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A B S T R A C T

We present a numerical study of inception in the shear layer of a backward-facing step under the same
conditions as experiments (Agarwal et al., 2018). The velocity field is shown to be in good agreement with
experiments. Since inception is a stochastic process that generates small amounts of vapor for short periods
of time, the effects of these small regions of vapor on the liquid density and dynamics can be neglected.
Vapor is therefore treated as a passive scalar in an incompressible liquid and modeled using the same vapor
transport equation as that in a fully compressible homogeneous mixture model. The model is validated against
the compressible homogeneous mixture approach at incipient conditions. Both velocity and scalar fields are
advanced using the implicit Crank–Nicolson scheme. However, the scalar field is solved in an inner loop
at a smaller time step than the velocity field. Statistics are computed for both pressure and vapor volume
fraction, and the likelihood of inception is determined. The locations of the preferred sites for cavitation
are compared to experimental results and good agreement is achieved. The effects of finite rate evaporation
and condensation are revealed by the probability density functions of pressure and volume fraction. The
flow topology is investigated and inception is found to occur in the core of the stretched tubular vortical
structures with a rotation rate four times higher than the stretching rate. These cavitating tubular structures
are elongated two to three times more in their most extensive principal direction than in their intermediate
principal direction, and are most likely aligned with the streamwise direction. Decreasing the cavitation number
from 0.55 to 0.45 is found to drop the minimum pressure inside the vortices from −1500 Pa to −5500 Pa and
increase the cavitation event rates by around 𝑂(1).
1. Introduction

Cavitation is the process of vapor formation due to a drop in
pressure. It is usually triggered by imperfections in water that are
often very small vapor bubbles known as nuclei that serve as the
starting point for the liquid breakdown. This phenomenon can occur
at different scales, starting from inception and ending in developed
cavitation, and are characterized by the cavitation number 𝜎 (defined
as 𝜎 = 𝑝𝑟−𝑝𝑣

0.5𝜌𝑢2𝑟
, where 𝑝𝑟, 𝑝𝑣, 𝜌 and 𝑢𝑟 are a reference pressure, the

vapor pressure, the liquid density and a reference velocity, respec-
tively). Inception, being the first stage, is defined by small amounts of
vapor production for brief periods at a relative high 𝜎. It is commonly
observed in the turbulent shear layers, tip vortices and wakes of marine
geometries (e.g. hydrofoils, propeller blades, etc.), where the pressure
fluctuations can be extreme. Consequently, shear flows are often more
prone to cavitation than streamlined bodies, resulting in considerably
higher inception 𝜎. Cavitating shear flows have been investigated in
the past. Katz and O’Hern (1986) observed that the first traces of
cavitation appear as a series of narrow and long axial structures located
between spanwise eddies. This was later confirmed in O’Hern (1990),
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where the incipient streamwise vortices showed a strength less than
10% of that of the spanwise vortices. Interestingly, Iyer and Ceccio
(2002) noticed that cavitation does not significantly alter the overall
formation, growth and convection of the primary and secondary vor-
tices. The same behavior was observed later by Aeschlimann and Barre
(2009), but the reattachment point was found to depend on 𝜎. Studies
conducted by Agarwal et al. (2018) revealed that regions most likely
to cavitate move upstream with decreasing 𝜎 and increasing velocity.
The work of Agarwal et al. (2020) showed that the Reynolds number
(𝑅𝑒 = 𝑢𝑟𝐿𝑟∕𝜈, where 𝐿𝑟 and 𝜈 are a reference length and the kinematic
viscosity respectively) has a strong influence on the time the pressure
remains below vapor pressure inside the streamwise vortices.

The inception regime is difficult to predict. Experimentally, in-
ception can be determined through visual or acoustical techniques
where the measurements detect events per unit time above a certain
threshold (Rood, 1991). Numerous factors can affect the conditions
for inception. As observed by Katz and O’Hern (1986), Arndt et al.
(1991) and Khoo et al. (2020), the cavitation number associated with
the appearance of inception has a strong dependence on the air content
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of the fluid and the population of bubbles in the freestream. Arndt
and Keller (1992), through visual detection, observed that inception
in tip vortices would start at higher 𝜎 for ‘‘weak’’ water (water where
the tensile strength was reduced by the presence of bubbles) and that
it was highly intermittent, as opposed to the sudden appearance of a
well defined cavitating structure for the ‘‘strong’’ water. The decrease
in the inception 𝜎 can be approximately 60% with increasing water
tension for tip vortex cavitation (Gindroz and Billet, 1998). Besides, Pe-
terson (1972) found a disagreement between the determination of
inception using visual and acoustical measurements in a water tunnel
with large nuclei concentration. Interestingly, Khoo et al. (2020) found
that the desinence of cavitation (disappearance of cavitation by slowly
increasing 𝜎) is largely independent of the nuclei population.

Inception is commonly simulated using an Euler–Lagrange frame-
work, where the liquid follows the incompressible Navier–Stokes equa-
tions and each bubble is tracked individually with the equations of mo-
tion coupled with the Rayleigh–Plesset equation for their size (Farrel,
2003; Hsiao et al., 2003; Hsiao and Chahine, 2005; Shams et al., 2011).
For a more developed cavitation, usually a compressible formulation
using the homogeneous mixture approach is preferred (Gnanaskandan
and Mahesh, 2015; Egerer et al., 2016; Budich et al., 2018; Bhatt and
Mahesh, 2020; Brandao et al., 2020). The difference in approaches is
due to the distinct characteristics of both regimes. For developed cavita-
tion, the presence of regions with large amounts of vapor can make the
flow locally supersonic. This can lead to the formation of shock waves
and the use of a compressible formulation for the equations becomes
more appropriate. For inception however, the use of the compressible
equations can be very expensive. This is because numerically capturing
inception requires very low values of freestream volume fraction (Bhatt
and Mahesh, 2021). This increases the speed of sound in the mixture
and the stiffness of the system of equations.

It was previously observed by Katz (1984), Katz and O’Hern (1986)
and O’Hern (1990) that the inception 𝜎 typically increases with
Reynolds number in shear layers. A larger 𝑅𝑒 produces a wider fre-
quency spectrum, increasing the likelihood of instantaneous pressure
reaching values below vapor pressure (Rood, 1991). Due to this un-
steady and statistical nature of inception, LES (Large-Eddy Simulation)
is preferred over RANS (Reynolds-Averaged Navier–Stokes) for numeri-
cal simulations. Early studies compared the performances between LES
and RANS (e.g. Salvatore et al., 2009; Bensow, 2011) for cavitation
and concluded that small-scale and transient behaviors are better
captured by LES. In flow over propeller blades, for instance, Lu et al.
(2012) observed that RANS is not capable of capturing the tip vortical
structures, which is detrimental for predicting inception. In a similar
problem, Bappy et al. (2019) showed that the inception 𝜎 predicted
by LES matches the experimental value, while it is underpredicted by
RANS. The use of RANS was also found to predict the low-pressure
region farther away from the blade.

In the present paper, we use LES to study inception in the shear
layer of the backward-facing step experiments of Agarwal et al. (2018).
Most LES of cavitation has been applied to attached or sheet-to-cloud
regimes using compressible formulations of the homogeneous mixture
equations. The inception regime has received less attention in numer-
ical simulations, despite being important for practical applications.
Inception occurs in the regime of low void fractions where the com-
pressible governing equations can be argued to reduce to the zero-Mach
equations which imply the use of the incompressible governing equa-
tions along with the same vapor volume fraction transport equation as
the compressible equations. The paper proposes this approach. Since
inception is a stochastic process that generates small amounts of vapor
for short periods, the effects of these small regions of vapor on the
liquid density and dynamics can be neglected. Therefore, here vapor
is treated as a passive scalar in the incompressible liquid. Different
time steps are used for time advancement of the vapor and velocity
fields; the transport equation for the vapor is solved in an inner loop
2

at a smaller time step than that employed for the momentum equation.
This is because scalar fronts are thinner than velocity fronts since they
do not have pressure to regulate their thickness. An unsteady sharp
front implies higher frequencies and therefore smaller timestep. This
approach, developed in the context of passive scalar mixing (Muppidi
and Mahesh, 2008) is applied here for cavitation simulations. Special
attention is paid to the treatment of the source terms to avoid un-
bounded solutions. The topology of the LES flow field associated with
inception is analyzed using velocity gradient invariants. The paper is
organized as follows. Section 2 outlines the equations and the method
employed. Section 3 provides validation for the model, problem de-
scription, and discussion. A summary in Section 4 concludes the paper.
Appendix discusses the treatment of the source terms.

2. Governing equations and numerical method

2.1. Governing equations

The filtered Navier–Stokes equations are
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (1)

𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

= −
𝜕�̄�
𝜕𝑥𝑖

+ 𝜈
𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

−
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

, (2)

where 𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗 − 𝑢𝑖𝑢𝑗 is the sub-grid scale (SGS) stress and is modeled
using the dynamic Smagorinsky eddy-viscosity model (Germano et al.,
1991). The filtered transport equation for the vapor is given by:

𝜕�̄�
𝜕𝑡

+
𝜕�̄�𝑢𝑗
𝜕𝑥𝑗

− 𝜈
𝑆𝑐

𝜕2�̄�
𝜕𝑥𝑗𝑥𝑗

+
𝜕𝜏𝑠
𝜕𝑥𝑗

= 𝑆𝑒 − 𝑆𝑐

𝑆𝑒 = 𝐶𝑒�̄�
2(1 − �̄�)2

𝜌𝑙
𝜌𝑣

𝑚𝑎𝑥(𝑝𝑣 − �̄�, 0)
√

2𝜋𝑅𝑣𝑇

𝑆𝑐 = 𝐶𝑐 �̄�
2(1 − �̄�)2

𝑚𝑎𝑥(�̄� − 𝑝𝑣, 0)
√

2𝜋𝑅𝑣𝑇
.

(3)

Here, the passive scalar is considered as the concentration of vapor,
𝐶 = 𝜌𝑣𝛼, () denotes spatial filtering at the filter width 𝛥, and the
cavitation source and sink terms are obtained from Saito et al. (2007).
The Schmidt number for vapor in water is taken as 𝑆𝑐 = 500. The vapor
volume fraction is indicated by 𝛼 and 𝜌𝑣 is the vapor density, which can
be assumed to be constant or to follow the ideal gas law. For the SGS
scalar flux, 𝜏𝑠 = 𝐶𝑢𝑗 − �̄�𝑢𝑗 , the dynamic Smagorinsky eddy-diffusivity
model (Moin et al., 1991) is employed. The vapor pressure is taken as
a function of temperature as

𝑝𝑣 = 𝑝𝑘𝑒𝑥𝑝
((

1 −
𝑇𝑘
𝑇

)

(𝑎 + (𝑏 − 𝑐𝑇 )(𝑇 − 𝑑)2)
)

(4)

here 𝑝𝑘 = 22.130 MPa, 𝑇𝑘 = 647.31𝐾, 𝑎 = 7.21, 𝑏 = 1.152 × 10−5,
𝑐 = −4.787 × 10−9 and 𝑑 = 483.16. Brandao et al. (2020) show that this
expression provides very good agreement with data from the National
Institute of Standards and Technology (NIST). In the source terms, the
empirical constants 𝐶𝑒 and 𝐶𝑐 have units of m−1 as given in Saito et al.
(2007), and 𝑅𝑣 = 461.6 J∕kgK.

2.2. Numerical method

If Eq. (3) is written in non-dimensional form, the diffusive term be-
comes 1

𝑅𝑒𝑆𝑐
𝜕2�̃�
𝜕𝑥𝑗𝑥𝑗

, where the tilde symbol (∼) indicates non-dimensional
units. This reveals that the diffusion term for the vapor concentra-
tion is very small, even for cases at a relatively small 𝑅𝑒, and is
not enough to smoothen the sharp gradients that may arise in the
solution. Thus, the scalar field requires a smaller time step than the
velocity field. Therefore, in this work we use an algorithm based on
the work of Muppidi and Mahesh (2008) for passive scalar in jets and
is outlined as follows: The incompressible Navier–Stokes equations are
solved using a predictor–corrector algorithm developed in Mahesh et al.
(2004) with Crank–Nicolson scheme for implicit time advancement.
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After the velocity and pressure fields are obtained at the new time
instance 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡𝑚, the passive scalar equation is solved in an
nner loop with 𝑚 smaller time steps using 𝛥𝑡𝑠 = 𝛥𝑡𝑚∕𝑚. The velocity

and pressure field at the previous (𝑡𝑛) and new time instances (𝑡𝑛+1) are
nterpolated to obtain the convective and diffusive fluxes, as well as the
ource term at the inner time instance. For the time advancement of
he scalar equation, we use the implicit Crank–Nicolson scheme, while
he convective fluxes are computed using an upwind discretization.
t is relevant to mention that lowering the time step for both scalar
nd velocity fields would make the simulation more computationally
xpensive, since the time advancement of the velocity field involves a
redictor–corrector method. When our method is compared against the
xisting numerical approaches for cavitation inception, decoupling the
ime step used for the scalar field from the one used for the velocity
ield offers the clear advantage of reducing computational costs.

The algorithm can be summarized as follows.

• Advance 𝑢𝑛 and 𝑝𝑛 to 𝑢𝑛+1 and 𝑝𝑛+1

– Use 𝑢𝑛 and 𝑝𝑛 to advance 𝐶𝑛 to 𝐶𝑛,1

1. Interpolate: 𝑢𝑛,1 = 𝑢𝑛 + 𝑢𝑛+1−𝑢𝑛
𝛥𝑡𝑚

𝛥𝑡𝑠
2. Interpolate: 𝑝𝑛,1 = 𝑝𝑛 + 𝑝𝑛+1−𝑝𝑛

𝛥𝑡𝑚
𝛥𝑡𝑠

– Use 𝑢𝑛,1 and 𝑝𝑛,1 to advance 𝐶𝑛,1 to 𝐶𝑛,2

1. Interpolate: 𝑢𝑛,2 = 𝑢𝑛,1 + 𝑢𝑛+1−𝑢𝑛
𝛥𝑡𝑚

𝛥𝑡𝑠
2. Interpolate: 𝑝𝑛,2 = 𝑝𝑛,1 + 𝑝𝑛+1−𝑝𝑛

𝛥𝑡𝑚
𝛥𝑡𝑠

⋮
– Use 𝑢𝑛,𝑚−1 and 𝑝𝑛,𝑚−1 to advance 𝐶𝑛,𝑚−1 to 𝐶𝑛+1

• Advance 𝑢𝑛+1 and 𝑝𝑛+1 to 𝑢𝑛+2 and 𝑝𝑛+2

The unfiltered version of Eq. (3) can be written in the discrete form
as

𝑉𝑐𝑣
( 𝜕𝐶
𝜕𝑡

)

𝑐𝑣
+
∑

𝑓

(

𝐶𝑉𝑛
)

𝑓 𝐴𝑓 − 𝜈
𝑆𝑐

∑

𝑓

( 𝜕𝐶
𝜕𝑛

)

𝑓
𝐴𝑓 = 𝑉𝑐𝑣

(

𝑆𝑒 − 𝑆𝑐
)

, (5)

here 𝑉𝑐𝑣 and 𝐴𝑓 represent the volume of a mesh element and the
rea of a face, respectively. The fluid velocity at a face center and in
direction normal to it is indicated by 𝑉𝑛. To solve Eq. (5), the values
f the scalar flux across a face, (𝐶𝑉𝑛)𝑓 , and the face-normal derivative,
𝜕𝐶
𝜕𝑛

)

𝑓
, are required. Consider a uniform and structured mesh element,

as displayed in Fig. 1(a), where the fluid is moving from 𝑖𝑐𝑣1 to 𝑖𝑐𝑣2.
The convective flux at 𝑖𝑓𝑎, in an upwind discretization, is computed as

(𝐶𝑉𝑛)𝑖𝑓𝑎 = 𝐶𝑖𝑐𝑣1𝑉𝑛, (6)

and the face-normal derivative can be computed as
( 𝜕𝐶
𝜕𝑛

)

𝑖𝑓𝑎
=
𝐶𝑖𝑐𝑣2 − 𝐶𝑖𝑐𝑣1

𝑑𝑖𝑐𝑣
, (7)

where 𝑑𝑖𝑐𝑣 is the distance along the solid line connecting 𝑖𝑐𝑣1 and 𝑖𝑐𝑣2
centroids. Consider now a skewed mesh element as shown in Fig. 1(b).
It is noted that the line connecting the centroids of the control volumes
adjacent to 𝑖𝑓𝑎 does not pass through the face center and is at an angle
with the face normal. Eqs. (6) and (7) become inaccurate in cases like
this. Observe now the points 𝐴 and 𝐵 in Fig. 1(b). They are connected
by a dashed line that is orthogonal to 𝑖𝑓𝑎 and passes through the
face center. Accurate computation of the fluxes requires obtaining the
value of 𝐶 at these points (𝐶𝐴, 𝐶𝐵). A reconstruction scheme based on
least-squares is used for this purpose (Muppidi and Mahesh, 2008), as
follows: Given the coordinates of the face center (𝑥𝑖,𝑖𝑓𝑎) and the face
normal, the coordinate of any point along the face normal (dashed line)
can be computed as

𝑥𝑖 = 𝑙𝑖𝑟 + 𝑥𝑖,𝑖𝑓𝑎, (8)

where 𝑙𝑖 is the directional cosine of the face normal and 𝑟 is a length
variable. Let 𝑟 be the value of 𝑟 that minimizes the distance between
3

𝐴 v
𝐴 and 𝑖𝑐𝑣1 centroid in a least-square sense (e.g. (𝑥𝑖,𝐴 − 𝑥𝑖,𝑖𝑐𝑣1)2), and
𝐵 be the value of 𝑟 that minimizes the distance between 𝐵 and 𝑖𝑐𝑣2

centroid, also in a least-square sense. The final value for 𝑟 is the one
that minimizes both as 𝑟 = 𝑚𝑖𝑛[𝑟𝐴, 𝑟𝐵]. With the locations of points 𝐴
and 𝐵 in hand, 𝐶𝐴, 𝐶𝐵 and the fluxes can be computed as

𝐶𝐴 = 𝐶𝑖𝑐𝑣1 + (∇𝐶)𝑖𝑐𝑣1(𝑥𝑖,𝐴 − 𝑥𝑖,𝑖𝑐𝑣1),

(𝐶𝑉𝑛)𝑖𝑓𝑎 = 𝐶𝐴𝑉𝑛,
( 𝜕𝐶
𝜕𝑛

)

𝑖𝑓𝑎
=
𝐶𝐵 − 𝐶𝐴
𝑑𝐴𝐵

,

(9)

where 𝑑𝐴𝐵 is the distance between points 𝐴 and 𝐵.

3. Results

The presented model is employed to study inception in shear layers
using the experimental setup from Agarwal et al. (2018) of a backward-
facing step with an inflow turbulent boundary-layer. We simulate the
experimental cases of 𝑅𝑒𝜏 = 𝛿𝑢𝜏

𝜈 = 800 and 1500 (where 𝛿 is the
oundary-layer thickness, 𝑢𝜏 is the friction velocity and 𝜈 is the kine-
atic viscosity). The domain has a step height (𝑆) of 10 mm, an

xpansion ratio (𝐸𝑅) of 1.19 and an aspect ratio (𝐴𝑅) equal to 5.3. A
ketch of the domain is shown in Fig. 2. No-slip boundary conditions are
pplied to every wall in the domain and the outflow is located at 22.8𝑆
ownstream from the step corner. The inflow turbulent boundary-layer
s generated through the recycle-rescale method of Lund et al. (1998),
ater extended to unstructured grids by Kumar and Mahesh (2016). The
low where 𝑅𝑒𝜏 = 800 does not result in inception for any 𝜎 considered
y Agarwal et al. (2018). Therefore, we simulate 𝑅𝑒𝜏 = 800 at a lower
to validate the flow field and focus the analysis on the 𝑅𝑒𝜏 = 1500

low.
We verify that our present model, which combines the incompress-

ble Navier–Stokes equations with a vapor transport equation, agrees
ith a fully compressible homogeneous mixture model under inception

onditions. Towards this end, we perform simulations under inception
onditions over a backstep with the same 𝐸𝑅 and 𝐴𝑅 as Agarwal et al.
2018) and compare to corresponding results obtained using the fully
ompressible homogeneous mixture model employing the same source
erms from Saito et al. (2007), where acoustic stiffness is handled by the
reconditioning methodology developed by Bhatt and Mahesh (2021).
n the compressible homogeneous mixture approach, the mixture of
ater and vapor is considered as a single compressible medium where

he phases are at mechanical equilibrium (i.e. each phase has the same
ressure as the pressure of the cell and the slip velocity between the
hases is neglected) and thermal equilibrium (i.e. temperature of each
hase is same as the cell temperature). More details can be found in the
orks of Gnanaskandan and Mahesh (2015), Bhatt and Mahesh (2020)
nd Brandao et al. (2020). It is important to point out that in the present
tudy, inception is assumed to have occurred when there are instances
f time in which the local pressure anywhere in the domain drops below
apor pressure. The same criteria may not be used in other studies.

.1. Comparison with homogeneous mixture model

The backstep used in this comparison has the same 𝐸𝑅 and 𝐴𝑅 as
he configuration of Agarwal et al. (2018). The step height, however, is
maller to result in 𝑅𝑒 = 𝑢∞𝑆

𝜈 = 200 with 𝑢∞ = 10 m∕s. This small value
for 𝑅𝑒 is chosen to make the solution independent of subgrid model.
The boundary conditions are the same as those used for the main
inception study, except for the inflow which does not have an incoming
turbulent boundary-layer. The very low 𝑅𝑒 used in this comparison
results in a two-dimensional flow. Thus, the grid is coarsened to 𝛥𝑥∕𝑆 =
1 and 𝛥𝑦∕𝑆 = 0.1 with 3 points in the spanwise direction. The objective
s to compare the values of volume fraction obtained by the present
odel to those obtained from the compressible homogeneous mixture

pproach. The compressible homogeneous mixture approach has been
alidated for different cavitation regimes (Gnanaskandan and Mahesh,
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Fig. 1. Examples of a mesh element. An internal face is indicated by 𝑖𝑓𝑎 and the control volumes adjacent to it are given by 𝑖𝑐𝑣1 and 𝑖𝑐𝑣2.
Fig. 2. Computational domain for the backstep problem.
2015; Bhatt and Mahesh, 2020). Therefore, an agreement between
volume fraction profiles provides a validation of the present approach.
The simulations are performed at 𝜎 = 1.98, based on the inflow pressure
and velocity, with a freestream vapor concentration equivalent to a
volume fraction of 𝛼 = 1×10−6. It is essential to highlight that the use of
a high cavitation number concurrently with a small freestream volume
fraction is necessary for such comparison due to two main reasons.
The first relates to the fact that, if 𝜎 is small to the point of forming
considerable amounts of vapor, the flow cannot be deemed divergence-
free anymore and the passive scalar assumption fails. The second reason
is that when a pocket of vapor collapses, pressure waves are released
affecting the flow field, which is not captured by the incompressible
Navier–Stokes.

Fig. 3(a), (b) and (c) show profiles of ⟨𝑢⟩∕𝑢∞, ⟨𝛼⟩ and
√

⟨𝛼′2⟩,
respectively, at three different locations downstream of the step. Good
agreement is achieved for the mean velocity profiles, showing that
the flow dynamics are unaffected by the produced vapor. Profiles of
⟨𝛼⟩ and

√

⟨𝛼′2⟩ also show very good agreement, indicating that the
present method is capable of capturing vapor growth under inception
conditions.

3.2. Flow over backstep at 𝑅𝑒𝜏 = 800

The 𝑅𝑒𝜏 = 800 case is simulated to validate the ability of the
LES to reproduce the mean and fluctuating velocity fields measured in
the experiments of Agarwal et al. (2018). Such comparison provides
confidence that the pressure field, which is central to inception, is
accurately represented by our methodology of prescribing a turbulent
boundary-layer at the inflow combined with LES. Agarwal et al. (2018)
study this case for cavitation numbers in the range of 0.45 ≤ 𝜎 ≤ 0.55,
however as previously mentioned, no cavitation is observed within this
range. Once the velocity field is validated, we evaluate the cavitation
model by dropping the inflow pressure to yield 𝜎 = 0.25. It is important
4

to mention that this is not the inception 𝜎. The process of finding the
inception 𝜎 requires lowering the inflow pressure slowly and checking
if there are instants of time where the local pressure is lower than
vapor pressure. Different from the validation case in Section 3.1, this
task becomes demanding and computationally expensive for high 𝑅𝑒.
Given the amounts of vapor produced relative to the freestream levels,
displayed later in this section, 𝜎 = 0.25 would be a case between
inception and developed cavitation.

The inflow turbulent boundary-layer is generated on a separate flat
plate domain with a grid resolution of 𝛥𝑥+ = 37, 𝛥𝑦+ = 0.38 and
𝛥𝑧+ = 20. Fig. 4 shows the boundary-layer colored by axial velocity
and its validation against the data of Schlatter and Örlü (2010). Good
agreement is obtained for all quantities. Approximately 127 million
cells are used in the backstep domain with 𝛥𝑦+ = 0.38 and 𝛥𝑥+ = 20
in the vicinity of the corner. The grid size is uniform in spanwise
direction with 𝛥𝑧+ = 20. A vapor concentration equivalent to 𝛼 =
1× 10−5 is prescribed at the inflow. The velocity profiles are compared
to experimental results of Agarwal et al. (2018) at 𝑥 = 1𝑆 and 𝑥 = 3𝑆
downstream of the step in Figs. 5 and 6, showing good agreement. The
predicted reattachment length is around 𝐿𝑟 = 6.4𝑆, which compares
reasonably well with the experimental value of 𝐿𝑟 = 6.2𝑆. Fig. 7
shows mean and fluctuation values of vapor volume fraction. Although
cavitation is not observed experimentally at 𝑅𝑒𝜏 = 800, the work
of Agarwal et al. (2018) reports that at different higher 𝑅𝑒𝜏 and at
different values of 𝜎, the location where cavitation is observed is at
0.45 < 𝑥∕𝐿𝑟 < 0.75. It is evident from Fig. 7 that cavitation activity
seems restricted to the region of 0.4 < 𝑥∕𝐿𝑟 < 0.8, consistent with
experiments. The values of 𝛼 along the shear layer are not provided
by the experiments, thus we cannot compare them. However, this test
shows that the model is able to simulate cavitation inception in complex
flows.
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Fig. 3. Results from present model (lines) validated against model of Bhatt and Mahesh
(2021) (symbols). Profiles from left to right are taken at 𝑥 = 1𝑆, 𝑥 = 2𝑆 and 𝑥 = 3𝑆
downstream of the step, respectively.

3.3. Flow over backstep at 𝑅𝑒𝜏 = 1500

Inception in the shear layer of the backstep is studied at 𝑅𝑒𝜏 = 1500
at the experimental conditions of 𝜎 = 0.55 and 𝜎 = 0.45. The inflow
turbulent boundary-layer is generated similarly to the previous case.
The grid for this boundary-layer simulation has a resolution of 𝛥𝑥+ =
30, 𝛥𝑦+ = 0.6 and 𝛥𝑧+ = 32. The flow field at an instant of time is
illustrated in Fig. 8(a) showing the axially developing boundary-layer.
Figs. 8(b) and (c) show validation against the data of Eitel-Amor et al.
(2014). It can be seen that we obtain a good agreement in the inner
layer, but underpredict the 𝑢𝜏 as well as the Reynolds stresses, which
can be explained by the mesh resolution.

For the backward-facing step domain, the grid contains 190 million
cells with 𝛥𝑦+ = 0.6 and 𝛥𝑥+ = 12 in the vicinity of the corner
and a uniform 𝛥𝑧+ = 32 in the spanwise direction. Similar to the
previous case, a vapor concentration equivalent to 𝛼 = 1 × 10−5 is
5

prescribed at the inflow. The flow field at the center plane, 𝑥 = 1𝑆
and 𝑥 = 3𝑆 are displayed in Fig. 9. Figs. 10 and 11 show a comparison
between numerical and the experimental velocity profiles of Agarwal
et al. (2018) at 𝑥 = 1𝑆 and 𝑥 = 3𝑆, respectively. Good agreement is
obtained for the shear layer profiles despite the differences observed
in the incoming boundary-layer, which can be explained by the use of
a finer 𝛥𝑥+ at the backstep inlet section (𝑥∕𝑆 < 0 in Fig. 9(a)). The
reattachment length obtained is 𝐿𝑟 = 6.0𝑆, which is 9% larger than the
experimental value of 𝐿𝑟 = 5.5𝑆.

3.3.1. Pressure and volume fraction statistics
Figs. 12(a) and (b) show probability density function (PDF) of

pressure and volume fraction, respectively, between 𝑥 = 3𝑆 and 𝑥 =
6𝑆 for 𝜎 = 0.55. This region corresponds to the locations between
𝑥 = 0.5𝐿𝑟 and 𝑥 = 𝐿𝑟. The measured pressure PDFs show a Gaussian
behavior, which is also observed in Lee and Sung (2001). It can be
noted that the probability of a low-pressure event is higher around
half the reattachment point. According to the void fraction PDFs, the
probability of finding regions of vapor seems confined around 𝑥 = 4𝑆,
which is within the experimental range of Agarwal et al. (2018). Note
that the location with a higher probability of a low-pressure event does
not necessarily match the location with a high probability of finding
vapor at inception conditions. The stations at 𝑥 = 3𝑆 and 𝑥 = 4𝑆, for
instance, have PDF curves for pressure showing similar probability for
vapor pressure but their probabilities for volume fraction are orders of
magnitude apart. This indicates the effects of finite rate evaporation
and condensation. Regions at vapor pressure need to be sustained for
a finite amount of time to allow for the growth of vapor to more
visible sizes. Fig. 12(a) and (b) show that, for 𝜎 = 0.55, the cavitation
process starts at 𝑥 = 3𝑆 and the vapor grows slowly as it is advected
following the low-pressure regions to 𝑥 = 4𝑆. Over this distance of one
step height, the PDF of void fraction reveals that vapor, most likely,
only grows by 0.05%. This very small increase may imply that these
incipient structures that start forming at 𝑥 = 3𝑆 do not remain at vapor
pressure for their entire travel to 𝑥 = 4𝑆. As the vapor is advected
further to 𝑥 = 5𝑆, it is condensed back to freestream levels due to
a pressure recovery as shown by the PDFs. Additionally, Fig. 12(a)
exposes how violent the pressure fluctuations can be in such flows.
Observe how the most likely value for pressure obtained between 𝑥 =
3𝑆 and 𝑥 = 4𝑆 lies around 25 kPa. The tails of the curves, however,
suggest that pressure can go as low as vapor pressure. These drastic
fluctuations were also noticed in O’Hern (1990) and help to clarify
why inception can be seen in a shear flow at a relatively high ambient
pressure.

The PDFs of pressure and volume fraction are also computed for
𝜎 = 0.45 and are displayed in Fig. 13. For all locations, the curves in
Fig. 13(a) show a peak probability at a lower value of pressure than
those obtained for 𝜎 = 0.55 in Fig. 12(a), as expected. It can also be
observed that there is a higher probability of finding larger volumes
of vapor, which is also foreseen. Note that all stations exhibit some
probability of having regions at vapor pressure or lower, in contrast
to 𝜎 = 0.55. Similar to 𝜎 = 0.55, the magnitude of the most likely
observed pressure increases with axial distance from the step. However,
in contrast to 𝜎 = 0.55, the location with a higher likelihood of finding
vapor matches the location most likely to experience very low pressure.
Note how the tail of the pressure PDF curves show that violent pressure
fluctuations are seen at 𝑥 = 5𝑆. These extremely low values of pressure
increase the evaporation rates, which are responsible for the explosive
growth obtained at the same location.

The inception event rates at 𝜎 = 0.55 and 𝜎 = 0.45 are computed
and displayed in Figs. 14(a) and (b) respectively. These events are
obtained by counting the number of events with 𝑝 ≤ 𝑝𝑣 across the
shear layer over two entire flow-throughs and averaging them over
the span direction. The decrease in cavitation number from 0.55 to
0.45 is found to increase the inception activity by around 𝑂(1). It can
be observed that most of the captured structures are located between



International Journal of Multiphase Flow 146 (2022) 103865F.L. Brandao and K. Mahesh
Fig. 4. Turbulent boundary-layer colored by axial velocity (a). Mean values of axial velocity (b) and values of Reynolds stresses (c) at 𝑅𝑒𝜏 = 800. Simulation results (lines)
compared against data from Schlatter and Örlü (2010) (symbols). Black, red, blue and orange lines and symbols in (c) represent, respectively,

√

⟨𝑢′2⟩∕𝑢∞,
√

⟨𝑣′2⟩∕𝑢∞,
√

⟨𝑤′2
⟩∕𝑢∞

and ⟨𝑢′𝑣′⟩∕𝑢2∞. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Comparison between numerical (lines) and experimental (symbols) profiles of mean velocity and Reynolds stresses for 𝑅𝑒𝜏 = 800 at 𝑥 = 1𝑆 downstream of the step. 𝑆
represents the step height. The experimental values are obtained from the work of Agarwal et al. (2018).
6
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Fig. 6. Comparison between numerical (lines) and experimental (symbols) profiles of mean velocity and Reynolds stresses for 𝑅𝑒𝜏 = 800 at 𝑥 = 3𝑆 downstream of the step. 𝑆
represents the step height. The experimental values are obtained from the work of Agarwal et al. (2018).
Fig. 7. Contours of ⟨𝛼⟩ and ⟨𝛼′2⟩ are given in (𝑎) and (𝑏), respectively, for 𝜎 = 0.25 at 𝑅𝑒𝜏 = 800.
0.4 < 𝑥∕𝐿𝑟 < 0.8, consistent with the experimental data of Agarwal
et al. (2018). For 𝜎 = 0.45, however, some structures are also detected
at a considerable frequency downstream of the experimental range,
compatible with the PDF curves of Fig. 13. Furthermore, it can be noted
that although these incipient structures are scattered throughout the
7

shear layer for 𝜎 = 0.55, they cover small continuous regions in an
axial direction indicating that they only cavitate for very brief periods.

Although Figs. 12 and 13 show the likelihood of low pressure
in some regions, they do not indicate the most probable cavitating
pressure. This information is provided in Fig. 15 for both cases. These
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Fig. 8. Turbulent boundary-layer colored by 𝑢∕𝑢∞ (𝑎). Mean values of axial velocity (𝑏) and values of Reynolds stresses (𝑐) at 𝑅𝑒𝜏 = 1500. Simulation results (lines) compared
against data from Eitel-Amor et al. (2014) (symbols). Black, red, blue and orange lines and symbols in (𝑐) represent, respectively,

√

⟨𝑢′2⟩∕𝑢∞,
√

⟨𝑣′2⟩∕𝑢∞,
√

⟨𝑤′2
⟩∕𝑢∞ and ⟨𝑢′𝑣′⟩∕𝑢2∞.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Instantaneous flow field colored with 𝑢∕𝑢∞ for 𝑅𝑒𝜏 = 1500 at center plane (𝑎) and at positions 𝑥 = 1𝑆 (𝑏) and 𝑥 = 3𝑆 (𝑐) downstream of the step. 𝑆 represents the step
height. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
curves indicate that the most plausible cavitating pressure is around
−1500 Pa for 𝜎 = 0.55 and −5500 Pa for 𝜎 = 0.45. Since both cases are
performed for the same 𝑅𝑒𝜏 , the drop in the inflow cavitation number
was obtained by dropping inflow pressure by 17%. This small drop in
inflow pressure changes the magnitude of the most likely cavitating
pressure by around 3.5 times. As it will be demonstrated in the next
8

section, these pressure minima are found to be located inside the cores
of the stretched streamwise vortices.

3.3.2. Flow topology of incipient structures
O’Hern (1990) found that inception would primarily occur in the

elongated quasi-streamwise vortices (QSV), indicating that the lowest
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Fig. 10. Comparison between numerical (lines) and experimental (symbols) profiles of mean velocity and Reynolds stresses for 𝑅𝑒𝜏 = 1500 at 𝑥 = 1𝑆 downstream of the step. 𝑆
represents the step height. The experimental values are obtained from the work of Agarwal et al. (2018).
values of pressure are expected to be in the core of these vortices.
In this work, we examine the incipient structures by studying their
flow topology based on the invariants of the velocity gradient tensor,
strain rate tensor and rotation rate tensor. Chong et al. (1990), Cantwell
(1992) and Perry and Chong (1994) discuss the details of this approach;
only a summary of the invariants and their physical meaning will be
given here. The velocity gradient tensor, 𝐴𝑖𝑗 = 𝜕𝑢𝑖

𝜕𝑥𝑗
, has the following

characteristic equation:

𝜆3𝑖 + 𝑃𝜆
2
𝑖 +𝑄𝜆𝑖 + 𝑅 = 0, (10)

where 𝜆𝑖 are the eigenvalues and 𝑃 , 𝑄 and 𝑅 are the first, second and
third invariants of 𝐴𝑖𝑗 , respectively. These invariants are given by

𝑃 = −𝑆𝑖𝑖,

𝑄 = 1
2
(𝑃 2 − 𝑆𝑖𝑗𝑆𝑗𝑖 −𝛺𝑖𝑗𝛺𝑗𝑖),

𝑅 = 1
3
(−𝑃 3 + 3𝑃𝑄 − 𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖 − 3𝛺𝑖𝑗𝛺𝑗𝑘𝑆𝑘𝑖).

(11)

Here, 𝑆𝑖𝑗 = 𝐴𝑖𝑗+𝐴𝑗𝑖
2 and 𝛺𝑖𝑗 = 𝐴𝑖𝑗−𝐴𝑗𝑖

2 are the strain rate tensor and
rotation rate tensor, respectively. 𝑃 = 0 due to incompressibility.
Likewise, the invariants of 𝑆𝑖𝑗 and 𝛺𝑖𝑗 are defined by their respective
characteristic equation. For incompressible flows, only the second and
third invariants of 𝑆𝑖𝑗 and the second invariant of 𝛺𝑖𝑗 are non-zero.
They are given by the following expressions:

𝑄𝑠 = −1
2
𝑆𝑖𝑗𝑆𝑗𝑖, 𝑅𝑠 = −1

3
𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖 and 𝑄𝑤 = −1

2
𝛺𝑖𝑗𝛺𝑗𝑖, (12)

where the subscripts 𝑆 and 𝑤 indicate that the variable is related to
the strain rate tensor and rotation rate tensor, respectively.

Fig. 16(a) shows the topologies in the 𝑄–𝑅 plane. The tent-like
curve depicts 𝐷 = 0, where 𝐷 is the discriminant of 𝐴𝑖𝑗 given by
𝐷 = 27𝑅2 + 𝑄3. Fluid elements occupying the region of 𝐷 > 0 are
9
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focal regions and can be undergoing stretching (𝑅 < 0) or contraction
(𝑅 > 0). According to Ooi et al. (1999), the focal structures with
stretching topology are in general elongated and compact in a tube-like
shape, while the contracting regions resemble ‘blobs’ and are usually
found at the ends of the focal structure or at the intersection between
two stretching regions. Fig. 16(b) shows the physical interpretation for
the 𝑄𝑠–𝑄𝑤 plane. Regions of the flow lying below the 𝑄𝑤 = −𝑄𝑠
line are dominated by rotation (such as the core of a vortex tube)
while regions lying above the line are dominated by strain (such as
the periphery of a vortex tube) with intense kinetic energy dissipation.
The third invariant of the strain rate tensor (𝑅𝑠) is proportional to the
strain skewness and it can be demonstrated that 𝑅𝑠 = −𝜆1𝜆2𝜆3 (da
Silva and Pereira, 2008), where 𝜆1 > 𝜆2 > 𝜆3 are the eigenvalues of
𝑆𝑖𝑗 and 𝜆1+𝜆2+𝜆3 = 0 due to incompressibility. Thus, the 𝑄𝑠–𝑅𝑠 plane
is useful to investigate the geometry of the local straining of a fluid
particle. Curves representing the ratio between the principal strain rates
𝜆1 ∶ 𝜆2 ∶ 𝜆3 are shown in Fig. 16(c), where each of them indicates a
flow geometry (e.g. 1 ∶ 1 ∶ −2 indicates axisymmetric stretching while
2 ∶ −1 ∶ −1 corresponds to axisymmetric contraction). For more details,
the reader is referred to Perry and Chong (1994).

We collect the values of these invariants over time for the regions
where the local pressure is lower than vapor pressure and compute
their joint-PDFs in the 𝑄–𝑅, 𝑄𝑠–𝑄𝑤 and 𝑄𝑠–𝑅𝑠 planes. The joint-PDFs,
however, do not indicate whether these vortices are in the streamwise
direction. The work of Agarwal et al. (2020) identifies the quasi-
streamwise vortices by the threshold of

√

𝜔2
𝑥 + 𝜔2

𝑦∕(𝑢∞∕𝑆) > 3.5, where
𝜔𝑥 and 𝜔𝑦 are the streamwise and vertical components of the vorticity,
respectively. The PDF of this quantity is presented in Fig. 17(𝑎) while
Fig. 17(𝑏) displays the probabilities for the angles between the vorticity
vector and the velocity components, for the regions where the local
pressure is lower than vapor pressure. It becomes evident that the
obtained incipient structures are QSVs.
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Fig. 11. Comparison between numerical (lines) and experimental (symbols) profiles of mean velocity and Reynolds stresses for 𝑅𝑒𝜏 = 1500 at 𝑥 = 3𝑆 downstream of the step. 𝑆
represents the step height. The experimental values are obtained from the work of Agarwal et al. (2018).
Fig. 12. Probability density function of pressure (𝑎) and volume fraction (𝑏) at different axial location for 𝜎 = 0.55. The y-axis in (𝑏) is clipped at 10−10 for better visualization.
The joint-PDFs for the invariants for 𝜎 = 0.55 are shown in
Fig. 18(𝑎), (𝑏) and (𝑐) respectively. The results for 𝜎 = 0.45 are
similar and are, therefore, not presented here. The joint-PDF of 𝑄–
𝑅 in Fig. 18(𝑎) reveals that pressure drops below vapor pressure
primarily in focal regions. The joint-PDF in Fig. 18(𝑏) shows that
these events are likely to be dominated by rotation. This reinforces
the suggestion of O’Hern (1990). According to Fig. 18(𝑐), these focal
incipient structures show a tendency to have strain rate ratios of 2 ∶
1 ∶ −3 or 3 ∶ 1 ∶ −4. In other words, this means that inception
likely occurs in focal structures that are being elongated 2 or 3× more
in their most extensive principal direction than in their intermediate
10
principal direction. Fig. 19 shows a visual example of these structures.
Isocontour of 𝑝 = 𝑝𝑣 is given in orange and isocontour of 𝛼 = 1.005×10−5

is given in blue. The presence of multiple locations with a pressure
equal to or less than vapor pressure in the shear layer can be observed,
however, the largest structure is stretched in the streamwise direction.
The isocontour of vapor volume fraction confirms that this structure
cavitates first, which agrees with experimental observations.

Fig. 18(𝑏) showed that regions of higher rotation rates are prefer-
ential sites for inception. However, it does not quantify the balance
between rotation and straining. The kinematical vorticity number is of-
ten employed as a quantitative measurement of the amount of rotation
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Fig. 13. Probability density function of pressure (𝑎) and volume fraction (𝑏) at different axial location for 𝜎 = 0.45. The y-axis in (𝑏) is clipped at 10−8 for better visualization.
Fig. 14. Inception event rates for 𝜎 = 0.55 (𝑎) and 𝜎 = 0.45 (𝑏). Levels in both plots are in logarithmic scale.
of a fluid particle (Truesdell, 1954), and is defined as

𝜅 =
(

𝑄𝑤
−𝑄𝑠

)
1
2
. (13)

This variable measures the ratio between rotational strength and irro-
tational stretching (Ooi et al., 1999). A value of 𝜅 = 0 implies that a
fluid particle is undergoing purely irrotational stretching while a value
of 𝜅 = ∞ means that the fluid particle is subjected only to solid-body
rotation. The joint-PDF between pressure and 𝜅 is displayed in Fig. 20
and reveals a predominance of 𝜅 ≈ 2, which means that inception is
most likely to occur in the cores of vortex tubes subjected to a rotation
11
rate 4× stronger than the stretching rate. Additionally, a decreasing
pressure and consequently the likelihood of cavitation is found to be
correlated to an increasing 𝜅.

4. Summary

A method is developed to simulate and predict cavitation incep-
tion. The method consists of treating vapor as a passive scalar in an
incompressible liquid. An advection–diffusion equation with a source
term is solved for the concentration of vapor in a dual time step
procedure, allowing for higher time steps. Convective and diffusive
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Fig. 15. Probability density function of minimum pressure for 𝜎 = 0.55 (𝑎) and 𝜎 = 0.45 (𝑏).
Fig. 16. The regions formed by the second and third invariants of the velocity gradient tensor (𝑄–𝑅) and the regions formed by the second invariants of the strain rate tensor
and rotation rate tensor (𝑄𝑠–𝑄𝑤) are given in (𝑎) and (𝑏) respectively with their corresponding flow patterns. Curves representing the ratio between the principal strain rates are
shown in the 𝑄𝑠–𝑅𝑠 plane in (𝑐).
fluxes are obtained with an approach based on a least-square method
that provides accurate results on skewed meshes. The source term is
split into terms that are treated explicitly and implicitly, yielding a
stable solution as shown in the Appendix. We validate the model
against results obtained using the compressible homogeneous mixture
approach. Inception in the shear layer of a backstep is investigated in
the experimental configuration of Agarwal et al. (2018) with inflow
turbulent boundary-layers at 𝑅𝑒𝜏 = 800 and 1500. The case of 𝑅𝑒𝜏 = 800
does not show cavitation for the range of 𝜎 studied in the experiments.
Therefore, we simulate this case at a lower ambient pressure as a
verification test. For 𝑅𝑒𝜏 = 1500, we study the experimental conditions
of 𝜎 = 0.55 and 𝜎 = 0.45. Pressure and void fraction statistics are
computed and the likelihood of cavitation exhibits good agreement
with experimental data. The inception event rates show an increase
12
by around 𝑂(1) when the cavitation number is reduced from 𝜎 = 0.55
to 𝜎 = 0.45 and are more likely to occur around 0.4 < 𝑥∕𝐿𝑟 <
0.8. The flow topology is investigated and the cores of the stretched
quasi-streamwise vortices (QSV) are found to be the preferred sites
for inception. Additionally, the ratio between rotation and strain rates
and its relation with inception was investigated. It was observed that
inception most likely occurs when the rotation rate of the vortex tube
is 4× stronger than the stretching rate. The pressure inside the QSVs
are found to be −1500 Pa and −5500 Pa for 𝜎 = 0.55 and 𝜎 = 0.45,
respectively. Lastly, an analysis reveals a predominance for the ratio
between the principal strain rates of 2 ∶ 1 ∶ −3 and 3 ∶ 1 ∶ −4 for the
cavitating QSVs.
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Fig. 17. PDFs of vorticity magnitude (𝑎) and angle between vorticity vector and the velocity components (𝑏). The red dashed line in (𝑎) indicates
√

𝜔2
𝑥 + 𝜔2

𝑦∕(𝑢∞∕𝑆) = 3.5.
Fig. 18. Joint-PDFs of 𝑄–𝑅 (𝑎), 𝑄𝑠–𝑄𝑤 (𝑏) and 𝑄𝑠–𝑅𝑠 (𝑐) plot for 𝜎 = 0.55. Levels in both plots are in logarithmic scale and the invariants are in non-dimensional units (using the
appropriate combination of the step height, 𝑆, and the freestream velocity, 𝑢∞).
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Appendix. Treatment of source terms

The source terms can have a big impact on the reliability of nu-
merical solutions as they can drive them to unphysical values. In our
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Fig. 19. Isocontours of 𝑝 = 𝑝𝑣 in orange and 𝛼 = 1.005×10−5 in blue. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

case, these unrealistic solutions are 𝛼 > 1 and 𝛼 < 0. Usually, the
source terms are better handled explicitly when they are positive, and
implicitly when they are negative (sink) (Merci et al., 2000; Lian et al.,
2010). For cavitation problems, we have both cases (see Eq. (3)). In the
present work, they are treated as suggested in the work of Lian et al.
(2010), where the source (𝑆𝑒) is divided between an equivalent sink
and an enhanced source. We write the unfiltered version of the RHS
of Eq. (3) in a generalized Crank–Nicolson form as

... = − 𝜓(𝜃1𝑆𝑛+1𝑒 + (1 − 𝜃1)𝑆𝑛𝑒 ) + (1 + 𝜓)(𝜃2𝑆𝑛+1𝑒 + (1 − 𝜃2)𝑆𝑛𝑒 )

− (𝜃3𝑆𝑛+1𝑐 + (1 − 𝜃3)𝑆𝑛𝑐 ),
(A.1)

where the parameters 𝜃1, 𝜃2 and 𝜃3 can take the values of 0, 0.5 or
1 indicating explicit, Crank–Nicolson or implicit formulation, respec-
tively. The first, second and third terms in the RHS of Eq. (A.1) are the
equivalent sink, the enhanced source and the original sink, respectively.
Due to the non-linear nature of both source and sink terms, they are
linearized following a Taylor series expansion with respect to the vapor
concentration as

𝑆𝑛+1𝑒 = 𝑆𝑛𝑒 +
𝜕𝑆𝑒
𝜕𝐶

𝑛
(𝐶𝑛+1 − 𝐶𝑛),

𝑆𝑛+1 = 𝑆𝑛 +
𝜕𝑆𝑐 𝑛(𝐶𝑛+1 − 𝐶𝑛).

(A.2)
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𝑐 𝑐 𝜕𝐶
Fig. A.21. Change in solution for different scalar time steps.

Since 𝛼 = 𝐶∕𝜌𝑣, the partial derivatives of evaporation and condensation
source terms are given by
𝜕𝑆𝑒
𝜕𝐶

= 2𝐶(1 − 3 𝐶
𝜌𝑣

+ 2𝐶
2

𝜌2𝑣
)
𝜌𝑙
𝜌3𝑣
𝐶𝑒
𝑚𝑎𝑥(𝑝𝑣 − 𝑝, 0)
√

2𝜋𝑅𝑣𝑇
,

𝜕𝑆𝑐
𝜕𝐶

= 2𝐶(1 − 3 𝐶
𝜌𝑣

+ 2𝐶
2

𝜌2𝑣
) 1
𝜌2𝑣
𝐶𝑐
𝑚𝑎𝑥(𝑝 − 𝑝𝑣, 0)
√

2𝜋𝑅𝑣𝑇
.

(A.3)

It was recommended in Lian et al. (2010) that both the original and
equivalent sink should be treated implicitly (𝜃1 = 𝜃3 = 1) while the
enhanced source should be treated explicitly (𝜃2 = 0) with 𝜓 = 1.
This choice of parameters was shown to provide stable results when
employed with a linear source term in Lian et al. (2010). However, the
cavitation source and sink terms employed in this work are biquadratic.
Although 𝜃3 = 1 works well for the sink, we will show that the values
for 𝜃1 and 𝜃2 need to be adjusted.

When 𝑝 < 𝑝𝑣, only the source is activated and, ignoring the convec-
tive and diffusive fluxes, the change in vapor concentration during one
time step (𝛥𝑡𝑠) is given by

𝛥𝐶 = 𝐶𝑛+1 − 𝐶𝑛 =
𝛥𝑡𝑠𝑆𝑒

1 + 𝜕𝑆𝑒
𝜕𝐶 𝛥𝑡𝑠(𝜓𝜃1 − (1 + 𝜓)𝜃2)

. (A.4)

Fig. A.21 presents how the solution changes for different values of
𝛥𝑡 ∕𝑡 (where 𝑡 is a given reference time), and for a given value of
𝑠 𝑟 𝑟
Fig. 20. Joint-PDF between pressure and 𝜅 for 𝜎 = 0.55. The line of 𝜅 = 1 signals the boundary between stretching to rotation dominated.
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Fig. A.22. Change in solution for different choice of the parameters 𝜓 , 𝜃1, 𝜃2 for 𝛥𝑡𝑠∕𝑡𝑟 = 5 × 10−5.
pressure, when the parameters are chosen to be the same as suggested
by Lian et al. (2010): 𝜓 = 1, 𝜃1 = 1 and 𝜃2 = 0. Here, we have
used a very large value for the empirical constant, 𝐶𝑒 = 200 m−1, to
create a substantial growth of vapor concentration. Fig. A.21 reveals
that, even when applying implicit time advancement for the transport
equation, we need a time step as small as 𝛥𝑡𝑠∕𝑡𝑟 = 1 × 10−5 for the
vapor volume fraction to remain bounded in the {0, 1} range. Fig. A.22
shows the change in the void fraction at 𝛥𝑡𝑠∕𝑡𝑟 = 5 × 10−5 for different
combinations of the parameters 𝜓 , 𝜃1 and 𝜃2. The first observation that
can be made from Fig. A.22 is that the proper choice of parameters
allow the solution to remain bounded even for higher time steps. It can
be seen that when treating the enhanced source explicitly (𝜃2 = 0) as
suggested in Lian et al. (2010), values of 𝛼 within the range of {0, 1}
are only achieved when the equivalent sink is also treated explicitly
(𝜃1 = 0). We can see that three combinations of parameters provide
limited cavitation: 𝜃1 = 𝜃2 = 0, 𝜃1 = 𝜃2 = 0.5 and 𝜃1 = 1 with 𝜃2 = 0.5.

A question remains of why these combinations work and why their
𝛼𝑛+1 curves have different slopes. A logical way to study this would
be through von Neumann stability analysis. However, due to the non-
linear nature of the source term, this task becomes unnecessarily hard.
Consequently, we follow the approach in Patankar (1980). Applying
Eq. (A.2) into the RHS of Eq. (A.1), the linearized evaporation source
term becomes
𝑆𝑒𝑙 = 𝑆𝑒𝑐 + 𝑆𝑒𝑝𝐶𝑛+1,

𝑆𝑒𝑐 = 𝑆𝑛𝑒 − (−𝜓𝜃1 + (1 + 𝜓)𝜃2)
𝜕𝑆𝑒
𝜕𝐶

𝑛
𝐶𝑛,

𝑆 = (−𝜓𝜃 + (1 + 𝜓)𝜃 )
𝜕𝑆𝑒 𝑛.

(A.5)
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Eq. (A.5) reveals that the different choices of parameters will result
in distinctive slopes for 𝑆𝑒𝑙, which is plotted in Fig. A.23. The source
term of Saito et al. (2007) has a region where 𝜕𝑆𝑒

𝜕𝐶 > 0 and another
where 𝜕𝑆𝑒

𝜕𝐶 < 0 with the transition between them located at 𝛼 = 0.5.
Therefore, in Fig. A.23 we show lines of 𝑆𝑒𝑙 for values of 𝐶𝑛 at these
two different regions. A line with zero slope (horizontal) indicates that
the solution is growing at a constant rate while lines with positive and
negative slope mean an accelerated and decelerated solution change,
respectively. The steeper the 𝑆𝑒𝑙 line is, the faster the solution changes.
If the time step is not small enough, combinations of the parameters
that result in steeper 𝑆𝑒𝑙 lines will lead to an unrealistic solution. This
becomes clear when comparing Fig. A.23(a) with Fig. A.22(a) for 𝜓 = 1
and 𝜃1 = 0. Here we can see that increasing 𝜃2 from 0 to 1 makes the 𝑆𝑒𝑙
line steeper and the only bounded solution occurs when 𝜃2 = 0, which
has zero slope. When 𝜃2 = 0.5, the 𝑆𝑒𝑙 line is a bit steeper than the 𝑆𝑒
curve, leading to a solution of 𝛼𝑛+1 > 1 in Fig. A.22(a). When 𝜃2 = 1,
the 𝑆𝑒𝑙 line becomes steeper and the solution blows-up even earlier. A
combination of parameters that results in 𝑆𝑒𝑙 lines with negative slopes
are also preferable and recommended in Patankar (1980) since they
imply a decelerated solution growth that allows for higher time steps.
However, we can see in Fig. A.23 that no combination yields negative
slopes in both regions of the 𝑆𝑒 curve. Thus, we can see that the safer
choices of parameters are 𝜃1 = 𝜃2 = 0, 𝜃1 = 𝜃2 = 0.5 and 𝜃1 = 1 with
𝜃2 = 0.5, which are the exact combinations that generated restricted
solutions in Fig. A.22.
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Fig. A.23. Comparison between the source term and its linearization. The plots on the left are for a specific 𝐶𝑛 in the region where 𝜕𝑆𝑒
𝜕𝐶

> 0 and the plots on the right are for a
specific 𝐶𝑛 in the region where 𝜕𝑆𝑒

𝜕𝐶
< 0.
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