dynamically by the Germano identity, which assumes similarity of SGS quantities
between the grid filter level and test filter level; for any term a= αβ − ᾱβ̄, we assume

that, on the test filter level, A = α̂β − ̂̄α̂̄β holds. Here, ·̂ denotes test filtering. The

Germano identity is then defined by L= A− â= ̂̄αβ̄ − ̂̄α̂̄β. Assume that the model for
a is a = C m, where m is a function of the resolved (grid filter level) quantities; then
at the test filter level, A = C M, where M takes similar form to m but is a function of
the test-filtered quantities. Substituting the models for A and a, the Germano identity
becomes

L= ̂̄αβ̄ − ̂̄α̂̄β = C(M − m̂). (2.22)

Both sides of (2.22) may be calculated from the resolved variables, and the model
coefficient C can be solved dynamically as

C =
̂̄αβ̄ − ̂̄α̂̄β
(M − m̂)

. (2.23)

The coefficient C varies with time and space. Finally, to avoid computational
instability, C is regularized using a combination of least-square method (Lilly 1991)
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and volume averaging, e.g. the formula for the model coefficient of SGS stress Cs is

Cs∆
2 = 1

2

〈L∗ijM∗ij〉
〈M∗ijM∗ij〉

, (2.24)

where

Lij =
̂(
ρui ρuj

ρ̄

)
− ρ̂ui ρ̂uj

ˆ̄ρ , (2.25)

L∗ij = Lij − 1
3δijLkk, (2.26)

M∗ij = ρ̄̂|S̃S̃∗ij| − ˆ̄ρ
(
∆̂

∆

)2

|̂̃S| ̂̃S∗ij. (2.27)

Here, 〈 · 〉 denotes the spatial average over homogeneous directions. Expressions for
Pr t in the SGS heat flux qj and other details about the compressible DSM may be
found in Moin et al. (1991).

3. Dynamic k-equation model
The key idea of the proposed dynamic k-equation model is to derive the SGS kinetic

energy (or the isotropic part of the SGS stress, τkk in (2.19)) by solving its transport
equation, instead of using Yoshizawa’s model equation (2.21). It has been shown that
Yoshizawa’s model for the SGS stress correlates very poorly with the DNS results
of compressible isotropic turbulence (Speziale et al. 1988), and under-predicts the
magnitude of the SGS kinetic energy (Park & Mahesh 2007). On the other hand, the
works of Deardorff (1973), Schumann (1975), Horiuti (1985), Ghosal et al. (1995) and
Menon & Kim (1996) show that using the SGS kinetic energy equation yields better
performance in large-eddy simulations of incompressible flows. Therefore, we extend
this idea to compressible flows, and introduce the compressible SGS kinetic energy
transport equation.

3.1. SGS kinetic energy transport equation
The SGS kinetic energy equation can be derived by subtracting the product of the
Favre-filtered velocity and the filtered momentum equation from the filtered product of
the velocity and momentum equation, i.e.

[ui × (momentum equation)] − ũi × (momentum equation). (3.1)

After reduction and rearrangement of the above equation, the SGS kinetic energy
equation can be obtained as

∂ρ̄k

∂t
=−∂ρ̄kũj

∂xj
− τijS̃ij − 2µ̄

[
S̃∗ijD∗ij − S̃∗ijD̃∗ij

]
− ∂

∂xj

[
5
3

(
µ̄
˜

uj
∂uk

∂xk
− µ̄ũj

∂ ũk

∂ x̃k

)]

+ ∂

∂xj

[
τijũi + µ̄ ∂k

∂xj
+ µ̄ ∂

∂xi

(
τij

ρ̄

)
+ Rqj

]
− ∂

∂xj

[
1
2
ρ̄(ũiuiuj − ũiuiũj)

]
+
(

p
∂uk

∂xk
− p̄

∂ ũk

∂xk

)
, (3.2)

where k, τij and qj are the SGS kinetic energy, SGS stress and SGS heat flux
defined by (2.16), (2.12) and (2.13), respectively. R is the specific gas constant,
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with R = Cp − Cv, and D∗ij = Dij − 1
3δijDkk is the traceless velocity gradient tensor,

where Dij = ∂ui/∂xj. Equation (3.2) is the exact form of the SGS kinetic energy
equation. No additional assumption has been made beyond those in the derivation of
the filtered Navier–Stokes equations. For convenience, the following notation is used:

fj = 1
2 ρ̄(ũiuiuj − ũiuiũj), (3.3)

εs = 2µ̄
[
S̃∗ijD∗ij − S̃∗ijD̃∗ij

]
, (3.4)

εc = ∂

∂xj

[
5
3

(
µ̄
˜

uj
∂uk

∂xk
− µ̄ũj

∂ ũk

∂ x̃k

)]
, (3.5)

Π = p
∂uk

∂xk
− p̄

∂ ũk

∂xk
. (3.6)

The SGS kinetic energy equation (3.2) reduces to

∂ρ̄k

∂t
=−∂ρ̄kũj

∂xj
− τijS̃ij − εs − εc − ∂fj

∂xj
+Π

+ ∂

∂xj

[
τijũi + µ̄ ∂k

∂xj
+ µ̄ ∂

∂xi

(
τij

ρ̄

)
+ Rqj

]
. (3.7)

In (3.7), −∂ρ̄kũj/∂xj is the convection term, −τijS̃ij is the production term, which
is termed the SGS dissipation for the resolved kinetic energy (Piomelli et al. 1991)
and represents the interscale energy transfer associated with the interaction of the
resolved and unresolved scales, −εs is the solenoidal dissipation, −εc is the dilatational
dissipation, fj is the triple correlation term, Π is pressure dilatation, and the rest are
diffusion terms. Note that the dilatational dissipation term is expanded to yield the
approximation:

εc ≈ 5
3

µ̄(̃∂uk

∂xk

)2

− µ̄
(
∂ ũk

∂xk

)2
 . (3.8)

In (3.7), the SGS stress τij and SGS heat flux qj are modelled in the filtered
Navier–Stokes equations (2.6) and (2.7), and the terms εs, εc, fj and Π are to be
modelled for the SGS kinetic energy equation.

Note that, when the compressibility becomes negligible, εc and Π approach zero,
Rqj reduces to uj(∂p/∂xj) − ũj(∂p/∂xj) and −εs + (∂/∂xj)[µ̄(∂/∂xi)(τij/ρ̄)] yields

−µ̄[ ˜(∂ui/∂xj)(∂ui/∂xj)− (∂ ũi/∂xj)(∂ ũi/∂xj)]. Consequently, in the incompressible limit,
(3.2) reduces to

∂ρ̄k

∂t
=−∂ρ̄kũj

∂xj
− τijS̃ij − µ̄

(
∂̃ui

∂xj

∂ui

∂xj
− ∂ ũi

∂xj

∂ ũi

∂xj

)
−
(

uj
∂p

∂xj
− ũj

∂p

∂xj

)

+ ∂(τijũi)

∂xj
+ ∂

∂xj

[
µ̄
∂k

∂xj

]
− ∂

∂xj

[
1
2
ρ̄(ũiuiuj − ũiuiũj)

]
, (3.9)

which is the SGS kinetic energy equation for incompressible flows (Lilly 1967;
Schumann 1975) after dividing by ρ on both sides.
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3.2. Residual term H in the filtered total energy equation
In most of the LES modelling of compressible flows (e.g. Moin et al. 1991; Dubois,
Domaradzki & Honein 2002), the residual term H in the filtered energy equation (2.7)
is neglected, partially because there are too many unclosed terms in H adding to the
complexity of modelling. However, for the proposed dynamic k-equation model, we
can take into account all of the terms in H without adding extra computation and
modelling cost. Recall the expression for H in equation (2.15):

H =− ∂

∂xj

[
1
2
(ρ̄ũiuiuj − ρ̄ũiuiũj)

]
− ∂

∂xj

[
5
3

(
µ̄
˜

uj
∂uk

∂xk
− µ̄ũj

∂ ũk

∂ x̃k

)]

+ ∂

∂xj

[
µ̄
∂k

∂xj

]
+ ∂

∂xj

[
µ̄
∂

∂xi

(
τij

ρ̄

)]
. (3.10)

Compared with (3.2), all the terms of H reappear in the SGS kinetic energy transport
equation. Therefore, the complete filtered total energy equation will be automatically
closed once the SGS kinetic energy equation is modelled. Using the same notation
as in the SGS kinetic energy equation (3.7), the filtered total energy equation can be
rewritten as

∂

∂t
(ρ̄Ẽ)=− ∂

∂xj
(ρ̄Ẽũj + p̄ũj − σ̃ijũi − Qj + Cpqj)

+ ∂

∂xj

[
µ̃
∂k

∂xj

]
+ ∂

∂xj

[
µ̄
∂

∂xi

(
τij

ρ̄

)]
− ∂fj

∂xj
− εc. (3.11)

3.3. SGS modelling
Similar to the compressible DSM, eddy viscosity and eddy diffusivity models are used
for the SGS stress τij and the SGS heat flux qj, respectively. However, with the SGS
kinetic energy equation,

√
k is chosen as the velocity scale instead of ∆|S̃|, i.e.

τij − 2
3 ρ̄kδij =−2Cs∆ρ̄

√
kS̃∗ij, (3.12)

qj =− µt

Pr t

∂T̃

∂xj
=−Cs∆ρ̄

√
k

Pr t

∂T̃

∂xj
. (3.13)

Here, µt = Cs∆ρ̄
√

k is the eddy viscosity, and Cs and Pr t are the model coefficients to
be determined dynamically by Germano identity. For convenience, we define the ‘eddy
conductivity’, κt = Cpµt/Pr t, which will be compared with the thermal conductivity in
a later section. The closure of energy equations requires models for fj, εs, εc and Π .
We propose the following models for these terms:

fj = Cf ρ̄∆
√

k
∂k

∂xj
, (3.14)

εs = Cεsρ̄k3/2∆−1, (3.15)
εc = CεcM

2
t ρ̄k3/2∆−1, (3.16)

Π = CΠ∆
2 ∂ p̄

∂xj

∂2ũk

∂xj∂xk
, (3.17)

where Cf , Cεs, Cεc and CΠ are closure coefficients, ∆ is the nominal filter width
and Mt =

√
2k/a is the SGS turbulent Mach number, where a is the mean speed of
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sound. Models for fj and εs are adapted from the models of corresponding terms for
incompressible Reynolds averaged Navier–Stokes (RANS) equations (Speziale 1991).
The model for the dilatational dissipation term εc is taken from Sarkar et al. (1991),
and the model for the pressure dilatational term Π is based on a series expansion. For
any term that has the structure of fg− f̄ ḡ, Bedford & Yeo (1993) show that

fg− f̄ ḡ= 2α
∂ f̄

∂xk

∂ ḡ

∂xk
+ 1

2! (2α)
2 ∂2 f̄

∂xk∂xl

∂2ḡ

∂xk∂xl

+ 1
3! (2α)

2 ∂3 f̄

∂xk∂xl∂xm

∂2ḡ

∂xk∂xl∂xm
+ · · · , (3.18)

where

α(y)=
∫ ∞
−∞

x2G(x, y) dx (3.19)

and G(x, y) is the kernel of the filter. For a box filter, α = ∆2/24. In practice, α is
approximated by α = C∆2, and C is absorbed in the model coefficient CΠ .

Most of the model coefficients can be dynamically computed through the Germano
identity. However, since the model for solenoidal dissipation εs does not scale well
across filters (e.g. Pomraning & Rutland 2002), the Germano identity for εs yields very
small values of Cεs, which considerably under-predicts the magnitude of εs (Park &
Mahesh 2007), causing incorrect evolution of the SGS kinetic energy. Being modelled
similarly, εc suffers from the same problem, and gives insufficient dissipation to the
SGS kinetic energy after the shock, which further affects the resolved quantities
through the total energy equation (§ 6). To circumvent this problem, instead of using
the Germano identity, which assumes the similarity of SGS stresses between the grid
filter level and the test filter level, we use the analogy between the grid-filter-level SGS
stress and the Leonard stress L across the test filter level, as used by Menon & Kim
(1996). Specifically, as stated in § 2.2, in the Germano identity, for any terms that are
of the form a= αβ − ᾱβ̄ and modelled as a= C m, it is assumed that, on the test filter

level, A = α̂β − ̂̄α̂̄β = C M holds. Thus the model coefficient C can be solved by the
equation

L= ̂̄αβ̄ − ̂̄α̂̄β = C(M − m̂), (3.20)

where L is the Leonard stress term. In contrast, Menon & Kim (1996) assume that, on
the test filter level,

A= ̂̄αβ̄ − ̂̄α̂̄β = C M, (3.21)

from which the model coefficient C is directly solvable. Applying this methodology to
εs and εc, the resulting equations for Cεs and Cεc are

2
[

̂̄
µD̃∗ijS̃∗ij − ̂̄µ̂̃D∗ij ̂̃S∗ij]= Cεs

̂̄ρK3/2∆̂−1 (3.22)

and

5
3

 ̂
µ̄

(
∂ ũk

∂xk

)2

− ̂̄µ(∂ ̂̃uk

∂xk

)2
= 2Cεc

̂̄ρ2

γ ̂̄pK5/2∆̂−1, (3.23)
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FIGURE 1. Correlation coefficients for SGS stresses τij for the three cases (a) Mt = 0.2,
(b) Mt = 0.4 and (c) Mt = 0.6: τ11, square; τ12, delta; τ13, right-triangle; τ22, diamond; τ23,
gradient; and τ33, circle. Filled symbols, k-equation model; hollow symbols, DSM.

where K is the ‘sub-test-filter scale’ kinetic energy and is of the form

K = k̂ + 1
2(
̂̃uiũi − ̂̃ui

̂̃ui). (3.24)

Equations (3.22) and (3.23) yield reasonable values of Cεs and Cεc, which appear to
give the correct decay rate of the SGS kinetic energy of temporal decaying isotropic
turbulence and reasonable evolution of the SGS kinetic energy across shocks. Note
that this method is only applied to the determination of Cεs and Cεc, and the Germano
identity is used everywhere else.

4. A priori tests
This section presents a priori tests for the SGS models using DNS results of

temporal decaying isotropic turbulence. The DNS employed a pseudo-spectral Fourier
collocation scheme for spatial discretization and a fourth-order Runge–Kutta method
for time advancement. The skew-symmetric form of the convection terms is used to
suppress aliasing errors. Details and validation of the numerical method are discussed
by Ghosh & Mahesh (2008). The initial three-dimensional energy spectrum is

E(k)= 16
3

√
π

2
M2

t

k0

(
k

k0

)4

exp
(−2k2

k2
0

)
, (4.1)

where k0 = 4. This energy spectrum gives an initial root mean square (r.m.s.) velocity
fluctuation of urms = Mt/

√
3, initial Taylor microscale of λ0 = 2/k0, and thus eddy

turnover time of τ = urms/λ0 = 2
√

3/(k0Mt). Three cases are considered here, which
have initial turbulent Mach numbers of Mt = 0.2, 0.4 and 0.6, respectively. The initial
Taylor microscale Reynolds number is set as Reλ = urmsλ0/ν = 67.6 for all cases. The
simulations are performed on a 2π3 cubical domain with 2563 control volumes. The
grid resolution is doubled in each direction compared to the corresponding simulations
of Spyropoulos & Blaisdell (1996) under similar flow conditions. The DNS data are
filtered onto a 323 grid, and correlation coefficients between the exact SGS terms and
their modelled values are computed. Here, the box filter is used, since it has a positive
definite kernel that allows positive SGS kinetic energy to be obtained (Vreman et al.
1995). Figures 1 and 2 show the correlation coefficients over time between the exact
SGS stress components, SGS heat flux components and their models, respectively. The
DSM (equations (2.19) and (2.20), denoted by hollow symbols) and the k-equation
model (equations (3.12) and (3.13), denoted by filled symbols) are compared as well.
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FIGURE 2. Correlation coefficients for SGS heat flux qj for the three cases (a) Mt = 0.2,
(b) Mt = 0.4 and (c) Mt = 0.6: q1, square; q2, diamond; and q3, circle.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

C
or

re
la

tio
n 

co
ef

fi
ci

en
ts

0.2

0 0 0

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8(a) (b) (c)

k-equation
DSM

FIGURE 3. Correlation coefficients for ∂τij/∂xj for the three cases (a) Mt = 0.2, (b) Mt = 0.4
and (c) Mt = 0.6: ∂τ1j/∂xj, square; ∂τ2j/∂xj, diamond; and ∂τ3j/∂xj, circle.

For all cases and all components of the SGS stress and SGS heat flux, the DSM
and the k-equation model yield very similar levels of correlation, which is known
to be low for the Smagorinsky model. The shear stresses are observed to correlate
better than normal stresses (figure 1). As shown in figure 2, the correlation coefficients
for SGS heat flux appear to be higher in the highly compressible case (Mt = 0.6)
than in the other two cases (Mt = 0.2 and Mt = 0.4). Figures 3 and 4(a) show the
correlation coefficients for the divergence of SGS stress and that of SGS heat flux.
These divergence terms are more important, because the SGS stress and heat flux
appear in the form of divergence in the momentum and energy equations. These
figures show that the divergence of these modelled terms have better correlation than
their components. Again, the k-equation model and DSM give very similar correlation
levels in ∂τij/∂xj, while the correlation coefficients for ∂qj/∂xj in the k-equation model
are a little smaller than, but still comparable to, those in the DSM. The correlations
for εs, εc and Π are shown in figure 4(b). It is encouraging that the proposed model
for pressure dilatation Π (equation (3.17)) correlates very well with the actual values
at all three turbulent Mach numbers. The model for εs also correlates reasonably well
with its actual value, and the correlation coefficients are the second largest among
all the SGS terms. For the dilatational dissipation εc, the correlation coefficients are
comparable to those for τij and qj. The correlation for the triple product term is
found to be the lowest (not shown). Among all the correlations, it also appears that
only quantities related to SGS heat flux (figures 2 and 4a) show discernible Mach
number dependence. As noted in numerous studies (e.g. Meneveau 1994; Vreman et al.
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FIGURE 4. (a) Correlation coefficients for ∂qj/∂xj: k-equation model (filled symbols) and
DSM (hollow symbols). (b) Correlation coefficients for εs (square), εc (diamond) and
Π (circle).

1995), a priori tests of SGS models are certainly of some value, but need careful
interpretation. In order to draw conclusions about the performance of SGS models,
a posteriori tests are performed in the next section.

5. A posteriori tests
5.1. Numerical algorithm

The numerical scheme is that developed by Park & Mahesh (2007) for solving
the compressible Navier–Stokes equations (2.5)–(2.8) on unstructured grids. The
governing equations are discretized using a cell-centred finite volume scheme. Upon
integration over the control volume (CV), application of the Gauss theorem and some
rearrangement, the governing equations may be written as

∂ρcv

∂t
=− 1

Vcv

∑
faces

ρfvNAf ,

∂ (ρui)cv

∂t
=− 1

Vcv

∑
faces

[(ρui)f vN + pf ni − σik,f nk]Af ,

∂ (ET)cv

∂t
=− 1

Vcv

∑
faces

[(ET + p)f vN − σik,f ui,f nk − Qk,f nk]Af ,


(5.1)

where Vcv is the volume of CV, Af is the area of face, ni is the outward normal vector
at the surface and vN is the face-normal velocity. The solution is advanced in time
using a second-order explicit Adams–Bashforth scheme.

Discretization of the governing equations involves reconstruction of the variables
at the faces from the CV centre values. Also, the spatial accuracy of the algorithm
is sensitive to this flux reconstruction. The simulations employ a modified least-
squares method (MLSQ; Park & Mahesh 2007) for this reconstruction, the modified
wavenumber of which shows better spectral resolution than the fourth-order central
difference scheme, at high wavenumbers. When tested on vortex convection, the
Taylor–Green problem, decaying isotropic turbulence and scalar convection, the MLSQ
method is found to be more accurate than a simple symmetric reconstruction, and
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more stable than a least-squares reconstruction. The viscous stress term is split into
two parts, i.e. σij = σ s

ij + σ c
ij , where σ s

ij = (µ/Re)(∂ui/∂xj) is the incompressible part
and σ c

ij = (µ/Re)[(∂uj/∂xi) − 2
3(∂uk/∂xk)δij] is the compressible part. Such splitting

ensures that the dominant incompressible component only depends on the nearest
neighbours and is therefore more accurate at high wavenumbers, and devoid of
odd–even decoupling.

The algorithm uses a shock-capturing scheme that was originally proposed by Yee,
Sandham & Djomehri (1999) for structured meshes and was extended by Park &
Mahesh (2007) to unstructured meshes, and further localized to reduce unnecessary
numerical dissipation. The shock capturing is implemented in predictor–corrector form.
Once the predicted solution q̂n+1 is obtained from qn, the final solution qn+1 at t + 1t
is determined from a corrector step:

qn+1
cv = q̂n+1

cv −
1t

Vcv

∑
faces

(F∗f ·nf )Af , (5.2)

where F∗f is the filter numerical flux. Here, qn and qn+1 are the conserved variable
arrays at time step n and n + 1, and q̂n+1 is the set of variables at time step n + 1
but prior to the application of shock capturing. The predictor step (base scheme)
is symmetric and non-dissipative, and is designed to represent accurately broadband
turbulence, whereas the corrector step is a characteristic-based filter that is active only
in the vicinity of discontinuities. Therefore, the overall scheme avoids unnecessary
numerical dissipation.

The algorithm was evaluated by Park & Mahesh (2007) for shock–vortex interaction,
shock tube problems, a two-dimensional mixing layer and under-resolved turbulence.
For shock–vortex interaction, the algorithm captures the deformation of the vortex and
shock wave accurately. In the mixing layer problem, the formation of shocklets as well
as vortex pairing and merging are well represented. Importantly, it is observed that any
numerical dissipation is localized to the immediate vicinity of the discontinuity, and
the solution away from the shock sees zero numerical dissipation. When applied to an
under-resolved turbulence problem, the algorithm shows minimal effects of numerical
dissipation when the shock-capturing scheme is turned on and off. Moreover, the
algorithm is found to work well even on tetrahedral meshes for all the test problems,
and shocks are captured within two grid points in spite of coarse resolution. Further
details about the algorithm are provided in Park & Mahesh (2007). The algorithm
has also been successfully applied to various flows with complex geometries such as
roughness-induced transition in supersonic boundary layers (Muppidi & Mahesh 2011)
and simulations of high-speed jets in cross-flow (Chai & Mahesh 2011).

The proposed dynamic k-equation model is incorporated into the above numerical
scheme and applied to decaying isotropic turbulence and normal shock–isotropic
turbulence interaction for evaluation.

5.2. Decaying isotropic turbulence
Two cases are considered here. One is a nearly incompressible simulation that is
compared to the experiment of Comte-Bellot & Corrsin (1971), and the other is a
compressible simulation where the filtered DNS results in § 4 are used for validation.
Also compared are LES results using the DSM. All of the large-eddy simulations are
performed on a 323 periodic cubical domain, and spatial averaging over homogeneous
directions is applied during the dynamic procedures.
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FIGURE 5. (Colour online available at journals.cambridge.org/flm) LES of the CBC decaying
isotropic turbulence on 323 resolution. (a) Kinetic energy decay; (b) energy spectra.

5.2.1. Quasi-incompressible simulation
The experiment of Comte-Bellot & Corrsin (1971, CBC) is simulated as temporally

decaying isotropic turbulence through time–space correlation. The initial energy
spectrum is obtained from the experiment at non-dimensional time U0t/M = 42.
Initially, the velocity field is purely solenoidal, while the pressure field is computed
from the incompressible Poisson equation. The density is assumed to be uniform, so
the initial temperature field has a similar spectrum as pressure due to the equation
of state. The SGS kinetic energy is initialized using Yoshizawa’s model, but its
magnitude is scaled up so that the mean value of the SGS kinetic energy matches
the experimental SGS kinetic energy, which can be estimated by integrating the energy
spectrum over wavenumbers that are higher than the cutoff wavenumber. Figure 5(a)
shows the temporal decay of kinetic energy, while figure 5(b) shows the energy
spectra at different time instants U0t/M = 42, 98 and 171 during the CBC experiment.
The DSM results under the same conditions are shown for comparison. As shown
in figure 5(a), the results from the dynamic k-equation model are very encouraging
in that both decay of resolved kinetic energy and SGS kinetic energy agree well
with the experiment. Yoshizawa’s model used in DSM under-predicts the SGS kinetic
energy. Figure 5(b) shows that the energy spectra predicted by the k-equation model
agree better with the experiments, and less energy is piled up at higher wavenumbers
compared with the DSM results.

Figure 6 shows the effects of initial SGS kinetic energy. Figure 6(a) shows that the
initial decay rate of resolved kinetic energy is slightly smaller when a lower value of
initial SGS kinetic energy is specified, since the eddy viscosity is proportional to

√
k

(equation (3.12)). But this influence is small over a wide range of initial k, so that
the k-equation model has the potential to yield a reasonable prediction when the SGS
kinetic energy is not accurate. Note that, even with the very small magnitude of initial
k, the proposed k-equation model gives a prediction for the resolved energy decay that
is comparable to that of the DSM. Also, the SGS kinetic energy always recovers to its
‘correct’ value as flow evolves. From figure 6(b), it seems that the effect of initial SGS
kinetic energy only shows up at high wavenumbers, where the energy cusp is smaller
than or comparable to the DSM results. Figure 6 also suggests that 1

2(
̂̃uiũi − ̂̃ui

̂̃ui) (scale

http://journals.cambridge.org/flm
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FIGURE 6. (Colour online) Effect of initial SGS kinetic energy. (a) Kinetic energy decay:
solid curves, resolved kinetic energy; other non-solid curves, SGS kinetic energy; (b) energy
spectra.
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of compressible energy spectra to solenoidal part; k is initialized with experimental condition
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similarity) is a good estimation of the initial SGS kinetic energy if the actual value is
unknown.

Energy cusps are observed in the energy spectra shown in figures 5(b) and 6(b).
Decomposing the energy spectra into a compressible part Ec(k) and a solenoidal part
Es(k) (Erlebacher et al. 1990), as shown in figure 7(a), reveals that the energy cusps
are mainly caused by the compressible part of the energy. Because of the periodic
boundary conditions, initial acoustic transients will never exit the computational
domain, and will steepen up over time. Figure 7(b) shows that, at moderate length
scales, the solenoidal part of the kinetic energy decays faster than the compressible
part, and the ratio of Ec(k) to Es(k) increases over time. However, the compressible
kinetic energy accounts for only around 0.1 % of the solenoidal energy. At high
wavenumbers, the ratio of Ec(k) to Es(k) is up to 30 %, and does not appear to change
over time.
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energy spectrum from (4.1): (a) time evolutions of kinetic energy; (b) energy spectra at two
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5.2.2. Compressible simulations
The compressible simulations have the same initial spectra (v k4e−k2

) as the a priori
tests in § 4. Three turbulent Mach numbers of Mt = 0.2, 0.4 and 0.6 are considered.
The initial SGS kinetic energy is derived from the filtered DNS results. Figure 8(a)
compares the time evolution of the kinetic energy with the filtered DNS results and
the DSM results as well. In terms of resolved kinetic energy decay, good agreement
can be observed between LES and filtered DNS for the Mt = 0.2 and 0.4 cases.
The Mt = 0.6 case suffers from an initial transient due to ‘inconsistent’ initial
conditions (Ristorcelli & Blaisdell 1997), and is a little off from the DNS results.
Figure 8(b) shows the energy spectra at times t/τ = 2.217 and 4.434. Consistent
with the energy decay shown in figure 8(a), the difference in energy spectra between
cases Mt = 0.2 and 0.4 is very small, while the case Mt = 0.6 differs from the
others due to initial transients, and the difference is mainly in high wavenumbers.
Compared with the DSM results, the k-equation model yields a similar decay of
resolved kinetic energy. However, the SGS kinetic energy predicted by the proposed
transport equation (equation (3.7)) agrees with the DNS results much better than
Yoshizawa’s formula in the DSM (figure 8a). Consistent with the quasi-incompressible
simulation (figure 5), the k-equation model predicted better energy spectra than the
DSM at high wavenumbers, as observed in figure 8(b). Given that the DSM is known
to perform well for decaying isotropic turbulence, the improvement of the proposed
dynamic k-equation model is encouraging.

Figure 9(a) compares the time evolution of the r.m.s. density fluctuations with
the filtered DNS results. Good agreement can be observed for simulations at all
three Mach numbers. The simulation results using the k-equation model and DSM
are very close. Figure 9(b) shows the contours of velocity divergence on the plane
z = 3.83 for Mt = 0.6 at time t/τ = 1.0, along with the in-plane velocity vectors.
In the region of peak negative divergence, marked by the white circle, a sudden
decrease of normal velocity component is observed. At the upstream CV centre, the
Mach number is found to be M1 = 1.238. From the Rankine–Hugoniot relation, the
pressure jump ratio for this Mach number is estimated to be p2/p1 = 1.62. From the
simulation, the pressure ratio is found to be p2/p1 = 1.71, which is very close to the
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FIGURE 9. (Colour online) (a) Time evolutions of r.m.s. density fluctuations; (b) divergence
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evolutions of kinetic energy; (b) energy spectra at two different instants.

Rankine–Hugoniot relation, considering that the flow is not stationary. This ability of
the proposed SGS model to model turbulence with highly compressible local regions is
encouraging.

To access the effect of initial transients, LES was performed using the filtered
DNS field at t/τ ≈ 1.1 as the initial condition. Figure 10 shows the kinetic energy
decay and energy spectra. As shown in figure 10(a), the decay of the resolved kinetic
energy in Mt = 0.6 is noticeably improved. Moreover, the SGS kinetic energy from
the k-equation model also achieves better agreement with the DNS, while Yoshizawa’s
formula in the DSM continues to under-predict the SGS kinetic energy. In figure 10(b),
the energy spectra for Mt = 0.6 collapse with the other two cases after removal of
initial transients. Compared with figure 8(b), all spectra agree with the DNS better at
medium wavenumbers, especially at t/τ = 2.217. The remaining difference between
the LES and DNS at high and medium wavenumbers at t/τ = 4.434 is likely to be
related to the artificial initial v k4e−k2

energy spectra, because good agreement in



402 X. Chai and K. Mahesh

0

0.2

0.4

0.6

0.8

1.0(a)

0

0.2

0.4

0.6

0.8

1.0(b)

50 100 150 200 2 4 6 8 10

FIGURE 11. (Colour online) Eddy viscosity and conductivity for the decaying isotropic
turbulence: (a) CBC; (b) compressible case, where solid lines are eddy viscosity, symbols
on dashed lines are eddy conductivity, and different colours denote different initial Mt.

both kinetic energy decay and spectra is observed in incompressible simulations when
physical initial energy spectrum from CBC’s experiment is used. Figure 10 also shows
that the improvement from the k-equation model is consistent, which is independent of
the initial conditions.

5.2.3. Eddy viscosity and ‘eddy conductivity’
Figures 11(a) and 11(b) show the time evolution of the eddy viscosity and ‘eddy

conductivity’ for quasi-incompressible and fully compressible isotropic turbulence,
respectively. For the quasi-incompressible case, the eddy viscosity contributes up
to 70 % of the molecular viscosity, and decreases as the turbulence decays. The
eddy conductivity is approximately constant as the flow evolves, and its value is
only around 10 % of the thermal conductivity. For the highly compressible case,
the maximum ratio of eddy viscosity to molecular viscosity is less than, but still
comparable to, that in CBC isotropic turbulence, whereas the maximum ratio of
eddy conductivity to thermal conductivity is more than twice that for the CBC case.
Large initial transients in µt/µ and κt/κ are observed as the flows adapt to the
initial conditions generated by the three-dimensional energy spectrum equation (4.1).
It also appears that the eddy viscosity decreases with Mt, while the eddy conductivity
increases slightly with Mt.

5.3. Normal shock–isotropic turbulence interaction
Shock–turbulence interactions prevail in high-speed turbulent flows. It is necessary for
a good compressible SGS model to accurately predict the evolution of the turbulent
flow across a normal shock wave. The schematic of the problem is shown in figure 12.
Isotropic turbulence is introduced at the inflow, decays spatially over a short distance
and then interacts with a statistically stationary normal shock. A sponge layer is
used at the end of the computational domain to absorb reflected acoustic oscillations.
Spatial averaging over homogeneous directions (y–z planes) is applied during the
dynamic procedures.

Two cases are considered. The first case has low Re, which corresponds to the
DNS of Mahesh, Lele & Moin (1997), where the inflow Mach number is M = 1.29,
the turbulent Mach number of the inflow is Mt = 0.14 and the microscale Reynolds
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FIGURE 14. (Colour online) Validation of inflow turbulence generation and implementation.

number is Reλ = 19.1. The second case corresponds to the DNS of Larsson & Lele
(2009), which has higher Re, free stream Mach number M and turbulent Mach number
Mt (M = 1.5, Mt = 0.221 and Reλ = 40.0). The two simulations are carried out on
the same computational domain with exactly the same mesh. The domain has the
dimension of Lx = 10 in the streamwise direction, and Ly = Lz = 2π in the transverse
directions. The mesh has 180× 322 CVs, which is uniform in the transverse directions
and clustered in the vicinity of the shock in the streamwise direction.

The inflow isotropic turbulence is generated using a method similar to Mahesh
et al.’s (1997) isotropic turbulence, which has the initial energy spectrum of equation
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FIGURE 15. (Colour online) Instantaneous density fields superposed by isopressure lines on
central plane: (a) low Re; (b) high Re.

(4.1) and is allowed to decay temporally until the designated Mt and Reλ are reached.
Then, an instantaneous realization of the flow field is taken and used as the inflow
of the shock–turbulence interaction problem using Taylor’s hypothesis. Simulation of
isotropic turbulence is performed on a uniformly meshed long periodic box, which
has the dimension of nπ × 2π × 2π (figure 13). A large enough value of n is chosen
to generate an inflow data sequence that is sufficiently long to provide unduplicated
isotropic inflow turbulence for several flow-through times, so that converged statistics
can be achieved. For the current case, n is chosen as 16, which will provide around
five flow-through times of inflow data and is proven to be enough for the statistics to
converge. This methodology is validated by temporally and spatially decaying isotropic
turbulence as shown in figure 14. Figure 14(a) compares the temporal decay of kinetic
energy for isotropic turbulence in a periodic cube and a long periodic box, starting
with the same energy spectrum. Figure 14(b) compares the energy decay rate of
temporally decaying isotropic turbulence and the spatially decaying turbulence, where
the inflow isotropic turbulence is extracted from the temporal case at time t/τ = 1.58.
Good agreement is observed for both cases. Then, the isotropic turbulent inflow is
allowed to convect into the computational domain of shock–turbulence interaction.

5.3.1. Instantaneous field
Figure 15 shows instantaneous density contours on the central plane z = 0. The

overlaid contour lines are isopressure lines that show the shock wave. The upstream
turbulence causes the shock front to distort in the transverse (y and z) directions.
The distortion is found to be stronger for the high-Re and high-Mt case, where the
shock front also breaks occasionally. Downstream of the shock, more small-scale flow
structures can also be observed for the high-Re case.

5.3.2. Turbulent intensities
Figure 16 compares the distribution of averaged turbulent intensities calculated from

the k-equation model with the DNS (Mahesh et al. 1997) and DSM results. The
turbulent intensities are normalized by their values immediately upstream of the shock,
to compare to the DNS. Good agreement is observed between the k-equation model
and the DNS results. Note that the turbulent intensities are very high in the immediate
vicinity of the shock wave. This behaviour is due to statistical intermittency associated
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FIGURE 16. (Colour online) Distribution of averaged turbulent intensities for the low-Re
case.
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FIGURE 17. (Colour online) Distribution of averaged turbulent intensities for the high-Re
case. The shock position has been shifted to x= 0 for comparison with DNS.

with motions of the shock wave. Owing to shock oscillation, the shock jump would
show up as unsteadiness to a fixed probe. Such behaviour is also observed in the
DNS of shock–turbulent interaction, where the shock thickness is resolved (Lee, Lele
& Moin 1993; Mahesh et al. 1997). Figure 17 compares the distribution of averaged
turbulent intensities calculated from the k-equation model with the DNS and DSM
results for the high-Re case (Larsson & Lele 2009). All of the curves in figure 17
are normalized by u′u′ immediately upstream of the shock as in the DNS. Overall,
the agreement is reasonable. The k-equation model under-predicts the decay rate of
u′u′ far downstream. However, considering that the current LES uses only 1.8 × 105

CVs compared to 1.5 × 108 CVs in the DNS, the agreement is quite good. Note that
the DNS inflow is somehow less isotropic than the current LES inflow because of
the different inflow generation methodologies. This may be responsible for the small
difference between the LES and DNS in v′v′ at the inflow. Compared with the DSM,
u′u′ predicted by the k-equation model is slightly closer to the DNS results for the



406 X. Chai and K. Mahesh

–5 0 5 10 15 20
0

0.5

1.0

1.5

2.5

2.0

(a) (b)

(c) (d )

T
ur

bu
le

nt
 in

te
ns

iti
es

10–3

10–4

10–5

11
10–3

10–4

10–5

22

10–6

10–7

10–8

5 10 15 20 30

5 10 15 20 305 10 15 20 30

FIGURE 18. (Colour online) (a) Evolution of turbulent energies. One-dimensional energy
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low-Re case (figure 16a); while, for the high-Re case, the k-equation model results are
almost identical to those of the DSM (figure 17). This is reasonable, because strong
shock and turbulent interaction is dominated by linear effects (Mahesh et al. 1997), so
that the contribution of SGS models at the shock front is less obvious.

5.3.3. Energy spectra
Figure 18 shows one-dimensional energy spectra of velocity components and the

SGS kinetic energy at different locations. In the current simulation, the flow is
isotropic upstream of the shock and axisymmetric downstream of the shock, so that
E22(k2) ≈ E33(k2); therefore E33 is not plotted here. Distribution of SGS kinetic energy
k is also plotted in figure 18(a), with vertical lines marking the locations where
the energy spectra are calculated. As shown, k0x = −1.5 is at the shock upstream;
k0x = 0.9 is almost immediately downstream of the shock; k0x = 3.3 is a location near
the peak value of u′u′ at the shock downstream; and k0x= 11.3 and k0x= 19.3 are two
locations far downstream.

Note that even the smallest scales have large energy levels. As seen from
figure 18(b), across the shock (from k0x = −1.5 to k0x = 0.9), the energy spectrum
of E11 is amplified in medium wavenumbers, decreases in small wavenumbers and is
preserved at high wavenumbers. This indicates a decrease of turbulent length scale in
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FIGURE 19. (Colour online) Comparison of local averaging and averaging over
homogeneous directions.

the x direction. From k0x = 0.9 to k0x = 3.3, amplification of E11 is observed to be
at higher and smaller wavenumbers. Figure 18(c) shows that E22 is more enhanced at
small scales across the shock, which is similar to the observation of Lee et al. (1993).
Further downstream, the spectrum drops over the entire range of wavenumbers.

Figure 18(d) shows the evolution of the one-dimensional energy spectra of the
SGS kinetic energy. Interestingly, the evolution of Ekk shows more activity at small
scales. For example, Ekk is magnified more at high wavenumbers from k0x = −1.5 to
k0x= 0.9 and k0x= 3.3, and decays faster at small scales from k0x= 3.3 to k0x= 11.3
and to k0x = 19.3. At k0x = 3.3, the spectrum is enhanced by more than one order of
magnitude, and the small scales possess as high energy as the large scales.

5.3.4. Localization
The DSM (Germano et al. 1991; Moin et al. 1991) is known to require

regularization to ensure stability. Averaging over homogeneous directions is most
common. Such averaging is not practicable for flows without homogeneous directions
or flow solvers that use unstructured girds. The proposed dynamic k-equation model
appears to have an advantage over the DSM in that it is stable during the use of local
averaging over the neighbouring CVs for the dynamic procedures. Figure 19 compares
the results of the k-equation model derived from local averaging and averaging over
homogeneous directions. When locally averaged, the model is slightly less dissipative,
so that the decay rate of turbulent energy (intensities) is slightly slower at the inflow
and downstream of the shock. Similar behaviour of the decay rate of turbulent kinetic
energy is also observed in simulations of temporally and spatially decaying isotropic
turbulence when local averaging is used, and is considered reasonable. Local averaging
over-predicts the turbulent intensities a little bit more than homogeneous averaging
far downstream, but the difference is still small. The robustness of the localized
k-equation model may be attributed to two reasons. First, the performance (in terms
of the resolved field) of the k-equation model is less sensitive to k even for initial
value problems (figure 6). Second, the introduction of the k-equation introduces history
effects into the SGS kinetic energy, so that the change of k is milder than in the
Yoshizawa model, which is more sensitive to the instantaneous flow condition and grid
resolution. As shown in figure 20, in the shock near field, where the mesh is clustered
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FIGURE 21. (Colour online) Budget of SGS k-equation for the decaying isotropic turbulence:
(a) CBC; (b) compressible case with Mt = 0.6 initially.

and the interaction is also more intense, much more oscillation in the mean SGS
kinetic energy is observed for the DSM than the k-equation model using either local or
homogeneous averaging. The unphysical oscillation of the SGS kinetic energy in the
DSM may well generate locally small or high eddy viscosity, and cause unexpected
numerical instability. The overall performance of the localized dynamic k-equation
model is promising, which facilitates its application to simulations of complex flow
fields on unstructured grids.

6. Relevance of dilatational dissipation and pressure dilatation terms
The pressure dilatation term and dilatational dissipation term are the primary terms

that differentiate the compressible SGS kinetic energy equation from its incompressible
counterpart. To evaluate their relevance, the budgets of terms in the SGS kinetic
energy equation are studied. Figure 21 shows the temporal evolution of each term
on the right-hand side of the SGS kinetic energy equation for decaying isotropic
turbulence. All the terms are normalized by ρu2

rms/τ at t = 0. Figure 21(a) is for
CBC isotropic turbulence, and figure 21(b) is for the highly compressible case with
initial Mt = 0.6 and Reλ = 67.6. Owing to spatial homogeneity, the spatial average
of terms in divergence form in the SGS kinetic energy equation is zero, and thus
these terms are not plotted. As shown in figure 21(a), the terms εs and −τijS̃ij

are the most prominent terms. The term −τijS̃ij is the SGS dissipation term in the
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FIGURE 22. (Colour online) Budgets of SGS kinetic energy for shock–turbulence interaction.

transport equation for resolved kinetic energy (Piomelli et al. 1991), and acts as the
production term for the SGS kinetic energy. The term εs is the dissipation term and
is consistently larger than −τijS̃ij, which causes the SGS kinetic energy to decay. Both
the magnitudes of εs and −τijS̃ij, as well as the difference between them, decrease
temporally, which results in a reducing decay rate of SGS kinetic energy as observed
in figure 5(a). Large initial transients are observed for pressure dilatation Π , which
is due to the forced incompressible behaviour in the initial condition (inconsistent
initial condition; Ristorcelli 1997). Similar transient behaviour can also be observed
for εc, but the magnitude is much smaller. Figure 21(b) shows that, in the highly
compressible simulation, these terms behave similarly to the quasi-incompressible case,
except that the production term −τijS̃ij is higher than the dissipation term εs initially.
So the SGS kinetic energy will increase at the beginning, then decay afterwards, as
shown in figure 8(a).

Figure 22 shows the budgets of the SGS kinetic energy equation for
shock–turbulence interaction with high Re and high Mt. All the curves in figure 22
are normalized by ρk/τ at the inlet, where k is the SGS kinetic energy, and τ

is the eddy turnover time of the inflow turbulence. The whole domain can be
approximately divided into three regions: before shock (k0x < −0.8), intermittency
region (−0.8 < k0x < 0.8) and post-shock (k0x > 0.8). Here, we focus on the regions
before and after the shock wave. Before the shock, the flow is essentially spatially
decaying isotropic turbulence, and the relevance of these four terms is similar to
temporally decaying isotropic turbulence. In the near field ahead of the shock, all
the terms drop in magnitude due to the clustered mesh. In the vicinity of the shock,
all of the terms increase significantly due to intermittency. Downstream of the shock,
the magnitude of the production term −τijS̃ij is higher than that before the shock;
while the solenoidal dissipation εs keeps similar levels as before. It appears that both
pressure dilatation Π and dilatational dissipation εc become more important across the
shock. Far downstream, εc and Π decrease in magnitude, and the four terms behave
similarly to decaying turbulence.

From the analysis of the budgets of the SGS kinetic energy equation, we see that
the dilatational dissipation term has negligible effect on the SGS turbulence away from
the shock. However, across a shock the dilatational dissipation becomes important.
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(b) the turbulent intensity.

Also the pressure dilatation term is important during the acoustic transient, but may
have limited effect in the mean. To confirm our observation, we perform simulations
with/without pressure dilatation and dilatational dissipation separately.

For the decaying isotropic turbulence, it is found that turning these two terms on
and off does not make a discernible difference to both the resolved and the SGS
field (not shown here), which is consistent with our observation that εc is negligible
relative to εs, and the net effect of Π , which oscillates around zero, is small. For
shock–turbulence interaction, without the pressure dilatation model, the results almost
collapse onto those shown in figure 17. However, without dilatational dissipation, both
the mean and fluctuation field will be affected. Figure 23 compares the mean density
and turbulent energy distributions along the streamwise direction for shock–turbulence
interaction between dynamic k-equation models with and without the dilatational
dissipation term. In figure 23(b), it appears that, without dilatational dissipation, the
dissipation of the SGS kinetic energy across the shock will not be enough. So, the the
SGS kinetic energy after the shock relaxes too slowly to its normal value. High SGS
kinetic energy will generate larger eddy viscosity and dissipate more of the turbulent
intensities after the shock. Furthermore, through the total energy equation, this effect
will be passed on to the mean flow field as shown in figure 23(a). Though the pressure
dilatation term appears to have less effect on the mean profiles, this trend should not
be assumed to hold for other problems. It does appear to be important instantaneously
when acoustic interactions become significant.

7. Conclusions
A dynamic one-equation eddy viscosity model for compressible LES is proposed.

The SGS kinetic energy transport equation is formally derived, and the residual
terms in the filtered total energy equation that are neglected in the standard DSM
have been revisited. The unclosed terms are modelled and the model coefficients are
determined dynamically. An algebraic model based on series expansion is proposed
for the pressure dilatation term, and a different dynamic procedure for the dissipation
terms in energy equations is suggested. A priori tests using DNS of decaying isotropic
turbulence are performed, which shows that the proposed dynamic k-equation model
has comparable correlation level in the SGS stress and SGS heat flux to the DSM
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model, and the suggested model for pressure dilatation correlates well with its actual
value. The proposed dynamic k-equation model is applied to the decaying isotropic
turbulence and isotropic turbulence–normal shock interaction problems in a posteriori
tests. When compared to available experimental and DNS results, the k-equation model
shows good agreement. It improves energy spectra at high wavenumbers for decaying
isotropic turbulence, and it performs similarly to the DSM in shock–turbulence
interaction because of the dominant linear effect. In shock–turbulence interaction, the
one-dimensional energy spectra of resolved velocity components and the SGS kinetic
energy are examined, and the behaviour of the SGS kinetic energy across the shock is
discussed. The budget of the SGS kinetic energy equation shows that the dilatational
dissipation is important for shock–turbulence interaction, but may be less important
for decaying isotropic turbulence. The pressure dilatation term does not seem to have
noticeable net effects in the mean, but instantaneously its magnitude is comparable
to other dominant terms, especially when acoustic transients are present. In addition,
the proposed dynamic k-equation model requires less regularization for stability, and is
able to be localized easily without degrading its performance, which is encouraging for
simulations of high-speed flows in complex geometries.
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