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Wall-bounded flow over a realistically rough
superhydrophobic surface
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Direct numerical simulation (DNS) is performed for two wall-bounded flow
configurations: laminar Couette flow at Re = 740 and turbulent channel flow at
Reτ = 180, where τ is the shear stress at the wall. The top wall is smooth and the
bottom wall is a realistically rough superhydrophobic surface (SHS), generated from
a three-dimensional surface profile measurement. The air–water interface, which is
assumed to be flat, is simulated using the volume-of-fluid (VOF) approach. The two
flow cases are studied with varying interface heights h to understand its effect on
slip and drag reduction (DR). For the laminar Couette flow case, the presence of the
surface roughness is felt up to 40 % of the channel height in the wall-normal direction.
Nonlinear dependence of DR on h is observed with three distinct regions. A nonlinear
curve fit is obtained for gas fraction φg as a function of h, where φg determines the
amount of slip area exposed to the flow. A power law fit is obtained from the data
for the effective slip length as a function of φg and is compared to those derived for
structured geometry. For the turbulent channel flow, statistics of the flow field are
compared to that of a smooth wall to understand the effects of roughness and h. Four
cases are simulated ranging from fully wetted to fully covered and two intermediate
regions in between. Scaling laws for slip length, slip velocity, roughness function
and DR are obtained for different penetration depths and are compared to past work
for structured geometry. DR is shown to depend on a competing effect between
slip velocity and turbulent losses due to the Reynolds shear stress contribution.
Presence of trapped air in the cavities significantly alters near-wall flow physics
where we examine near-wall structures and propose a physical mechanism for their
behaviour. The fully wetted roughness increases the peak value of turbulent intensities,
whereas the presence of the interface suppresses them. The pressure fluctuations have
competing contributions between turbulent pressure fluctuations and stagnation due
to asperities, the near-wall structure is altered and breaks down with increasing slip.
Overall, there exists a competing effect between the interface and the asperities, the
interface suppresses turbulence whereas the asperities enhance them. The present
work demonstrates DNS over a realistic multiphase SHS for the first time, to the best
of our knowledge.
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1. Introduction
Superhydrophobicity is a property attributed to surface roughness (ridges, grooves,

posts or random textures) and surface chemistry which maintains large contact angles
for sessile drops, thus producing low wettability, known as the Cassie–Baxter state
(Cassie & Baxter 1944). The interface meniscus creates an air mattress that acts like
a lubricant for the outer flow (Rothstein 2010). When the interface fails, the liquid
fills the surface cavities and the superhydrophobic effect is lost. This is referred to as
the Wenzel state (Wenzel 1936).

Nature provides numerous examples of superhydrophobic surfaces (SHS), which can
be exploited for practical applications. For example, the lotus leaf is believed to take
advantage of superhydrophobicity for a self-cleaning mechanism (Barthlott & Neinhuis
1997). Frictional drag reduction is central to the performance of marine vessels, and
anti-biofouling, anti-icing and microfluidic devices (Furstner et al. 2005; Genzer &
Efimenko 2006; Fang et al. 2008; Jung et al. 2011). Any impact on skin friction drag
reduction substantially improves the overall performance and yields savings in fuel
cost (Choi & Kim 2006). In the present work we focus on drag reduction using SHS
in two canonical flow configurations: laminar Couette flow and turbulent channel flow.

With recent developments in three-dimensional printing and microfabrication
processes, it is possible to create surfaces exhibiting superhydrophobic characteristics
when coupled with chemical treatments. Laminar flows over SHS have been studied
both numerically and experimentally. SHS have been shown to achieve drag reduction
(Ou, Perot & Rothstein 2004; Ou & Rothstein 2005; Choi & Kim 2006; Joseph et al.
2006; Maynes et al. 2007; Woolford et al. 2009; Emami et al. 2011). Analytical
models relate the slip lengths to various surface parameters such as groove width,
pitch and height (Lauga & Stone 2003; Ybert et al. 2007) or the slip velocities
to geometry (Seo & Mani 2016). In general the SHS are considered to be simple
grooved geometries, and numerically the interface is typically assumed to be flat and
represented using zero-shear boundary conditions. Others have included the effect of
viscosity on the interface (Vinogradova 1995; Belyaev & Vinogradova 2010; Nizkaya,
Asmolov & Vinogradova 2014). Several authors have investigated the effect of the
curvature due to the meniscus and modified the analytical solutions to take curvature
into account (Cottin-Bizonne et al. 2003; Sbragaglia & Prosperetti 2007b; Wang, Teo
& Khoo 2014; Li, Alame & Mahesh 2017).

Turbulent flows over textured surfaces have been studied extensively in the past.
Experimentally, it becomes difficult to conduct measurements near the wall and to
maintain a stable interface, but drag reduction and slip lengths have been investigated.
Some past work reported that SHS had no effect on turbulent statistics (Zhao, Du
& Shi 2007; Peguero & Breuer 2009), while others reported otherwise (Gogte et al.
2005; Henoch et al. 2006; Daniello, Waterhouse & Rothstein 2009; Jung & Bhushnan
2009; Aljallis et al. 2013; Bidkar et al. 2014; Park, Sun & Kim 2014; Srinivasan
et al. 2015). Investigation of interface stability was studied using post-processed
pressure fluctuations (Seo, Garcia-Mayoral & Mani 2015). Rosenberg et al. (2016)
showed that the turbulent skin friction is reduced over air- and liquid-impregnated
surfaces (SLIPS) for Taylor–Couette flows. Numerically, the interface is assumed to
be flat and modelled using zero-shear boundary conditions (Martell, Perot & Rothstein
2009; Frohnapfel, Hasegawa & Kasagi 2010; Martell, Rothstein & Perot 2010; Park,
Park & Kim 2013; Jelly, Jung & Zaki 2014; Türk et al. 2014) and homogenised
slip length models instead of zero-shear boundary conditions (Min & Kim 2004;
Fukagata, Kasagi & Koumoutsakos 2006; Busse & Sandham 2012). The profiles of
mean velocity, turbulence intensities and Reynolds shear stresses were characterised

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

41
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
ri

es
, o

n 
17

 S
ep

 2
01

9 
at

 1
0:

49
:5

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.419
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Wall-bounded flow over a realistically rough SHS 979

for the inner part of turbulent boundary layers over several SHS with varying textures
and a range of Reτ (Ling et al. 2016). Jung, Choi & Kim (2016) studied the effect
of anisotropy in the slip-length models for different interface heights in idealised
SHS. Recently, Fu et al. (2017) used the level-set method to study SHS with varying
viscosity ratios over spanwise and streamwise grooves. Rastegari & Akhavan (2018)
applied the Boltzmann method in their DNS to study the effect of the liquid–gas
interface in longitudinal grooves by modelling it as a stationary, curved and free shear
boundary; the meniscus shape was determined using the Young–Laplace equation.
The sustainable pressure bounds of SHS were further investigated by Rastegari &
Akhavan (2019). Fairhall, Abderrahaman-Elena & García-Mayoral (2019) showed that
drag reduction is proportional to the difference between the virtual origin of the mean
flow and the virtual origin of the overlying turbulence.

Most past work on flow over SHS has considered idealised geometries such as
grooves or posts. Seo & Mani (2018) recently studied turbulent flow over SHS
idealised as random slip/no-slip patches. To the best of our knowledge, none of the
past numerical work has simulated a multiphase flow over realistically rough surfaces
as presented in this paper. The main goal of the present work is to perform DNS
of (i) laminar Couette flow and (ii) turbulent channel flow, where the bottom wall
is a realistically rough surface. We aim to explore the effect of interface height on
slip, drag reduction, near-wall flow field and turbulence statistics. The rest of the
paper is organised as follows: § 2 describes simulation details including the numerical
method, parameters and problem formulation. Results are described in § 3 which
include flow visualisations, steady and mean flow field properties and drag reduction
in laminar Couette flow. The mean flow statistics, scaling laws and flow structure are
also presented for turbulent flow. Finally, the work is summarised in § 4.

2. Simulation details
2.1. Numerical method

Direct numerical simulation (DNS) is performed using a mass-conserving volume-
of-fluid (VOF) methodology on structured grids to study the effect of an air–water
interface over a realistically rough surface. The governing equations are solved using
the finite-volume algorithm developed by Mahesh, Constantinescu & Moin (2004)
for the incompressible Navier–Stokes equations. The governing equations for the
momentum and continuity are given by the Navier–Stokes equations:

∂ui

∂t
+

∂

∂xj
(uiuj)=−

1
ρ

∂p
∂xi
+

1
ρ

∂

∂xj

[
µ

(
∂ui

∂xj
+
∂uj

∂xi

)]
+ Fst,i + δi1Ki, (2.1)

∂ui

∂xi
= 0, (2.2)

where ui and xi are the ith component of the velocity and position vectors respectively,
p denotes pressure, ρ is density and µ is the viscosity of the fluid. The fluids are
assumed to be immiscible. Additionally in (2.1), δi1 is the Kroenecker delta, Ki is the
body force which is only active in the liquid phase and Fst,i the surface tension force.
The algorithm is robust and emphasises discrete kinetic energy conservation in the
inviscid limit which enables it to simulate high-Reynolds-number flows without adding
numerical dissipation. The solution is advanced in time by an implicit scheme using
successive over-relaxation (SOR). A predictor–corrector methodology is used where
the velocities are first predicted using the momentum equation and then corrected
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980 K. Alamé and K. Mahesh

using the pressure gradient obtained from the Poisson equation yielded by the
continuity equation. The Poisson equation is solved using a multigrid pre-conditioned
conjugate gradient method (CGM) using the Trilinos libraries (Sandia National
Labs). The multigrid pre-conditioner uses a Chebyshev smoother with a third-order
polynomial and a maximum number of levels set to 4. The implicit time advancement
uses the Crank–Nicholson discretisation with a linearisation of the convection terms.

The volume fraction is represented by a colour function c to keep track of two
different fluids. The colour function c varies between the constant value of one in a
filled cell to zero in an empty cell, with an intermediate value between zero and one
to define an interface cell where 06 c6 1. The reconstruction and advection steps are
based on a set of analytic relations proposed by Scardovelli & Zaleski (2000). The
governing equations for the colour function material derivative are given by

(2.3)

where the advection term is neglected in the following simulations since we assume
that the interface is stationary due to an infinite surface tension. The density and
viscosity are evaluated as

ρ = ρg + (ρl − ρg)c, (2.4)
µ=µg + (µl −µg)c, (2.5)

where the subscript ‘l’ denotes the liquid phase and ‘g’ the gas phase. The surface is
represented by obstacle cells which are masked out. At the beginning of a simulation
run, the fluid and obstacle cells are flagged accordingly:

mask=

{
1, if fluid cell
0, if obstacle cell;

(2.6)

this step is performed once. The wetted masked cells (cells that share a face between
a fluid and obstacle cell) enforce a zero face-normal velocity vN|mask = 0. The
cell-centred velocities satisfy a no-slip boundary condition, with the exception of
corner cells that take a weighted average of the neighbouring cell-centred values. The
algorithm has been validated with experimental results for a variety of flows involving
superhydrophobicity (Li, Alame & Mahesh 2016; Li et al. 2017) and fully wetted
roughness (Ma, Alamé & Mahesh 2019). In this study, we enforce a zero face-normal
velocity at the interface vN|interface = 0. The condition models a high-surface-tension
regime with a stable flat interface. This was done to focus on the effect of varying
interface heights h for a finite-viscosity lubricant. The assumption made is valid for
flow regimes where the interfacial surface tension dominates the interface dynamics.
Further discussion of the validity of our assumptions is presented in appendix A.
The statistics of the turbulent channel flow were averaged over a period of 300
flow-through times after the discharge had reached a steady-state value.

2.2. Surface generation
The roughness used in the present work is obtained from a real surface manufactured
at UT Dallas (courtesy Professor Wonjae Choi), with a three-dimensional (3-D)
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FIGURE 1. (Colour online) Illustration of the real rough surface. The contour legend
describes the height of the surface profile.

surface profile measurement using a 20X objective lens obtained from MIT (courtesy
Professor Gareth McKinley). The sample is aluminium 6061 sandblasted using 150
grit, etched for 25 s, boehmetized for 30 min and hydrophobised using Ultra Ever
Dry top coat in isopropanol. Figure 1 provides an illustration of the scanned surface
data coloured with height. The surface statistics and power spectral density (PSD) of
the surface height are provided in appendix B.

We begin with a pre-processing step by reading the scanned surface data. The
number of pixels in the scan width and height are stored as the number of nodes
in the streamwise and spanwise directions respectively. The values of the roughness
height and spatial location are then interpolated to cell centres given our domain
of choice. The cell centre values are then written to a new file with a structured
data format. Any obstacle cell which shares an edge with a fluid cell is tagged as a
boundary cell. Boundary cells can either be an edge cell (if the boundary cell borders
exactly one fluid cell) or a corner cell (if the boundary cell shares a corner with two
or more fluid cells). The discretised surface is checked with the original data and the
errors in the surface statistics are presented in table 5, appendix B. The momentum
equations are solved inside the fluid domain while the pressure is solved everywhere.
The weighted average applied at the corner cells does not affect the pressure equation
since we use collocated grids where the face-normal velocities are set to zero at the
boundaries independent of the cell centre value. This ensures a proper pressure jump
recovery at the obstacle walls where the values inside the obstacle domain do not
affect the pressure values in the fluid domain.

2.3. Problem description
Simulations are performed for two canonical problems: (i) laminar Couette flow and
(ii) turbulent channel flow, where the surface described in § 2.2 is used as the bottom
wall. In the experiments performed by Ling et al. (2016), the tunnel pressure (which
controls the interface location) is increased, which compresses the air layer into
the SHS and in turn exposes more asperities, thereby reducing the extent of drag
reduction. The aim of this paper is to model this effect over an idealised flat interface
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FIGURE 2. (Colour online) Illustration of the computational domain for the laminar
Couette simulation, roughness and the instantaneous velocity field.

Case h Lx Ly Lz Nx ×Ny ×Nz 1ymin 1ymax

Laminar Couette flow 1–18 Sv–Sp 8H H 6H 341× 128× 256 0.006 0.05
L-S — 8H H 6H 341× 128× 256 0.006 0.05

L-RFW Sv 8H H 6H 341× 128× 256 0.006 0.05
L-RI1 0 8H H 6H 341× 128× 256 0.006 0.05
L-RI2 Sq 8H H 6H 341× 128× 256 0.006 0.05
L-RI3 Sp 8H H 6H 341× 128× 256 0.006 0.05

TABLE 1. Case names, interface location, domain extents and grid resolution for the
laminar Couette flow problem. L denotes the laminar cases. S and R denote a smooth and
rough wall respectively. Fully wetted roughness is denoted by FW. I1, I2 and I3 represent
the interface height at three locations: 0, Sq and Sp respectively.

numerically by progressively increasing the height h and measuring flow properties
for each interface location in different flow regimes. The maximum interface height
is non-physical in a realistic scenario, but it serves the purpose of providing the
largest amount of slip that is theoretically achievable. It also helps describe the trend
between limiting cases. The problem description is given in the following sections.

2.3.1. Laminar Couette
The height H of the top wall was chosen such that the root-mean-square (RMS)

roughness height Sq is around 2 % of H. The original surface is scaled to achieve
the roughness height ratios described above. The reference system is chosen such
that the origin coincides with the arithmetic mean elevation of the roughness. The
schematic diagram shown in figure 2 illustrates the flow domain. No-slip boundary
conditions are prescribed on the bottom surface and a constant velocity U∞ in the
streamwise x-direction is prescribed at the top wall. The streamwise (x) and spanwise
(z) directions are periodic; a non-uniform grid is used in the wall-normal (y) direction
with clustering in the rough wall region. The interface location was varied from
the maximum valley depth Sv all the way up to the maximum peak height of the
roughness Sp over 18 increments. Table 1 gives the grid details. The Reynolds number
Re = U∞H/ν = 740, where U∞ and H are taken to be unity and the liquid phase
being the reference material property. A smooth planar Couette flow (Case L-S) is
used as a baseline such that the reference shear stress τo = µU∞/H = µw, where µw

is the reference viscosity in the water phase. First, a fully wetted case (L-RFW) is
simulated to baseline the effect of roughness on drag when compared to the smooth
wall. Case L-RI1 denotes h= 0, Case L-RI2 denotes h= Sq and Case L-RI3 denotes
h = Sp. The viscosity ratio µr = µa/µw = 1/50 is used to represent an air–water
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Wall-bounded flow over a realistically rough SHS 983
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FIGURE 3. (Colour online) Illustration of the computational domain for the turbulent
channel flow, interface location embedded within the roughness and the instantaneous
velocity field.

Case h Lx Ly Lz Nx ×Ny ×Nz 1y+min 1y+max

Turbulent channel flow T-S — 2πδ 2.08δ πδ 341× 128× 207 1.8 6.12
T-RFW Sv 2πδ 2.08δ πδ 448× 256× 271 0.42 2.4
T-RI1 0 2πδ 2.08δ πδ 448× 256× 271 0.42 2.4
T-RI2 Sq 2πδ 2.08δ πδ 448× 256× 271 0.42 2.4
T-RI3 Sp 2πδ 2.08δ πδ 448× 256× 271 0.42 2.4

TABLE 2. Case names, interface location, domain extents and the grid resolution in wall
units for the turbulent channel flow problem. T denotes the turbulent cases. S and R denote
a smooth and rough wall respectively. Fully wetted roughness is denoted by FW. I1, I2
and I3 represent the interface height at three locations: 0, Sq and Sp respectively.

interface. The change in shear stress due to the roughness and h is used to compute
the drag reduction defined using the following relation:

DR(%)=
(τo − τ)

τo
× 100. (2.7)

2.3.2. Turbulent channel
A schematic diagram describing the turbulent channel domain is given in figure 3.

No-slip boundary conditions are applied on both the top smooth wall and the
bottom rough wall with periodicity in the streamwise (x) and spanwise (z) directions;
non-uniform grids are used in the wall-normal (y) direction where the grid is clustered
near the rough wall region. The grid details are given in table 2. A constant body
force in the liquid phase is applied such that the friction Reynolds number is
Reτ = uτδ/ν = 180 where uτ is the wall friction velocity, δ = (Ly − yo)/2 the channel
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FIGURE 4. (Colour online) (a) Turbulent channel domain extent (dashed line) and the
tiled surface at different orientations with their physical boundaries (solid red), not drawn
to scale. (b) The probability density function (p.d.f.) distribution of the real surface height
for the laminar Couette (red dash dot) and turbulent channel (blue dashed) compared to
a Gaussian (black solid line) of the same root-mean-square height.

half-height and yo the reference bottom plane. Four cases were considered: (i) fully
wetted rough channel for Case T-RFW, (ii, iii) two-phase rough channel with h = 0
for Case T-RI1, h= Sq for Case T-RI2, and (iv) h= Sp for Case T-RI3. The reference
plane yo is taken to be the arithmetic mean elevation of the roughness for Case
T-RFW, and the location of the interface for Cases T-RI1, T-RI2 and T-RI3. The
viscosity ratio is that of an air–water interface given by µr = µa/µw = 1/50. The
solver was validated (not shown here) for the flat smooth channel (Kim, Moin &
Moser 1987). The original surface is scaled such that S+q ≈ 1.6. The original surface
scan was not large enough to cover the bottom wall after scaling, and the roughness
patch had to be tiled in random orientations to minimise any directional bias and
create a larger area. The required domain extents were then extracted from the tiled
surface as shown in figure 4(a). The computational domain required after scaling
was twice as long in the streamwise (x) direction and 35 % longer in the spanwise
(z) direction. The ratio of Lx to Lz is 4 : 3 in the laminar Couette case compared to
the 2 : 1 ratio of the turbulent channel case. In order to ensure this does not affect
the roughness height distribution, a probability density function (p.d.f.) distribution
is plotted for both cases in figure 4(b) and is compared to a Gaussian distribution.
No appreciable difference is observed between the two cases. The p.d.f. distribution
is negatively skewed when compared to a Gaussian which is also calculated in the
surface statistics presented in table 4 of appendix B.

For the sake of brevity, the streamwise mean velocity is denoted by U where the
overline (denoting temporal averaging) and angle brackets (denoting spatial averaging)
are dropped, e.g.

U(y)= 〈U〉 = (1/LxLz)

∫ Lx

0

∫ Lz

0
u dx dz. (2.8)

The bulk velocity is defined as follows:

Ub = (1/Ly)

∫ Ly

yo

U(y) dy. (2.9)
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Wall-bounded flow over a realistically rough SHS 985
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FIGURE 5. (Colour online) Grid refinement comparison between (a) mean velocity profiles
and (b) the Reynolds stresses. Black solid lines represent the fine grid and symbols the
coarse grid.

Similarly, the Reynolds stresses are denoted by u′iu
′

j dropping the angle brackets and
overline. Given that the channel is under a constant pressure gradient, at a statistically
stationary state, the average friction wall velocity is given by uτ = (δK1)

1/2 and the
average shear stress by τw = δK1. It also holds that τw = (τ

T
w + τ

B
w )/2 where τ T

w is
the top wall shear stress and τ B

w the bottom wall shear stress. The top wall is flat
therefore τ T

w is calculated directly by averaging µ(∂U/∂y)y=Ly/2 and τ B
w is calculated

indirectly to avoid averaging over the masks using τ B
w = 2τw − τ

T
w . The bottom wall

friction velocity is then calculated using uB
τ = (τ

B
w )

1/2. Results are plotted against the
channel height in wall units y+ = uτy/ν. If the bottom wall friction velocity is used
as a reference, then a distinction is made explicitly. For example y+(uB

τ ) denotes the
channel height in wall units based on the bottom wall friction velocity.

Two simulations were performed at different resolutions to quantify the effect of
grid size. The refined grid is ∼3.5 as fine as the previous grid. Case T-RI2 was used
as a baseline for the grid refinement comparison. No appreciable difference (less than
1 %) in the mean velocity profiles, bulk velocity and Reynolds stresses is observed in
figure 5. The slip velocity increased by 3.76 % and the bottom wall shear stress τ B

w
decreased by 2.3 %. We report results from the finer grid in this paper.

3. Results
3.1. Laminar Couette flow

3.1.1. Steady-state flow field
Initially, the fully wetted Case L-RFW is considered. Figure 6 shows the flow

field after it is fully developed. The wall-normal velocity (figure 6a) and the vorticity
magnitude along with surface pressure (figure 6b) are shown. A wall-normal velocity
component into the flow is induced due to the surface asperities. Additional vorticity
is generated due to the surface roughness, and large variations of pressure on the
surface are evident due to the presence of peaks and valleys. The penetration effect
of the surface roughness is illustrated in figure 7, where the percent change in
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FIGURE 6. (Colour online) Laminar Couette flow (Case L-RFW) with (a) wall-normal
velocity contours normalised by the maximum wall-normal velocity vmax and (b) vorticity
magnitude line contours normalised by the maximum vorticity ωmax with surface pressure
(normalised by pmax) on the roughness for the range shown in the colour bar.

instantaneous streamwise velocity (u(y) − uo(y))/uo(y) is shown for the fully wetted
rough case (Case L-RFW) compared to the smooth channel case (Case L-S) at four
wall-parallel planes varying from y = 0.02H to y = 0.4H. The baseline streamwise
velocity uo(y) represents Case L-S and u(y) represents Case L-RFW. Notice that it is
not until the location y= 0.4H that the change in velocity is less than 1 %, suggesting
that the surface roughness effects can penetrate up to that distance.

3.1.2. Mean flow field properties
Simulations are performed for each of the interface heights h varying from Sv to

Sp. DR is shown for all the interface heights in figure 8. The increase in DR is not
linear when h is varied from Sv to Sp. Note that the fully wetted case has negative
DR indicating that the absence of the interface has increased drag due the exposed
asperities. The presence of the interface produces nearly the same drag reduction for
h/Sq 6−0.32 which we will refer to as region I. This suggests that the value of DR
is insensitive to h in region I. This holds in general for any surface with negative
skewness (Ssk =−0.32) since that region I holds most of the valleys. Figure 9 shows
a 2-D slice of the surface roughness; note that the valleys dominate over the peaks
about the reference line. As the interface fills up more of the cavities, the slip area
becomes significant enough to cause drag reduction. In region II, for −0.32< h/Sq <
2.15, the increase in drag reduction is rapid since the increase in interface height
exposes fewer asperities to the outer flow. The slip is enhanced due to a much larger
area of air–water interface. In region III beyond h/Sq > 2.15, DR hits a plateau and
becomes insensitive to the interface height since it covers most of the asperities. DR
is therefore sensitive to h in the vicinity of mean roughness Sq. It is therefore evident
from figure 8 that we can classify the interface cases into three distinct regions:

Region=


I, if h/Sq 6−0.32;
II, if − 0.32< h/Sq < 2.15;
III, if h/Sq > 2.15.

(3.1)

One can extract a representative case from each of the three regions shown above.
The baseline smooth wall is denoted as Case L-S. For the rough wall, one can extract
a representative case from each of the three regions shown above. The fully wetted

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

41
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
ri

es
, o

n 
17

 S
ep

 2
01

9 
at

 1
0:

49
:5

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.419
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Wall-bounded flow over a realistically rough SHS 987

x

y

z

5.00
4.58
4.17
3.75
3.33
2.92
2.50
2.08
1.67
1.25
0.83
0.42
0

x

y

z

5.00
4.58
4.17
3.75
3.33
2.92
2.50
2.08
1.67
1.25
0.83
0.42
0

x

y

z

5.00
4.58
4.17
3.75
3.33
2.92
2.50
2.08
1.67
1.25
0.83
0.42
0

x

y

z

5.00
4.58
4.17
3.75
3.33
2.92
2.50
2.08
1.67
1.25
0.83
0.42
0

(a) (b)

(c) (d)

FIGURE 7. (Colour online) Percent change in the streamwise velocity field for the fully
wetted laminar Couette flow (Case L-RFW) compared to the baseline smooth wall (Case
L-S) at wall-parallel planes: (a) 0.02H, (b) 0.08H, (c) 0.16H and (d) 0.40H from the
bottom surface.
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FIGURE 8. Laminar Couette flow: drag reduction as a function of interface height
normalised by the RMS roughness height Sq.

case in region I is denoted as Case L-RFW, the interface at the mean elevation height
of the roughness h= 0 denoted by Case L-RI1, the interface at h= Sq in region II is
represented by Case L-RI2 and the interface at h= Sp in region III is represented by
Case L-RI3. The velocity profiles are extracted and compared in figure 10. Case L-
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FIGURE 9. (Colour online) A 2-D slice of the surface roughness (solid blue line) to
highlight negative skewness about the reference line (dashed red line).
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FIGURE 10. (Colour online) Mean streamwise velocity u as a function of the wall-normal
distance y, where u and h are normalised with U∞ and H respectively.

RFW exhibits an increase in velocity gradient when compared to Case L-S indicating
an increase in drag. Once the interface is introduced, the effect is reversed and the
velocity gradient decreases for Cases L-RI1, L-RI2 and L-RI3. The effect is more
pronounced in Case L-RI3 since it corresponds to the interface being at the highest
peak where most of the asperities are covered and the largest slip effect is achieved.

The increase in interface height reduces the amount of rough surface area exposed
to the flow. As a result, the flow is subjected to an increase in slip area. The asperities
exposed to the outer flow can be represented by a solid fraction φs, which is found
by calculating the area of the rough surface above the interface normalised by the
projected area of the bottom wall. It is evident that there exists a relationship between
the interface height h and gas fraction φg defined by φg= 1− φs. This is useful since

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

41
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
ri

es
, o

n 
17

 S
ep

 2
01

9 
at

 1
0:

49
:5

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.419
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Wall-bounded flow over a realistically rough SHS 989

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

ƒg

0
-4 -3 -2 -1 0 1

h/Sq

2

Ssk = -0.32

3 4 5

FIGURE 11. (Colour online) Gas fraction φg as a function of interface height h normalised
with the RMS roughness height Sq. The red symbols represent the data and the solid blue
line represents the nonlinear fit.

φg is not known a priori and h is prescribed as an initial condition. A simple nonlinear
fit relates φg to h/Sq of the form of c[1 + tanh(ax + b)] and is described by the
following equation:

φg = 0.5
[

1+ tanh
(

0.95
h
Sq
− 0.875

)]
. (3.2)

This equation can be applied to any general rough surface: the coefficients do change
for different surfaces, but the overall fit is general since any surface roughness can
be represented by a bearing area curve (BAC). Region I represents the index of the
deepest valleys where the interface is retained, region II represents the core interface
retention index where the maximum amount of air is trapped within the cavities, and
region III the upper zone index related to the largest asperities that contribute to drag.
Figure 11 shows a comparison between the actual data and (3.2) for φg as a function
of h/Sq. The negative skewness Ssk = −0.32 coincides with the transition between
regions I and II.

Alternatively, DR can be represented as a function of slip area instead of interface
height by using φg as shown in figure 12. Based on the definition of DR in (2.7), it
can be shown that DR is related to the slip length beff by the following equation:

DR=
1

1+
H

beff

, (3.3)

therefore,
beff

H
=

DR
1−DR

. (3.4)

Philip (1972a,b) obtained an analytic solution for the normalised slip lengths beff /H
for periodic grooves oriented parallel and perpendicular to the flow respectively:

beff

H
=−

1
π

log
[
cos
(π

2
φg

)]
, (3.5)
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FIGURE 12. Laminar Couette flow: drag reduction DR as a function of gas fraction φg.

beff

H
=−

1
2π

log
[
cos
(π

2
φg

)]
. (3.6)

Ybert et al. (2007) showed that for a post geometry, beff scales with the solid fraction
as

beff

H
∼

α
√
φs
, (3.7)

where α is a prefactor that depends on the geometry. Davis & Lauga (2010) were
able to use superposition of point sources, where the infinite series is interpreted as
a Riemann sum to obtain an analytical solution that agrees with Ybert et al. (2007)
in the asymptotic limit of small surface coverage. A linear regression is performed on
the numerically obtained data using the scaling given by (3.7) to obtain the following
expression:

beff

H
=

0.19
√
φs
− 0.175. (3.8)

Figure 13(a) shows a comparison between the different solutions obtained for the
longitudinal and transverse grooves and posts to that of random roughness. The
solution for post geometry best approximates the data for a random rough geometry
for φg < 0.85 but starts to diverge as gas fraction increases. In the limit of large
φg, the transverse groove solution captures the slip effect in random roughness more
accurately. We present a power-law fit to the current data to obtain an expression for
beff as a function of φg:

beff

H

∣∣∣∣
φg>0

= 0.5(φg)
5/2
+ 0.02. (3.9)

This formula provides a simple expression for slip length over the rough surface given
the amount of gas fraction present when φg>0 and is shown in figure 13(b). The fully
wetted roughness beff remains an outlier.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

41
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
ri

es
, o

n 
17

 S
ep

 2
01

9 
at

 1
0:

49
:5

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.419
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Wall-bounded flow over a realistically rough SHS 991

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

b e
ff

/H

0 0.1 0.2 0.3 0.4 0.5
ƒg �ƒg

0.6 0.7 0.8 0.9 1.0

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1 0 0.2 0.4 0.6 0.8 1.0

(a) (b)

FIGURE 13. Effective slip length beff normalised with the channel height H as a function
of (a) the gas fraction φg and (b) the square root of gas fraction area φg. In (a), the solid
black line is for longitudinal grooves, the solid dashed line for transverse grooves, the
thick solid blue line for post geometry and the symbols for the random roughness. In (b),
the solid blue line is the power-law fit and the symbols represent the random roughness.

3.2. Turbulent channel flow
3.2.1. Mean velocity profiles

Mean velocity profiles and Reynolds stresses are computed for five cases (T-S,
T-RFW, T-RI1, T-RI2 and T-RI3). Figure 14(a) shows the mean velocity profile
U normalised by the average friction velocity uτ of each corresponding case, as
a function of the wall-normal distance y normalised by the channel half-height
δ = Ly/2. The smooth channel (Case T-S) is also shown for reference. The presence
of roughness (Case T-RFW) causes a small slip effect: it shows an insignificant
decrease of 0.6 % in peak value of U/uτ and about a 3 % shift in its centreline
location away from the rough wall. The presence of an interface (Case T-RI1) shows
a further increase in slip, a slight increase in the centreline peak value of U/uτ and
a 1 % shift in its location towards the SHS wall. The presence of an interface for
Case T-RI1 adds just enough slip to offset the effect of roughness. The slip effect is
more pronounced for Case T-RI2 and is largest for Case T-RI3 when the interface
location covers all the roughness. The mean peak velocity U/uτ increases and the
mean profile shifts towards the SHS wall by 5 % and 6 % for Cases T-RI2 and T-RI3
respectively when compared to Case T-S.

Figure 14(b) shows a close-up view near the SHS wall of the mean velocity profile
U normalised by the bottom wall friction velocity uB

τ as a function of the wall-normal
distance y+(uB

τ ). The scaling with uB
τ describes a more accurate picture in terms of slip

and drag reduction. Case T-RFW shows a slip velocity at the wall due to the presence
of roughness. The mean velocity profile is 5.8 % lower than the baseline case in the
viscous wall region (y+ < 50), indicating an overall increase in drag. This effect is
not apparent when the mean velocity profile is scaled with the average uτ . Case T-RI1
sees a further increase in slip at the wall due to the presence of an interface: the mean
velocity profile is around 14 % higher within the viscous sublayer and extends into the
buffer layer where the two velocity profiles of Case T-S and Case T-RI1 intersect at
y+ ∼ 22. Cases T-RI2 and T-RI3 exhibit the largest slip at the wall: the two profiles
intersect at y+ ∼ 28. The intersection of the velocity profiles is due to asymmetry
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FIGURE 14. (Colour online) Mean profile of (a) velocity normalised with the average
friction velocity uτ as a function of wall-normal distance normalised by the channel half-
height δ and (b) close-up near the wall region of the velocity normalised by the bottom
wall friction velocity uB

τ as a function of wall-normal distance y+(uB
τ ). Symbols for each

case are: Case T-S (@), Case T-RFW (A), Case T-RI1 (E), Case T-RI2 (6), Case T-RI3
(C). The symbols are not representative of the grid resolution.

caused by the slip effect which shifts the profile towards the SHS. This trend has been
observed in Martell et al. (2009, 2010) for longitudinal grooves and post geometries.
In terms of scaling laws, the law of the wall u+= y++C still holds (C is the constant
shift that represents the normalised slip velocity), with the exception of Case T-RFW
and Case T-RI3. Case T-RFW shows a deviation from the law of the wall at y+ < 3,
where the Reynolds stress is negligible compared to the viscous stress, but follows it
for 3< y+ < 10. This implies that shifting the profile by the normalised slip velocity
u+s will cause the profile to move further below the baseline case. This behaviour in
the profile for the fully wetted case has been demonstrated in the literature (Yuan &
Piomelli 2014). Case T-RI3 shows a complete deviation from the law of the wall due
to the large amount of slip which modifies the slope of the velocity profile such that
u+ = αy+ +C where α < 1.

A semi-log plot is shown in figure 15(a) where, unlike figure 14(a), the mean
velocity profile U is normalised with the bottom wall friction velocity uB

τ . The slip
effect is more pronounced in the near-wall region and the difference in peaks are
more apparent. The mean velocity profile of Case T-RFW shows a positive slip
effect as mentioned earlier: the mean velocity profile is lower than Case T-S over
all regions ranging from the viscous sublayer through the log law. The roughness
reduces the overall mass flux, indicating an increase in drag. The profile shifts down
and away from the wall by roughly 6 % from the centreline location of the baseline.
The peak velocity at the centreline is lower than Case T-S by 2 %. Case T-RI1 shows
a further increase in slip and the velocity profile is shifted further up indicating a
drag reduction. The presence of an interface at that specific height is not enough to
overcome the effect of roughness. This is evident from the velocity profile which is
still 1 % below the baseline case. The profile shifts back towards the SHS by around
2 % from the centreline location of Case T-RFW. The near-wall slip seems to affect
the velocity profile only within the viscous wall region for Cases T-RFW and T-RI1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

41
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
ri

es
, o

n 
17

 S
ep

 2
01

9 
at

 1
0:

49
:5

9,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2019.419
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Wall-bounded flow over a realistically rough SHS 993

101100 102 101100 102

20

15

10

5

0

20

15

10

5

0

y+(u†
B) y+(u†

B)

U
/u

†B

(U
 -

 u
s)/

u †B

(a) (b)

FIGURE 15. (Colour online) Semi-log plot of the mean profile for (a) velocity normalised
with the bottom wall friction velocity uB

τ of each respective case and (b) velocity shifted
by the corresponding slip velocity all normalised by the bottom wall friction velocity uB

τ

as a function of the wall-normal distance y+(uB
τ ). Symbols for each case are: Case T-S

(@), Case T-RFW (A), Case T-RI1 (E), Case T-RI2 (6), Case T-RI3 (C). The symbols are
not representative of the grid resolution.

when compared to Case T-S; however the log-law region shows a collapse in the data
where the difference is within 2 %–3 %. Cases T-RI2 and T-RI3 show a large increase
in slip near the wall with Case T-RI3 having the largest slip given that the roughness
is fully covered by an interface. The peaks for those cases are 8 % and 10 % higher
than Case T-S respectively. The profiles for both Cases T-RI2 and T-RI3 shift closer
to the SHS wall such that their centrelines are 8.75 % and 11 % away from Case T-S
respectively. Overall, the largest difference is clearly seen in the viscous wall region
but the log-law region shows a collapse for Cases T-RI2 and T-RI3. This collapse
holds until y+ = 40 and the deviation in the slope of the log-law region in Case
T-RI3 becomes more apparent for y+ > 50 when compared to Case T-RI2. Overall,
fully wetted roughness exhibits a decrease in mass flux whereas the presence of an
interface increases mass flux. This is evident by the downward shift in the log-law
region for Case T-RFW and an upward shift for Cases T-RI1, T-RI2 and T-RI3. We
can conclude that the trend for an increase in mass flux (more fluid mass moving)
directly correlates with drag reduction and vice versa. This is due to the fact that for
all the cases, Reτ and pressure gradient are held constant.

It has been shown that for structured geometries (grooves and posts) not only does
the gas fraction φg matter, but also the gap spacing (Ou & Rothstein 2005; Daniello
et al. 2009; Martell et al. 2009). For a random rough geometry with varying interface
heights, the gas fraction is indeed increasing, but the gap spacing is also altered since
more pockets are being filled with air. Notice that between Cases T-RI2 and T-RI3
there was not much increase in peak centreline velocity aside from the large increase
in slip near the wall which does not substantially alter the total mass flux. However a
significant increase in mass flux is observed between Cases T-RI1 and T-RI2. This can
be attributed to the change in gap spacing. Although the gas fraction increases with
increasing interface height, more gaps and surface valleys are covered up, since the
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surface roughness is dominated by valleys due to negative skewness. As the interface
covers nearly all the valleys then a sharp increase in drag reduction is observed. Case
T-RI1 is dominated by small gap size features which may be ineffective in reducing
drag; this is in agreement with the literature on longitudinal grooves and posts.

The velocity profiles can be corrected by offsetting them with the slip velocity
as shown in figure 15(b). Close to the wall we see a good collapse in the viscous
sublayer with an early departure y+ > 1 from the u+ = y+. With the roughness fully
covered by the interface in Case T-RI3, a large deviation from the law of the wall
is observed when compared to other cases. This implies that we should expect the
structures of the wall-normal turbulence to remain intact for Cases T-RFW, T-RI1 and
T-RI2, and Case T-RI3 to be fundamentally different. Away from the near wall, the
relative velocity (U− us)/uB

τ decreases with roughness and increasing interface height
(equivalently with increasing φg). This trend has also been observed in Türk et al.
(2014) for structured geometries. The profile in the log-law region is given by

(U − us)

uB
τ

=
1
κ

log(y+(uB
τ ))+ B, (3.10)

where κ is the von Kármán constant and B is the intercept. The value of κ decreases
from 0.41 to 0.38 for Case T-RI3 but remains the same for the other cases. The value
of B decreases with increasing φg, going from B≈ 5.5 to B≈ 2 for Case T-RI2 and
B ≈ −4 for Case T-RI3. Similar trends have been observed in the literature (Busse
& Sandham 2012; Yuan & Piomelli 2014; Busse, Thakkar & Sandham 2017). The
decrease in B implies an increase in friction as discussed in the literature through
surface manipulation (Luchini, Manzo & Pozzi 1991; Jiménez 1994; Garcia-Mayoral
& Jiménez 2011). Therefore a decrease in B is associated with an increase in friction
due to roughness and a decrease in friction due to SHS, and in order to differentiate
the two, we consider the following argument. This increase in friction that is typically
associated with surface roughness is offset by the drag reducing slip velocity us due to
the presence of an interface in SHS. Roughness induces slip, but the velocity profile
in the viscous wall region does not necessarily follow the law of the wall. If we were
to compare it to a smooth channel, the profile of the rough channel would intersect
the profile of the smooth channel somewhere in the viscous sublayer (y+<5) to merge
into the log region, which is shifted below the baseline indicating an increase in drag.
If we offset the profile by the slip velocity, the near-wall region does not collapse
but moves further below. If we take the SHS with structured geometries, the interface
is flush with the top location of the roughness. The slip effect is also present but
the velocity profile in the viscous wall region obeys the law of the wall with some
offset u+ = y+ + C; therefore if the velocity profile is shifted by the slip velocity,
then a collapse in the near-wall region is observed. What we see in our simulation
is somewhere in between. This is simply due to the fact that even when we have
an interface, some roughness protrudes. Our analysis shows a combination of both
behaviours where the law of the wall holds to a certain extent in the viscous sublayer
before any appreciable deviation is observed. Also, with increasing interface height,
the profile in the viscous wall region tends to move closer to the baseline case and
away from the fully wetted roughness, with the exception of Case T-RI3 in which
the log-law region seems to extend to the vicinity of the wall, disrupting the near-
wall cycle. In general, rough surfaces tend to shift both the law of the wall and the
logarithmic region away from baseline while SHS tend to shift the law of the wall
closer and simultaneously moving the logarithmic region away from baseline.
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Wall-bounded flow over a realistically rough SHS 995

3.2.2. Scaling laws
Figure 16(a) shows the slip effect as a function of φg. The slip velocity us is

normalised by the mean bulk velocity Ub for each corresponding case. As φg increases,
the slip effect is more pronounced: us exhibits a steady increase. Slip velocities can
reach as much as 68 % of the bulk velocities which can obscure some of the effects
due to roughness. This is another reason why it would be important to plot the mean
profile offset by the slip as shown in figure 15(b). DR(%) as a function of us is not
an accurate predictor of drag reduction since fully wetted roughness increases drag
while achieving positive slip velocities as shown in figure 16(a). The slip length bs

normalised by the average roughness gap width L is reported in figure 16(b) as a
function of φg. The average roughness gap L is not a straightforward property to
obtain since there is no periodicity (typically associated with structured geometry
such as grooves and posts). We use a two-step process to calculate L. First we find
the profile peak count HSC, the number of profile peaks that exceed a pre-selected
threshold (e.g. arithmetic mean elevation of the roughness), calculated over the entire
streamwise length for all the spanwise slices. Second we calculate the mean peak
spacing Sm, the mean spacing between profile peaks, averaged over all the spanwise
slices to obtain L. We refer the reader to figure 28 in appendix B for an example
of profile peak count. There is a good agreement between our data and a fit based
on the scaling presented by Ybert et al. (2007) for posts given by the following
equation:

bs

L
=

0.75
√
φs
− 0.7. (3.11)

The solution by Sbragaglia & Prosperetti (2007a) which does not require a fit gives
good agreement for φg < 0.7. Slip length is not a good indicator of DR since both
fully wetted roughness and SHS produce a positive bs. As mentioned earlier during
the discussion of the mean velocity profiles, overall mass flux appears to be a good
indicator for drag reduction given that our channels are run at a constant Reτ and
pressure gradient. Drag reduction would imply that more fluid mass is moving for
the same conditions, i.e. a larger mass flux and a larger change in bulk velocity; the
opposite is also true. Figure 16(c) shows the percent change in mean bulk velocity
1Ub normalised by Ub,0 of the baseline Case T-S. A negative change in 1Ub indicates
an increase in drag, i.e. a lower mass flux. Once an interface is present (Case T-RI1)
drag is reduced but is not enough to offset the effect roughness since 1Ub is still
negative. As the interface height increases, 1Ub increases to become a positive
value indicating an increase in mass flux and a larger DR effect. This description
is exactly what we see when compared to the analysis of the mean velocity profile
U/uB

τ done earlier. 1Ub does not exhibit a steady increase and plateaus for large
values of φg; this was also observed by Türk et al. (2014). The reduction in the
shear stress on the bottom wall τ B

w compared to the average shear stress of the
channel τw provides a straightforward result for DR as shown in figure 16(d). Note
the increase in drag by around 2.5 % for Case T-RFW. The roughness has S+q ≈ 1.6
which is in the hydrodynamically smooth regime. Busse et al. (2017) reported that
the surface property S+z5×5 is a more suitable measure of the sand-grain roughness
k+ where S+z5×5 ≈ 11 for our surface. This explains why we see a drag increase for
the current configuration. A reduction of 1 % in drag is obtained once an interface is
introduced in Case T-RI1. A 7 % DR is achieved for Case T-RI2 and peaks at 8 %
for Case T-RI3. The results are in agreement with the experimental results of Ling
et al. (2016) obtained for turbulent boundary layers over SHS at higher Reτ , where
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FIGURE 16. (Colour online) Mean flow field properties as a function of φg. (a) Percentage
slip velocity us normalised by the mean bulk velocity Ub for each corresponding case,
(b) slip length bs normalised by the average gap width of the roughness L where the
solid blue line represents the scaling law of Ybert et al. (2007) and the dashed black
line that of Sbragaglia & Prosperetti (2007a), (c) percentage change in bulk velocity 1Ub
normalised by the mean bulk velocity Ub,0 of the baseline case, (d) percentage shear stress
reduction 1τw based on the ratio of the bottom wall τ B

w to the average channel τw and
(e) correlation between the percentage shear stress reduction and percentage change in
bulk velocity compared to a linear fit (solid blue line).
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FIGURE 17. (Colour online) Roughness function 1U+ as a function of slip length b+s is
shown in (a) and is compared to a power-law fit (solid blue line) and (b) shows the slip
velocity scaling u+s as a function of b+s with a comparison to a linear approximation (solid
black line).

k+rms ≈ 0.45–0.75 and DR ranged from 9 % to 12 %. One can therefore reasonably
assume that the change in shear stress and the change in bulk velocity correlate well
with each other. Figure 16(e) shows 1τw as a function of 1Ub compared to a linear
fit given by

1τw = 1.11Ub/Ub,0 − 0.014. (3.12)

The roughness function 1U+ depends on the three-dimensional topography of a
surface where Bradshaw (2000) suggested a scaling given by 1U+∼ (k+rms)

α. Since the
interface height essentially modifies k+rms, then a similar scaling argument can be made
for 1U+ as a function of b+s . Figure 17(a) shows a good agreement with a power-law
behaviour where the roughness function goes to zero as the slip length diminishes. The
power-law formula obtained from fitting the data is given by

1U+ = 1.1(b+s )
0.5. (3.13)

A semi-analytical formula by Ybert et al. (2007) relates the slip velocity to the
cavity width, in terms of wall units u+s = CYL+. We simply use the slip length
b+s instead since slip is a direct consequence of L+. Figure 17(b) shows the linear
approximation near the wall for CY = 0.65 where

u+s = 0.65b+s . (3.14)

The linear scaling deviates for b+s > 10 which was also shown for L+ > 10 in Seo
et al. (2015) for a value of CY = 0.535. This is expected since the linear relationship
is based on Stokes’ flow which becomes less accurate as slip increases. It is worth
noting that by definition u+s = b+s for the cases where the air–water interface is aligned
with the top of the roughness and where the total stress is equal to the viscous stress.
However, as discussed in Ling et al. (2016), u+s < b+s for the cases when −(u′v′)+> 0
or when the total stress τ+t >µ(dU/dy)+ due the random nature of the roughness and
the variable interface heights.
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3.2.3. Reynolds stresses
The Reynolds stress profiles are shown for the different cases as a function of the

wall-normal distance. Figure 18(a) shows the streamwise component of the Reynolds
stress normalised by uτ . Case T-RFW seems to slightly increase the peak of u′u′ while
simultaneously shifting it away from the SHS wall. The presence of an interface seems
to dampen that effect where Case T-RI1 shows a decrease in the peak while shifting
it towards the SHS wall. This effect is further amplified in Case T-RI2 where the peak
is clearly damped and the profile moves closer to the wall. Case T-RI3 exhibits the
largest slip and hence is closest to the SHS wall where there exists a sharp rise in
the streamwise component; however the peak is larger than the other cases, breaking
the symmetry of the profile completely. The overall trend in damping the peak of
u′u′ while shifting it closer to the slip wall has been observed in the literature for
longitudinal grooves and posts. For reference, u′u′ is scaled by uB

τ in figure 18(b). We
get a reasonable collapse in the profiles near the SHS wall with the exception of Case
T-RI3 indicating a change in the near-wall behaviour. Figure 18(c) shows a log plot of
u′u′ as a function of the wall-normal distance y+(uB

τ ) in wall units scaled by uB
τ . Large

differences are observed in the near-wall region due to the slip effect. The shift away
from the SHS wall for Case T-RFW and the shift towards the SHS wall for Cases
T-RI1 and T-RI2 are more evident.

The wall-normal Reynolds stress component v′v′ is shown in figure 19. Initially
v′v′ is normalised by uτ as shown in figure 19(a). Case T-RFW amplifies the peak
stress and shifts it away from the slip wall. Comparing it to Case T-RI2, it is evident
that the interface has a damping effect. It is interesting to note that once the interface
was introduced initially, Case T-RI1 showed a further amplification in the peak from
Case T-RFW and not the opposite. This is likely to be due to the fact that the
interface height barely covers any of the roughness, and therefore the inhomogeneity
between slip and no-slip due to the interface and random rough patches cause larger
fluctuations. This is of course damped out once the interface covers more of the
surface and larger slip areas are present. Case T-RI3 shows the largest shift towards
the SHS wall as expected but the peak stress does not not seem to follow any further
damping effect with increasing slip area. Figure 19(b) shows v′v′ scaled by uB

τ and
no collapse in the data is observed. The log plot in figure 19(c) shows the velocities
going to zero since at the interface an infinite surface tension is assumed. Therefore
the wall-normal velocity vN = 0 at the interface and a no-slip boundary condition is
applied elsewhere over the rough surface. Note that the profiles of Case T-RI1 and
Case T-RI2 intersect around y+ ≈ 28 where Case T-RI2 exhibits larger wall-normal
stresses for y+< 28 and then Case T-RI1 tends to become larger for the region above
that. Case T-RFW does not exhibit an observable shift away from the wall while
it remains clear that when an interface is present, the shift towards the SHS wall
remains considerable.

The streamwise component of Reynolds stress is shown in figure 20, which follows
a similar trend in the behaviour to that described above. Case T-RFW shows an
increase in w′w′ when scaled by uτ as shown in figure 20(a). The addition of an
interface (Case T-RI1) further increases the peak in w′w′. The same reasoning applies
to the spanwise component as described earlier for the wall-normal component since
the roughness has no preferential direction. Therefore the interplay between slip and
no-slip due to the interface and the protruding roughness holds here too. Similarly
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FIGURE 18. (Colour online) Streamwise component of the normal Reynolds stress
normalised by (a) the average friction velocity u2

τ as a function of y/δ, (b) the bottom
wall friction velocity (uB

τ )
2 as a function of y/δ and (c) the bottom wall friction velocity

(uB
τ )

2 as a function of y+(uB
τ ) on a log scale. Symbols for each case are: Case T-S (@),

Case T-RFW (A), Case T-RI1 (E), Case T-RI2 (6), Case T-RI3 (C). The symbols are not
representative of grid resolution.
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FIGURE 19. (Colour online) Wall-normal component of the normal Reynolds stress
normalised by (a) the average friction velocity u2

τ as a function of y/δ, (b) the bottom
wall friction velocity (uB

τ )
2 as a function of y/δ and (c) the bottom wall friction velocity

(uB
τ )

2 as a function of y+(uB
τ ) on a log scale. Symbols for each case are: Case T-S (@),

Case T-RFW (A), Case T-RI1 (E), Case T-RI2 (6), Case T-RI3 (C). The symbols are not
representative of grid resolution.

as soon as the interface covers a large portion of the roughness as in Case T-RI2,
the peak is damped out. Case T-RI3 is highly skewed towards the rough wall with
a peak velocity that is much larger than the rest of the cases. Similar to what was
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FIGURE 20. (Colour online) Spanwise component of the normal Reynolds stress
normalised by (a) the average friction velocity u2

τ as a function of y/δ, (b) the bottom
wall friction velocity (uB

τ )
2 as a function of y/δ and (c) the bottom wall friction velocity

(uB
τ )

2 as a function of y+(uB
τ ) on a log scale. Symbols for each case are: Case T-S (@),

Case T-RFW (A), Case T-RI1 (E), Case T-RI2 (6), Case T-RI3 (C). The symbols are not
representative of grid resolution.

observed in the wall-normal stresses, Cases T-RI1 and T-RI2 intersect each other as
shown in figure 20(c). The location however is smaller, where y+ ≈ 13. Anywhere
below that, Case T-RI2 exhibits higher stresses than Case T-RI1 and the opposite
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1002 K. Alamé and K. Mahesh

holds true when y+ > 13. The spanwise slip is evident due to the presence of the
interface where Case T-RI3 still exhibits the largest slip effect.

The Reynolds shear stress is an important quantity to examine since its behaviour
is closely related to turbulence levels and the structure of the near-wall turbulence.
Figure 21(a) shows how the presence of an interface (Case T-RI2) reduces shear
while the presence of roughness enhances it. Note that since the wall-normal shear
stress tends to increase when an interface is introduced (Case T-RI1), that effect
translates here where we see a further enhancement in mixing instead of a reduction
in the peak. Similar to the discussion above, it is not until the interface covers a large
portion of the roughness that the damping effect takes place. Therefore it is evident
that there are competing effects between the interface suppressing vertical velocity
fluctuations and the asperities doing the opposite by enhancing them. Case T-RI3
exhibits a large gradient near the SHS wall since the wall-normal velocity is zero
yet the streamwise component sees a large slip effect as was shown in figure 18(a).
As we move away from the wall, the shear stress has to balance out with the top
wall given that we are running a constant pressure gradient, which explains why the
profiles are parallel in that region. Figure 21(b) shows the u′v′ component normalised
by uB

τ , and a good collapse of the data is observed with the exception of Case
T-RI3. This indicates that, overall, the near-wall turbulence is not fundamentally
changed for Cases T-RFW, T-RI1 and T-RI2 whereas the turbulent structures of Case
T-RI3 are different. Figure 21(c) shows −u′v′ plotted on a log scale in wall units
(normalised by uB

τ ) along with the viscous stress µ(dU/dy) and total stress τt which
shows the total shear stress budget. We can see the cases where −u′v′> 0 and where
τt >µ(dU/dy) leading to u+s < b+s as discussed earlier. Case RFW seems to collapse
onto the baseline while Cases T-RI1 and T-RI2 shift towards the slip wall. The shear
stresses go to zero near the wall due to the infinite surface tension that keeps the
interface flat.

Earlier we discussed how us is not an accurate predictor of DR since both
fully wetted roughness and SHS result in a positive slip velocity. 1Ub on the
other hand correlates with 1τw. One can show that the Reynolds shear stress is
tied to the change in bulk velocity which is manifested in additional turbulent losses.
This is done by applying a triple integration to the averaged transport equation for
the streamwise momentum equation. This was demonstrated in Hasegawa, Frohnapfel
& Kasagi (2011) and Türk et al. (2014) where the following identities are obtained:

Ub =
Reτ
3
+ us −

∫ δ

0

(
1−

y
δ

)
(−u′v′) dy. (3.15)

For the baseline case (T-S) where we have no-slip walls:

Ub,0 =
Reτ
3
−

∫ δ

0

(
1−

y
δ

)
(−u′0v

′

0) dy. (3.16)

This leads to the final form given by the following:

1Ub =Ub −Ub,0 = us −

∫ δ

0

(
1−

y
δ

)
(−u′v′ + u′0v

′

0) dy, (3.17)

where u′0v
′

0 denotes the shear stress of the baseline case. Take Case T-RFW as an
example. The fully wetted roughness enhances vertical velocity fluctuations and so
does having an interface at a small height location (Case T-RI1). There −u′v′>−u′0v

′

0
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FIGURE 21. (Colour online) Reynolds shear stress normalised by (a) the average friction
velocity u2

τ as a function of y/δ, (b) the bottom wall friction velocity (uB
τ )

2 as a function
of y/δ. (c) The viscous stress, Reynolds shear stress and total stress normalised by the
bottom wall friction velocity (uB

τ )
2 as a function of y+(uB

τ ) on a log scale. Symbols for
each case are: Case T-S (@), Case T-RFW (A), Case T-RI1 (E), Case T-RI2 (6), Case
T-RI3 (C). In (c) the solid line represents total stress τ+t , dashed lines the viscous stress
µ(dU/dy)+ and dashed-dotted lines the Reynolds shear stress −(u′v′)+. The symbols are
not representative of grid resolution.
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1004 K. Alamé and K. Mahesh

and therefore
∫ δ

0 (1 − y/δ)(−u′v′ + u′0v
′

0) > 0 which happens also to be larger than
the us caused by the roughness or the presence of the interface. This gives 1Ub <
0, indicating an increase in drag. For Cases T-RI2 and T-RI3, u′v′ is damped when
compared to baseline. Therefore −u′v′<−u′0v

′

0 and the integral term ends up coming
out to be negative which results in 1Ub>0 and hence drag reduction. One implication
of this result is that a superhydrophobic surface might fail in the sense of reducing
drag at high pressure in spite of the interface itself being stable.

3.2.4. Flow structures
The near-wall shear stress u′v′ collapsed when scaled with the bottom wall

shear velocity indicating that the near-wall behaviour remains unchanged with the
exception of Case T-RI3. In this section we look more closely at the near-wall
region. Figure 22(a–d) shows instantaneous pressure fluctuations in wall units where
p+ = p/(uB

τ )
2. Figure 22(a) shows the pressure contours along the rough wall while

figures 22(b)–22(d) are taken at the interface location (the reference plane) for
each case. The axes are shown in wall units scaled by uB

τ /ν. The contours change
noticeably from figures 22(a) to 22(d). The instantaneous behaviour in pressure for
figures 22(a) and 22(d) shows similar large length scales for fully wetted and fully
covered roughness on the order of 100ν/uτ . Larger pressure intensities are visible in
figure 22(d) due to slip at the interface. Local contribution due to the presence of
protruding roughness elements is observed in figures 22(b) and 22(c). Asperities cause
stagnation in front of them as observed by the high pressure values. Low pressure
values are seen in their wake. This effect is reduced as more asperities are covered
by the interface as shown in figure 22(c). This behaviour was also observed in Seo
et al. (2015).

We extract slices in the wall-normal plane such that y+ = 15 and examine the
time-averaged pressure distribution. Figure 23(a–d) shows striking visual difference
between Case T-RFW, Cases T-RI1 and T-RI2, and Case T-RI3. The mean pressure
is zero for a smooth channel; this is only observed in figure 23(d) when the interface
fully covers the roughness. Figure 23(a) shows a variation in the mean pressure due
to the signature of the rough wall. The contribution of stagnation pressure at the
interface is overlaid with the contribution of asperities. Large variations in mean
pressure interspersed across the domain are observed in figures 23(b) and 23(c) due
to the interaction between the flow at the interface and around the asperities.

Since the pressure footprint can be related to near-wall velocity, we plot the
instantaneous velocity u normalised by Ub in greyscale on the same y-slice. The
presence of an interface affects the spanwise streak motion, and the distance between
streaks can be visually seen to be around 100 wall units in figure 24(a). Figure 24(b)
shows regions with larger streamwise velocities where the separation distance between
streaks becomes larger than 100 wall units in the spanwise direction. The slightly
larger distance between the streaks is maintained in Case T-RI2 but that coherent
structure is completely destroyed in Case T-RI3 as shown in figure 24(d). This
behaviour for Case T-RI3 is likely to be due to the lower near-wall shear yielding
lower values of Sq2/ε where S, q2 and ε are the mean shear, twice the turbulence
kinetic energy and turbulent dissipation respectively. As shown by Rogers & Moin
(1987) and Lee, Kim & Moin (1990) for homogeneous shear flow, only high values
of Sq2/ε as encountered in the near-wall region produce streaks.

The instantaneous wall-normal vorticity ω+y is shown in figure 25(a–d) to illustrate
pairs of counter-rotating vortices in regions of low- and high-momentum fluid
streaks. The ω+y contours show similar behaviour to the streamwise velocity with
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Wall-bounded flow over a realistically rough SHS 1005
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FIGURE 22. (Colour online) Instantaneous contours of p+ for (a) Case T-RFW on the
roughness, (b) Case T-RI1, (c) Case T-RI2 and (d) Case T-RI3 on the interface location.
Range of the contours is from −5 to 5 in wall units.

varying interface height. A striking feature in the ω+y plots is the slight asymmetry
of counter-rotating vortex pairs. Figure 26(a) schematically shows how, due to
the random nature of the slip no-slip behaviour over rough SHS, each vortex
in a counter-rotating vortex pair experiences different slip areas, producing an
inhomogeneous spanwise slip ws. This causes asymmetric velocity profiles to interact
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FIGURE 23. (Colour online) Time-averaged contours of p+ at y+=15 for (a) Case T-RFW,
(b) Case T-RI1, (c) Case T-RI2 and (d) Case T-RI3. Range of contours is from −2 to 2
in wall units.

in the wall-normal direction. As the interface height increases, the slip area increases
and less of the solid protrudes, and therefore ws becomes more homogeneous. The slip
effect is however more amplified in this case (figure 26b) and the spanwise velocity is
much larger, penetrating further up in the wall-normal direction, with tertiary vortices
set up above the pair of counter-rotating vortices. This could possibly explain why
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Wall-bounded flow over a realistically rough SHS 1007
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FIGURE 24. Instantaneous greyscale contours of u/Ub at y+ = 15 for (a) Case T-RFW,
(b) Case T-RI1, (c) Case T-RI2 and (d) Case T-RI3. Range of contours is from 0.2 to 1.

in figures 24(d) and 25(d) we observe less coherence and more violent mixing of
those structures. While such mixing is associated with drag increase, the slip velocity
in the streamwise direction is more dominant which offsets this deleterious effect to
give a net positive DR. This is explained by the change in bulk velocity as a function
of slip velocity and the integral difference of shear stresses given by (3.17).
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FIGURE 25. (Colour online) Instantaneous contours of ω+y at y+= 15 for (a) Case T-RFW,
(b) Case T-RI1, (c) Case T-RI2 and (d) Case T-RI3. Range of contours is from −0.5 to
0.5 in wall units.

4. Summary

DNS of laminar Couette flow at Re= 740 and turbulent channel flow at Reτ = 180
are performed, where the bottom wall is a realistically rough SHS. The surface scan
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Wall-bounded flow over a realistically rough SHS 1009
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FIGURE 26. (Colour online) Illustration of the near-wall vortex structure. The asymmetry
in slip due to the random roughness is illustrated in (a) whereas (b) shows the effect
of having an interface cover most of the roughness and its effect on slip and induced
secondary flow interaction.

is reproduced computationally, and the surface statistics are verified again with the
experiments. Simulations are also performed for a smooth wall to serve as a baseline.
Simulations of the fully wetted case and an air–water interface at various heights are
compared to the smooth channel. The effects of roughness and interface heights are
discussed in detail.

Simulations of laminar Couette flow show a penetration effect up to 40 % in
the wall-normal direction due to the roughness. Various interface heights h were
considered and a nonlinear dependence of drag reduction DR on h is observed. The
dependence can be categorised into three distinct regions. The drag is sensitive to
the interface location in region II described in § 3.1.2 where h is in the range of
−0.32 < h/Sq < 2.15. The negative skewness Ssk = −0.32 of the roughness profile
indicates that the surface contains more valleys than peaks and asperities. More than
half of the surface roughness is filled with gas when h is within the vicinity of Sq
since a large number of valleys become wetted. The solid fraction φs decreases and
the gas fraction φg increases with increasing h where fewer asperities are exposed to
the outer flow. Therefore it can be shown that DR is a function of φg. To demonstrate
the relation between h and φg, we first calculate φs by measuring the amount of
non-wetted area above the interface. This is similar to the bearing area curve (BAC).
Based on the definition φg = 1 − φs, the gas fraction is obtained and plotted as a
function of h. A nonlinear fit is given by φg = 0.5[1 + tanh(0.95(h/Sq) − 0.875)]
and shows good agreement with the data. This is useful since φg is not known
a priori and h is prescribed as an initial condition. Effective slip can be directly
related to DR using the definition beff /H=DR/(1−DR). A power law using a linear
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1010 K. Alamé and K. Mahesh

regression fit is obtained and corrected for the fully wetted case. The relation is
given by beff /H = 0.5(φg)

5/2
+ 0.02 which shows a good agreement with the data

and provides a useful model for the slip length given φg. The results are compared
to previous work done on structured geometry. It is observed that random rough
surfaces behave like post geometries for φg < 0.85 and like transverse grooves in the
upper limit.

Based on the observations of the three distinct regions made in the laminar Couette
flow, four interface heights are chosen for turbulent DNS channel flow. Simulations
of a fully wetted rough case h= Sv and the interface heights at h= 0, Sq and Sp are
performed for turbulent channel flow and the results are discussed. The mean velocity
profile is normalised by two quantities: the average channel wall friction velocity uτ
and the bottom wall friction velocity uB

τ . The mean velocity profiles show the effect
of roughness where a reduction in mass flux is obtained. The presence of an interface
increases mass flux. The velocity profiles are offset by the slip velocities and show a
good agreement in the law of the wall where the data collapse. Case T-RI3 exhibits an
early departure from the law of the wall indicating a change in the turbulent structures.
Various mean flow properties are extracted and plotted, where we show that us can
become a large fraction of the bulk velocity Ub (up to 68 %), and the slip length bs

maintains the scaling law proposed by Ybert et al. (2007). We show that us is not a
good indicator of DR by itself since roughness induces a positive us while increasing
drag. A more reasonable quantity to describe DR is the change in bulk velocity 1Ub

since it implicitly contains the information from us and the additional turbulent losses
in the form of a weighted Reynolds shear stress 1Ub = us −

∫ δ
0 (1−y/δ)(−u′v′ +

u′0v
′

0) dy. This has implications for DR where the surface might fail in reducing drag
although the interface itself is stable for high pressure. 1Ub shows a good correlation
with 1τw. Although us and bs continually increase with increasing φg, the change in
wall shear stress 1τw plateaus at large gas fraction and so does the 1Ub. We discuss
scaling laws for these quantities and correlate them with each other.

The Reynolds stresses are also examined showing an overall behaviour consistent
with previous work on structured geometries. Slip tends to shift the profiles towards
the SHS wall whereas roughness pushes it away from wall. Asperities enhance
negative shear stress and therefore momentum mixing, while the interface suppresses
them. The streamwise Reynolds stress u′u′ and Reynolds shear stress u′v′ show a good
collapse in the data when normalised by uB

τ indicating that the near-wall turbulence
remains fundamentally unchanged with the exception of Case T-RI3. This prompted
a further investigation into the nature of the near-wall turbulent structures. We looked
at instantaneous pressure contours in the near-wall region and at y+ = 15 where
time-averaged pressure p+, instantaneous streamwise velocity u/Ub and wall-normal
vorticity ω+y are examined.

Pressure fluctuations in the near-wall region exhibit a competing effect between
large-scale turbulent fluctuations and a contribution due to stagnation pressure in
front of the asperities. The instantaneous behaviour in pressure shows similar
large-length-scale fluctuations for Case T-RFW and Case T-RI3 on the order of
100ν/uτ . Larger pressure intensities are visible in Case T-RI3 due to the slip effect
at the interface. Local contribution due to the presence of protruding roughness
elements is observed in Case T-RI1 and Case T-RI2. Asperities cause stagnation
in front of them as observed by the high pressure values. Low pressure values are
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Wall-bounded flow over a realistically rough SHS 1011

seen in their wake. This effect is reduced as more asperities are covered by the
interface. Time-averaged pressure fluctuations show that Case T-RI3 resembles a
smooth channel since the asperities are completely covered leading to a zero mean
pressure variation. This is not observed for Cases T-RFW, T-RI1 and T-RI2 where
the effect of asperities and the interface are clearly seen as large variations in mean
pressure interspersed across the domain. At y+= 15, Case T-RI3 does indeed alter the
near-wall turbulence where we see a complete loss of coherent streaks, as observed
from the pressure fluctuations, streamwise velocity and wall-normal vorticity. A
physical mechanism is proposed to explain the observed trends in flow structure.
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Appendix A. Validity of assumptions
In practice, for the superhydrophobic surface to sustain its drag reducing properties,

the surface tension must be strong enough to maintain the presence of an air–water
interface. This implies that the capillary pressure must be larger than the background
turbulent pressure fluctuations. The balance between surface tension and the external
pressure results in a meniscus shape and a contact angle at the wall contact boundaries.
In the study, the interface is assumed to be flat, which it may not be, and that the
interface is always sustained. We investigate the range of validity of our assumptions
by using scaling arguments of the driving mechanisms in interfacial physics and
comparing their orders of magnitude. The asterisk is used to denote dimensional
quantities.

A.1. Small interface deflection approximation
Let s∗ represent the interface deflection and w∗ the average cavity width of the rough
surface. The Young–Laplace equation gives

1p∗c =
2σ ∗

R∗
, (A 1)

where 1p∗c is the capillary pressure across the interface. Assuming the interface is
pinned at the contact points of the cavity width, then R∗ is the radius of the interface.
We can then relate w∗ to s∗ given that w∗ represents the chord of a circular segment
such that w∗ = 2

√
s∗(2R∗ − s∗). Substitute for R∗ using (A 1) to obtain the following

relation:
s∗

w∗
≈

w∗1p∗c
8σ ∗

. (A 2)

For a flat interface, s∗/w∗� 1 where s∗/w∗ represents the ratio of interface deflection
to cavity width. Assume the maximum deflection to be no larger than 10 % such that
the maximum deflection (contact) angle is less than ∼3◦ so we obtain

w∗1p∗c
8σ ∗

< 0.1, (A 3)
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1012 K. Alamé and K. Mahesh

which gives

w∗ <
0.8σ ∗

1p∗c
. (A 4)

Therefore the maximum sustained pressure given a cavity width is

1p∗c <
0.8σ ∗

w∗
. (A 5)

A.2. Interface stability approximation
In a realistic environment, the turbulent pressure fluctuations play an important role
in determining whether the interface breaks or remains intact. In order for the surface
to maintain its drag reducing properties, capillary pressure must be strong enough to
maintain the air–water interface and overcome turbulent pressure fluctuations. Using
similar scaling arguments as before, we know that the turbulent pressure fluctuations
scale as follows:

p∗rms ∼O(ρ∗u∗2τ ), (A 6)

and the capillary pressure as

1p∗c ∼O
(
σ ∗

w∗

)
. (A 7)

In a stable configuration, 1p∗c � p∗rms must be satisfied. Therefore we obtain the
following relation:

O
(
σ ∗

w∗

)
�O(ρ∗u∗2τ ). (A 8)

The above equation can be rearranged such that

w∗�O
(

σ ∗

ρ∗u∗2τ

)
, (A 9)

which gives an upper bound on the friction velocity

u∗τ �O
(√

σ ∗

ρ∗w∗

)
. (A 10)

Therefore in terms of Reτ ,

Reτ �O

(√
ρ∗σ ∗δ∗2

µ∗2w∗

)
. (A 11)

A.3. Range of validity
For the following analysis, we take water as a reference fluid at standard conditions:
ρ∗=997 kg m−3, µ∗=8.94×10−4 Pa s and σ ∗=7.2×10−2 N m−1. In our numerical
simulation, the surface Sq is approximately 1/90th of the channel half-height δ∗ which
gives δ∗ ∼ O(10−4m). From a design perspective, there exists a top down approach
(the present study) where a surface is given and we estimate the range of validity of
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Wall-bounded flow over a realistically rough SHS 1013

Reτ . In a bottom up approach, we can find the upper limit of the maximum allowable
w∗ that sustains an interface given an Reτ .

A.3.1. Top down approach
In our numerical experiment, w∗ is of O(10 µm) therefore (A 5) yields 1p∗c <

5.7 kPa suggesting that the interface can sustain pressures up to that value before the
assumption of flat interfaces breaks down. Set the calculated pressure as the upper
limit for p∗rms and substitute (A 6) in (A 5) to obtain

u∗τ <O
(

0.894
√

σ ∗

ρ∗w∗

)
. (A 12)

In terms of Reτ we have

Reτ <O

(
0.894

√
ρ∗σ ∗δ∗2

µ∗2w∗

)
. (A 13)

Therefore, the assumption of a flat interface is valid for Reτ < 270. For the assumption
of a stable interface, we use (A 11) to obtain Reτ � 300. It is clear from these results
that the assumption of a flat interface puts a more stringent requirement on the
allowable Reτ which can also be seen by comparing (A 11) to (A 13).

A.3.2. Bottom up approach
Given a range of Reτ , we can estimate the largest allowable cavity width between

roughness peaks. It is helpful to define terms in wall units such that (A 11) is rewritten
as

Reτ �O
[

1
w+

(
ρ∗σ ∗δ∗

µ∗2

)]
. (A 14)

Therefore w+ for interface stability is given as

w+�O
[

1
Reτ

(
ρ∗σ ∗δ∗

µ∗2

)]
. (A 15)

The maximum sustained capillary pressure can also be written in wall units,

1p+c <
0.8Ca−1

w+
, (A 16)

where Ca=µ∗u∗τ/σ
∗ is the ratio of viscous to capillary stresses known as the capillary

number. For small interface deflections, w+ is therefore

w+ <
0.8Ca−1

1p+c
. (A 17)

An example of such bottom up calculation is given in table 3.
It is important to note that for this analysis, w+ represents an average cavity width

of the random rough surface. It does not say anything about the largest value that is
prone to failure first. As the height of the interface increases, w+ increases and more
asperities are covered up. Therefore the most realistic numerical simulations would be
with an interface below Sq of the roughness where typically the gas fraction φg < 0.6.
As mentioned earlier, the goal behind our numerical experiment was to investigate the
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FIGURE 27. (Colour online) Power spectral density (PSD) contour plot where kx and kz
are the wavenumbers in the streamwise and spanwise directions respectively.

Reτ w+IS(�) Ca 1p+c (�) w+SD(<)

180 50 1.9× 10−2 0.8 40
395 23 4.3× 10−2 0.81 18.4
1000 9 1.4× 10−3 64 7.2
10 000 0.9 1.4× 10−4 6.4× 103 0.72
100 000 0.09 1.4× 10−5 6.4× 105 0.072

TABLE 3. Maximum allowable average cavity widths in wall units w+ for a range of Reτ .
Here w+IS and w+SD represent the average cavity width satisfying the interface stability and
small deflection conditions respectively. The maximum allowable capillary pressure 1p+c
in wall units is also shown.

effect of the interface height on the drag reducing properties of SHS. Also it is worth
mentioning that although the above analysis gives the upper limit of allowable Reτ for
a given w+, it is known from the literature that adding hierarchical structures to the
same size posts can resist destabilisation. Hence, for the same geometry, the maximum
allowable Reτ can be larger due to the added multiscale roughness.

Appendix B. Surface statistics
The power spectral density (PSD) of the surface height obtained from the scan is

shown in figure 27, where the visible cross-pattern is due to the aliasing effects at
the non-periodic boundaries of the unfiltered surface. The original surface statistics
are verified with the experimental values provided through private communication.
The surface statistics are reported in table 4. Table 5 compares the values of the
original surface statistics for the scaled turbulent channel roughness with the step-wise
masked representation as used by the solver. Figure 28 illustrates the peaks as they
are identified given a threshold.
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Wall-bounded flow over a realistically rough SHS 1015

Parameter Description Formula Value

Sa Average roughness height
1

NxNz

Nz∑
k=1

Nx∑
i=1

|hi,k| 1.59 µm

Sq RMS roughness height

[
1

NxNz

Nz∑
k=1

Nx∑
i=1

h2
i,k

]1/2

2.03 µm

Sv Maximum valley depth min(hi,k) −10.0 µm

Sp Maximum peak height max(hi,k) 8.31 µm

Sz,max Maximum peak to valley height max(hi,k)−min(hi,k) 18.38 µm

Sz,5×5 Mean peak to valley height
1

25

5×5∑
i=1

Sz,i 12.75 µm

Ssk Skewness
1

NxNzS3
q

Nz∑
k=1

Nx∑
i=1

h3
i,k −0.32

Sku Kurtosis (flatness)
1

NxNzS4
q

Nz∑
k=1

Nx∑
i=1

h4
i,k 3.47

Sdq RMS slope of roughness

[
1

NxNz

Nz∑
k=1

Nx∑
i=1

[∆2
i +∆

2
k]

]1/2

0.547

Sw Wenzel roughness
1

NxNz

Nz∑
k=1

Nx∑
i=1

[1+∆2
i +∆

2
k]

1/2 1.129

Sm Mean peak spacing
1

Np− 1

Np−1∑
k=1

(Pk+1 − Pk) 10.64 µm

∆i Directional derivative ∂h/∂xi
1

2dxi
(hi+1 − hi−1)

TABLE 4. Statistical parameters of the scanned surface used in the present work. Nx and
Nz are the number of points in the streamwise and spanwise directions respectively. Np
denotes the total number of peaks, Pk the peak location and h the roughness height.
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FIGURE 28. (Colour online) A 2-D slice of a random spanwise location of the original
surface roughness (solid blue line) illustrating the identified peaks (solid blue triangles)
using the arithmetic mean elevation (dashed red line) as a threshold. The mean distance
between peaks is used to obtain the average roughness gap L.

Parameter Original surface Step-wise surface Error (%)

Sa 7.0585× 10−3 7.0613× 10−3 0.04
Sq 8.972× 10−3 9.0211× 10−3 0.547
Sv −4.256× 10−2

−4.243× 10−2 0.305
Sp 3.626× 10−2 3.724× 10−2 2.7
Sz,max 7.883× 10−2 7.967× 10−2 1.065
Sz,5×5 6.1725× 10−2 6.22172× 10−2 0.785
Ssk −0.3347 −0.3234 3.37
Sku 3.494 3.484 0.286
Sdq 0.3985 0.4059 1.856
Sw 1.07312 1.0757 0.24

TABLE 5. Comparison of the statistical parameters of the original surface scaled for the
turbulent channel flow with the step-wise distribution of the surface used in the present
work.
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