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Homogeneous rapid distortion theory is used to study the response of shear flows and 
axisymmetric turbulence to rapid one-dimensional compression. In the shear flow problem, both 
normal and oblique compressions are considered. The response of these anisotropic flows to 
compression is found to be quite different from that of isotropic turbulence. Upon normal 
compression, the amplification of the streamwise component of kinetic energy and the total 
kinetic energy in shear flows is higher than that in isotropic turbulence. Also, normal 
compression decreases the magnitude of the Reynolds shear stress by amplifying the pressure+ 
strain correlation in the shear stress equation. Obliquity of compression (detlned as the angle 
between the directions of shear and compression) is seen to significantly affect the evolution of 
the Reynolds stresses. For a range of oblique angles from -60” to 60”, the amplification of 
streamwise kinetic energy and total kinetic energy decrease with increasing magnitude of the 
oblique angle. Also, the tendency of the shear stress to decrease in magnitude is diminished upon 
increasing the oblique angle; for large oblique angles the shear stress amplifies. Upon 
compression along the axis of axisymmetry, the amplification of the streamwise component of 
kinetic energy is higher for contracted turbulence than for isotropic turbulence, while the 
amplification of the total kinetic energy is lower. The above results are interpreted in a more 
general framework. It is shown that the amplification of the streamwise component of kinetic 
energy is determined by the initial EII(~l) (x1 is the direction of compression). Flows with u1 
at lower ~~ have a lower effect of pressure during compression and hence, higher amplification 
of 3. The amplification of the total kinetic energy is determined by the initial fraction of energy 
along the direction of compression (z/8) and the initial E,i (K~). Flows with higher initial 
&# and with u1 at lower ~~ have a larger amplification of 2. 

I. INTRODUCTION 

The study of homogeneous turbulence subjected to 
one-dimensional compression is of interest in problems 
such as the interaction of turbulence with shock waves and 
the compression stroke of an internal combustion engine. 
These flows are characterized by the time scale of the mean 
distortion being much smaller than the characteristic time 
scale of the turbulence. As a result, rapid distortion theory 
(henceforth referred to as RDT) is an attractive tool for 
analysis of these flows. The earliest use of RDT for the 
analysis of turbulent flows dates back to Prandtl’ and 
Taylor,’ both of whom were interested in the passage of 
turbulence through a wind-tunnel contraction. A formal 
Reynolds stress analysis of the wind-tunnel contraction 
problem was developed by Ribner and Tucker3 for axisym- 
metric contractions, and independently, by Batchelor and 
Proudman for arbitrary h-rotational distortions. The roots 
of RDT applied to flows under mean compression lie in 
their work. More recently, Lee’ has performed a detailed 
analysis of the response of turbulence to axisymmetric 
strain and dilatation. Comparison of the RDT predictions 
to experimentsb*’ and direct numerical simulations8 show 
good agreement. 

“‘Also with the Department of Aeronautics and Astronautics, Stanford 
University. 

“Also with the NASA Ames Research Center. 

The above studies assumed the turbulence to be incom- 
pressible; recent studies by Durbin and Zeman’ and Cam- 
bon et al. lo have applied RDT to the compression of com- 
pressible turbulence. While Durbin and Zeman’ have 
examined the pressure fluctuations and the pressure- 
dilatation correlation in the limit of vanishing turbulent 
Mach number (nearly solenoidal turbulence), Cambon 
et al. lo have considered fmite turbulent Mach numbers and 
shown the negligible effect of pressure fluctuations at high 
turbulent Mach numbers. Once again, the RDT predic- 
tions show good agreement with the simulations of Cole- 
man and Mansour” and Cambon et al. lo 

All the studies mentioned above assume isotropic ini- 
tial conditions. However, in flows such as shock waves 
interacting with shear layers or wind-tunnel turbulence in- 
teracting with a shock wave, the turbulence is both aniso- 
tropic and inhomogeneous upstream of the shock. The im- 
portance of the anisotropy of the turbulence in the shock/ 
turbulence interaction was noted by Jacquin et al. ,12 who 
performed experiments on the interaction of isotropic tur- 
bulence and a turbulent jet with shock waves. Amplifica- 
tion of the streamwise component of turbulent kinetic en- 
ergy was higher in the jet as compared to isotropic 
turbulence. The anisotropy in the jet was suggested by 
them as a possible reason for this behavior. In this paper, 
we isolate the effect of the anisotropy by studying the re- 
sponse of anisotropic homogeneous turbulence to one- 
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dimensional compression. Two kinds of initial anisotropic 
states are considered, those of shear flow and axisymmetric 
turbulence. The turbulence is assumed to be incompress- 
ible and RDT is used to study its response. Precedence in 
the use of RDT to examine the rapid straining of aniso- 
tropic turbulence may be found in the work of Townsend, l3 
Sreenivasan and Narasimha,14 Maxey,15 and Cambon.” 
Details of the theoretical procedure are outlined in Sec. II, 
while in Sets. III and IV we describe the normal and ob- 
lique compression, respectively, of sheared turbulence. The 
response of axisymmetric turbulence to compression is out- 
lined in Sec. V, and finally, the conclusions drawn from 
this study are summarized in Sec. VI. 

II. THEORETICAL PROCEDURE 

Rapid distortion theory combines linearization of the 
governing equations with statistical averaging to describe 
the statistical evolution of turbulence under rapid mean 
distortion. The formal development of the RDT approxi- 
mation is outlined in reviews such as those by Savill17 and 
Hunt and Carmthers.18 When the time scale of the mean 
distortion is much smaller than that of the turbulence, then 
the turbulence has no time to interact with itself. This 
allows the neglect of all terms in the governing equations 
that involve viscosity or the product of fluctuations, yield- 
ing a set of evolution equations that are linear in the fluc- 
tuations. An alternative formulation, 19320 corresponding to 
low Reynolds number or “weak” turbulence requires re- 
tention of the viscous terms. In this paper, we neglect the 
viscous terms. 

Linearization of the continuity and momentum equa- 
tions yields the following set of equations: 

(la> 

Am=I’oL/a(l, where, I’, is the mean strain rate, L is a 
turbulence length scale, and a is the mean speed of sound; 
i.e., the turbulence is nearly incompressible. lo 

The assumption of homogeneity constrains the mean 
velocity gradient to be uniform; i.e., the mean velocity is of 
the form Ui=Aik( t)Xk. For incompressible turbulence, this 
is the only requirement for homogeneity; since, as dis- 
cussed above, we consider evolution of the solenoidal com- 
ponent of a compressible flow field, we constrain the mean 
field to satisfy homogeneity for compressible turbulent 
fluctuations. As a result, in addition to a uniform velocity 
gradient, the mean field satisfies the compressible Euler 
equations and has uniform pressure and density.21 

The procedure for solution of Eqs. (la) and (lb) is 
fairly well established. One method of solution4 involves 
using a Fourier representation where the wave number 
changes with time as 

ui(X,t) = 2 u^i(k,t)e”j”‘xI, 
k 

p(x,t) = ;jj(k,t)ei’j(‘)Xj, 

where 

dk, x+ kj Ajn=O. 

An alternative equivalent method of solution22 is to trans- 
form coordinates to a system that deforms with the mean 
field; i.e., 

gi=Bik(t)xk, r=fj 
where 

aui 1 aP g+ujg$+,jax=--- 
f i p dxi’ (lb) 

where U, and p are the mean velocity and density, respec- 
tively, and uI and p are the fluctuating velocity field and 
pressure, respectively. For irrotational mean distortions, it 
is convenient to solve the linearized vorticity equation, 
which reduces to Cauchy’s equation.4’5 Note that the fluc- 
tuations are assumed to be solenoidal. If the mean distor- 
tion is solenoidal, then the above equations correspond to 
linearization of the incompressible Navier-Stokes equa- 
tions. However, if the mean field is dilatational (as for a 
one-dimensional compression), then the governing equa- 
tions are the compressible NavierStokes equations and the 
above set of equations therefore describe evolution of the 
solenoidal component of the compressible flow field under 
the assumption that its evolution is independent of the 
dilatational component. [Alternatively, Eqs. ( la) and ( lb) 
describe the evolution of a compressible flow field with 
spatially uniform but time-dependent density.5] The sole- 
noidal and dilatational component are coupled, even in the 
linear limit, for rotational mean flo~s.~l However, for ir- 
rotational mean distortions, the solenoidal component may 
be assumed to evolve independently in the limit 

The transformed equations are then solved using conven- 
tional Fourier representation. Knowledge of the Fourier 
coefficients enables computation of the energy spectrum 
tensor, which is then integrated over all wave numbers to 
determine the Reynolds stresses. 

Homogeneous RDT requires specification of the initial 
energy spectrum. As mentioned previously, earlier studies 
assume an isotropic initial spectrum. This paper differs, in 
that the compression of anisotropic turbulence is consid- 
ered. Details of the analysis are presented in the following 
sections. 

III. NORMAL COMPRESSION OF SHEARED 
TURBULENCE 

A. Problem formulation 

In this section, we formulate the problem of sheared 
turbulence that is suddenly subjected to normal compres- 
sion. We tlrst note that one-dimensional homogeneous 
compression is characterized by the following mean field: 

r0 
u1=- l+ro tXlt U2= U3=O, (44 

Phys. Fluids, Vol. 6, No. 2, February 1994 Mahesh, Lele, and Moin 1053 

Downloaded 16 Jan 2005 to 128.101.98.21. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



PO 

P=l+r,t’ 

where VI, 17, , and Us are the mean velocity components in 
the x1, x2, and x3 directions, respectively; p and P are the 
mean density and pressure, respectively, and are uniform 
in space. Here I’, is negative for compression and positive 
for expansion. 

We  consider isotropic turbulence that is subjected to 
rapid homogeneous shear, i.e., 

u*=sryc2, p=po, P=Po. (5) 

At a nondimensional time &=S&, during application of 
shear, we introduce the one-dimensional compression, i.e., 
for t> to, 

U1= r0 so 

l+r,(t-t,) X1+i+ro(t-to) x2y 
PO 

P”l+ro(t-to) 3  
PO 

P=[l+ro(t-to)]~* 

(64 

(6~) 

The shear rate changes with time during the application of 
compression to satisfy the compressible Euler equations. 
Note that the shear is along x2 while the compression is 
along xl; we term this normal compression. 

Under RDT, the state of turbulence before compres- 
sion is dependent upon the total shear PO; its subsequent 
evolution depends upon PO, the ratio of shear rate to the 
rate of compression (S&‘,) and the total volumetric 
strain (p/pa). Since our interest is in the compression of 
anisotropic turbulence, we consider the regime where the 
shear sets up the initial anisotropic field and is negligible, 
as compared to the subsequently applied compression; i.e., 
sdrog 1. In this paper, sdr, is -0.1 for all cases pre- 
sented. Lower values of &,/I’, (for, e.g., S,-Jl?,= -0.01) 
yielded results identical to those shown here. Thus, we 
effectively consider the rapid one-dimensional compression 
of sheared turbulence. Figure 1 shows a schematic of the 
straining process. 

Regarding the solution of the RDT equations, our 
strategy was to transform coordinates to a system that de- 
formed with the mean field. Using Fourier representation 
in the transformed coordinates, we derived equations de- 
scribing the evolution of the energy spectrum tensor that 
were numerically advanced in time. At each time step, the 
energy spectrum tensor was numerically integrated over all 
wave numbers to obtain the Reynolds stresses. As indi- 
cated above, until time to the mean field is pure shear. The 
RDT equations for pure shear have been solved 
analytically,23’“4 and hence we do not give the evolution 
equations for the energy spectrum tensor. We  only note 
that the coordinate transform used is as follows: 

t=o 

Isoaopic 

t<b 
- 

1 / 
4 

Shear 

"b 
w 

Shear + Compression 

FIG. 1. Schematic of the normal compression of a shear flow. 

(1 =x1 --so tx2, g2=x2, g3=x3, r=t. (7) 

At time to=j3&‘o, the coordinate transformation changes 
to accommodate the compression. The new transformation 
is given by 

cl= x1 
1  +ro(t--to) - [Po+So(t-to> I%, 

l2=x2, 43=x3, 7=t. 

For t> to, the RDT equations are transformed to the 
above coordinate system. Using the Fourier representation, 

Ui( g,T) =  c Z?i(K,T)dK~‘j, 
K 

Pa) 

p&r) =  &?(K,7v% 
I( 

(9b) 

the RDT equations take the following form for t > to: 

dz& r. so ----=- 
d7 1 fro(7-q) G1-l+ro+To) u”2 

Kl $3 
+l+ro+To) p 3 0 

(1W  

(lob) 

(1Oc) 
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EK1rd(i+ro(7-7o))]UA,+[KISO-KZro+K1SO/(i+ro(7--7o))]a2-K3roU”3 

-!-(K$!-K$ [ i+ro(F--ro)] ’ 
(1Od) 

Note that the equations describing the evolution for t < to 
(Pure shear) may be obtained by substituting I,=0 in 
Eqs. (lOa)-( 1Od). The RDT equations for a pure com- 
pression allow analytical solution, as do the equations for 
pure shear. However, as seen above, the combination of 
shear and compression yields a formidable set of equations 
that we have not been able to solve analytically. Instead, 
Eqs. ( lOa)-( 10d) were used to derive evolution equations 
for the energy spectrum tensor Q(K,Q), defined as Eil 
= Citi?, where the superscript “*” refers to the complex 
conjugate. For reasons of brevity, the equation for Eil is 
not reproduced here; it has the following form: 

dEij 
x= G  EI~ f CjrEIl. (11) 

The above system of equations is integrated numerically to 
compute Eij(K, r). Here Elj is then integrated over all 
wave numbers to compute the Reynolds stress tensor 
Ru(7) defined as RU = w; i.e., 

RU(d = E,(K,T)d3K. (12) 

The integration is carried out in polar coordinates, 

Kl=KCOS 4, Kz=KSiIl c$ COS 8, 

K~=KS~II~S~II~, d3K=t?sin4d$d6dK, 

where K varies from 0 to a; I$, from 0 to r; and 8, from 0 
to 27r. Note that since at r=O, the energy spectrum tensor 
is assumed to be isotropic; i.e., 

‘*OF 

3 _i---s--‘_:Ili 

Ji-r-rTI l-1 9 I I L --.-__ 
-0.21 1 ’ ’ ’ ’ ’ ’ ’ 

0 1 2 3  4  5  

/3 

FIG. 2. Evolution of Rij/$ as predicted by RDT applied to the homo- 
geneous shear of initially isotropic turbulence. 
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it can be shown that Rij(T) is independent of the initial 
three-dimensional energy spectrum tensor E(K) and the 
magnitude of the wave number vector. 

B. Results 

In this section, we present results of the analysis de- 
scribed in the previous section. As mentioned, we are ef- 
fectively examining the effects of normal compression on 
sheared turbulence. Regarding the use of RDT to obtain 
the energy spectrum tensor that characterizes a shear flow, 
we refer to Townsend,l’ where the RDT predictions of 
Reynolds stress correlations, spectra, and nondimensional 
Reynolds stresses were compared to experiment, and good 
agreement was observed. 

The evolution of Rii/4” ($=Rli is the trace of the 
Reynolds stress tensor), as predicted by RDT applied to 
the rapid shear of initially isotropic turbulence is shown in 
Fig. 2. The quantity plotted on the abscissa is the total 
shear fl defined as ,C?=S, t. Note that after a moderate 
amount of total shear (/3 between 2 and 3), the nondimen- 
sional Reynolds stresses are quite close to values obtained 
in shear flows, such as homogeneous shear flow, turbulent 
channel flow,26 and boundary layers.25 For example, in ho- 
mogeneous shear fl~w,~~ Rll/$-, R22/8, R33/~, and 
R,,/$ are 0.54, 0.16, 0.31, and 0.14, respectively. For a 
total shear of 2.5, RDT yields values of 0.51, 0.12, 0.36, 
and 0.16, respectively. The good agreement of the nondi- 
mensional Reynolds stresses suggests that the large eddies 
in turbulent shear flows have very nearly the shape sug- 
gested by RDT.*’ This conclusion is further supported by 
direct numerical simulations by Lee et ~1.~~ of turbulence 
subjected to very high shear rates, where structures similar 
to near wall “streaks” were observed. 

Next, we examine the evolution of this sheared turbu- 
lence upon compression. Here 8 normalized with its value 
at the start of compression is plotted against the total vol- 
umetric strain in Fig. 3, where the different curves corre- 
spond to different values of total initial shear (PO). Here 
PO=0 corresponds to the compression of initially isotropic 
turbulence. We  see that qz is amplified upon compression, 
with the amplification ratio increasing as the initial total 
shear increases. The amplification of turbulent kinetic en- 
ergy upon normal compression is thus higher for a shear 
flow than it is for isotropic turbulence. The evolution of the 
components of turbulent kinetic energy is shown in Fig. 4, 
where PO was set to 3. All three components amplify with 
the x1 (direction of compression) component being ampli- 
fied the most. The reason for the preferential amplification 
of the x1 component is due to the fact that it is directly 
“produced” by the compression, while the other compo- 
nents amplify through the redistributive nature of the 
pressur-train correlation in the Reynolds stress equa- 
tions. To gauge the importance of the initial anisotropy on 
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6 

2.5 

PIP. 

FIG. 3. Evolution of $ upon the normal compression of sheared turbu- 
lence. The different curves correspond to different values of initial total 
shear. 

the amplification of 2, we compare the amplification of 
-3. u1 m  initially sheared turbulence with that in initially iso- 
tropic turbulence (Fig. 5). Note that the amplification of 
-2. ur m  the shear flow is much higher than that in isotropic 
turbulence. For example, at a density ratio of 3, the am- 
plification ratio is 3.4 for initially isotropic turbulence and 
4.85 for initially sheared turbulence-an increase of about 
43%. 

As mentioned earlier, shear flows in equilibrium are 
characterized by typical values of Rrj/~. It is of interest to 
see how these values change upon normal compression. 
Figure 6 shows the the diagonal terms of the tensor. Com- 
pression increases the contribution of u1 to the turbulent 
kinetic energy while decreasing that of u2 and u3. We  also 
note (over the range of total volumetric strain shown) that 
the ordering of kinetic energy components ( u1 > u3 > u,) is 
retained upon normal compression. 

The Reynolds shear stress RI2 = m  is an important 
quantity in shear flows. Figure 7 shows the evolution of 
R12/2 upon compression. The three curves correspond to 

/ . ..J ” .>‘;/ / ~,l,,....-i ,._ ,_.. ,.;.;A 
1.5 20 2.5 

PIP. 

3.0 3.5 4.0 

FIG. 4. Evolution of the components of turbulent kinetic energy when FIG. 6. Evolution of the diagonal terms of Rij/g when sheared turbu- 
sheared turbulence (&=3) is subjected to normal compression. lence (&=3) is subjected to normal compression. 

7 ,,,,(,,,,,'111,'111,"",l"l 

- Isotropic ,’ 

1 .o 1.5 2.0 2.5 3.0 3.5 4.0 

PIP. 

FIG. 5. Comparison of the amplikation of RI1 of sheared turbulence 
(&=3) to that of isotropic turbulence. 

different values of total initial shear. We  see that upon 
normal compression, R12/2 decreases in magnitude, and 
for sufficiently large total volumetric strains, it changes 
sign. This trend was first observed by Cambon,16 and is 
hastened upon increasing the initial total shear. We  inves- 
tigate the cause of this behavior by examining the terms in 
the Reynolds shear stress equation. The evolution equation 
for RI, is 

r. so &,=-- - i+rot R12-l+rotR22+7712r (13) 

where ~ij is the pressur+strain correlation dellned as 
nij 'P(ui,j"j,l)/P* Note that both the strain and shear pro- 
duction terms tend to increase the magnitude of RI2 (make 
it more negative). The tendency of 1 RI, / to decrease must 
therefore be due to the pressure strain correlation. Figure 8 
illustrates the evolution of terms in the budget of RI2 for 
the case with Po=3. We  see that the tendency of RI2 to 
decrease upon normal compression is due to amplitication 
of the pressure-strain correlation and the consequent up- 
setting of the initial balance between “production” and the 
pressure-strain correlation in the shear flow. 

0.4 
'~.‘._, 

1 

...,. . .._...._, 
..-. . . . . . . . . . . .,.. . . . . ..t...... ........-_ 

0.2 

-- -----_____----- _---- --- 
0  ~~ll’~llJ’llll’llll’llll’~~l~ 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 

PIP. 
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0.6~1 I I I, I I, I, I I I I, I I, I, I, I,, , I I 3, 

Ei ‘r s TJ 0.3 - 
z /’ 

e _ /’ 

2 0.2 -,/ /’ - Isotropic 

d - -- Sheared 
F -I 

O,,,.,,.,,.,,, 
1 .o 1.5 2.0 2.5 3.0 3.5 4.0 

PIP. PIP. 

FIG. 7. Evolution of RI,/8 when sheared turbulence is subjected to FIG. 9. Evolution of the ratio of P,, to the production term in the RI, 
normal compression. The different curves correspond to different values equation upon normal compression. The compression of sheared turbu- 
of initial total shear. lence (&=3) is compared to that of isotropic turbulence. 

C. Interpretation of the results 

We have seen that the response of a shear flow to 
normal compression is quite different from that of isotropic 
turbulence. A noticeable feature is the higher amplification 
of 2 and $ in the shear flow. In this section, we attempt to 
explain this observation by posing the following question: 
“What aspect of the initial anisotropic field is important in 
determining the evolution of kinetic energy during a one- 
dimensional compression?” 

The evolution equations for 3 and 2 during rapid 
compression are given by 

dz ro 3 -= - 
dr 

2- 
1+ror q+~ll, 

dti 2 l-0 7 -=- -u 
dr 1+r,r l’ 

(144 

(14b) 

The pressure-strain correlation “takes” energy from 3 
and redistributes it among the other components. The am- 

_ - LHS 

- - - - Comp. prod. 

loo _ -........’ Shear prod. 

- ----- Pres. strain 

0 

-50 “I ” * I ’ I” ( “‘1 ” ’ ” I ” ” ’ ” 
1 .o 1.5 2.0 2.5 3.0 3.5 4.0 

PIP0 

FIG. 8. Budget of terms in the RI2 evolution equation during the normal 
compression of sheared turbulence (&=3). Time is nondiiensionalized 
by l?c and the Reynolds stresses by Ry2. 

plification of z, and hence 8 through Rq. ( 14b), would 
increase if the pressure-strain correlation were to decrease. 
Also, since in the RDT limit the pressure-strain correla- 
tion is the only term in the budget apart from the produc- 
tion term, a higher amplification rate automatically implies 
a lower pressure-strain correlation. The relative magnitude 
of the pressure-strain term in the energy budget may be 
gauged from its short time behavior. It is easily shown that 
in turbulence subjected to rapid one-dimensional compres- 
sion, 7rll evolves as 

Tll=-2roc 
s 

C‘4 

c22 p%ddd3K, 
I+d+K3 

(15) 

where c= p/pa. Thus rrll strongly depends upon the spec- 
tral distribution of the u1 component of velocity. Note that 
as the energy distribution in a1 moves to smaller K~, the 
magnitude of rll decreases. The small time evolution of 
rll may be estimated by replacing El1 in Eq. ( 15) with its 
initial value, @ , . This small time evolution shows how the 
spectral distribution of u1 in the initial field athects the rate 
of change of 2 when anisotropic turbulence is compressed. 

Since mean shear tends to stretch the turbulence in the 
streamwise direction, fil in a shear flow has energy at 
smaller K~, as compared to isotropic turbulence, and hence 
according to Eq. ( 15), a lower initial value of pll. This is 
shown in Fig. 9, where the ratio of roll to the production 
term in the Rll equation is plotted. The pressure-strain 
correlation is indeed seen to play a smaller role when shear 
flow is compressed. As one continues the compression, the 
energy in ur is moved to larger K~, and hence the pressure- 
strain correlation would progressively become more impor- 
tant. In the limit of inflnite p/pa, the ratio of 7rll to pro- 
duction is independent of the initial energy spectrum; it is 
equal to 1. For turbulence subjected to one-dimensional 
compression, under RDT, 

EII(K) = C2@, (K) 
C2(K1/d2+ (Kdd2+ (K&d’ ’ (16) 

where c = p/p0 . 
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Denoting the denominator in the above expression by 
0, the rate of change of Err is given by 

d&l E$ dc2 , dD 
d7=T Dx-xd7. 

( 1 
(17) 

Noting that dc/dt= -Fe c* and considering very large 
compressions, it can be shown that 

t=o 

lim $Lo. 
c-c.2 

(18) 

Since Ei, when integrated over all wave numbers yields 
Rll, the above equation implies that in the limit of very 
large c, d&dT = 0. Substitution into Eq. (14a) shows 
that asymptotically, rrl 1 =production. Note that this rela- 
tion is independent of the initial energy spectrum. The 
asymptotic behavior shows the diminishing effect of initial 
anisotropy upon the pressure-strain correlation as time 
progresses. This is supported by Fig. 9, where the two 
curves tend toward each other as c increases. 

We see that when anisotropic turbulence is compressed 
(in the x1 direction), the feature of the initial field that 
determines kinetic energy evolution is gl (K~). As the en- 
ergy in a: moves to smaller K~, the relative importance of 
~11 decreases, resulting in larger amplification of z. The 
amplification of 2, in addition to being influenced by gl, 
is also influenced by the initial value of T/g. The kinetic 
energy equation for a one-dimensional compression [Rq. 
( 14b)] may be rewritten as 

(19) 

Note that as p/d increases, the amplification of (I” in- 
creases. This explains the trend seen in Fig. 3. In addition 
to having energy at lower K~, a shear flow that is subjected 
to normal compression also has a larger fraction of its 
energy along the direction of compression, resulting in a 
higher amplification of 8, as compared to isotropic turbu- 
lence. 

Thus far, we have examined the effect of compression 
on sheared turbulence normal to the direction of shear. 
Since shear flows are anisotropic, one would expect the 
direction of compression relative to the shear to be an im- 
portant parameter; i.e., the oblique compression of a shear 
flow would yield results different from normal compres- 
sion. In the section that follows, we discuss the procedure 
and results of RDT applied to the problem of oblique com- 
pression. 

IV. OBLIQUE COMPRESSION OF SHEARED 
TURBULENCE 

A. Problem formulation 

Under RDT, the obliquity of compression may be 
characterized by the angle 0 between the direction of com- 
pression and the direction of the upstream shear flow. Note 
that 8=0 corresponds to the normal compression dis- 
cussed in the previous section. Recall that the normal com- 

Isotropic Shear 

- 

Shear + Compression 

FIG. 10. Coordinate system used in the analysis of the oblique compres- 
sion of sheared turbulence. 

pression problem was formulated by considering sheared 
turbulence subjected to simultaneous shear and compres- 
sion in the regime, where the compression rate was much 
higher than the rate of shear. The sole reason for retention 
of the shear during compression was to avoid the destruc- 
tion of vorticity. However, one might adopt the point of 
view that if the mean shear is not important during the 
process of compression, then it may be ignored, except for 
its effect on the initial spectrum. This is the approach 
adopted in this section in applying RDT to the oblique 
compression of sheared turbulence. We essentially repeat 
RDT for turbulence subjected to a one-dimensional com- 
pression. However, the initial energy spectrum instead of 
being isotropic is the RDT solution to isotropic turbulence 
subjected to homogeneous shear. Aiso, as mentioned, the 
initial mean shear is assumed to be at angle 0 to the sub- 
sequently applied compression. The validity of this ap- 
proach was verified by comparison of the results for 8=0 
to the more completely formulated normal compression 
problem. 

Figure 10 shows a schematic of the the oblique com- 
pression problem. Note that the shear is assumed to be in 
the x2 direction. For reasons of convenience, the time- 
dependent wave number approach4 was used to solve the 
RDT equations. The RDT solution to the oblique com- 
pression problem requires knowledge of the evolution of 
the energy spectrum tensor when isotropic turbulence is 
subjected to homogeneous shear and the transfer function 
of the vorticity spectrum tensor when turbulence (not nec- 
essarily isotropic) is subjected to a one-dimensional com- 
pression. As indicated earlier, these problems have been 
solved analytically. Assuming knowledge of these transfer 
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FIG. Il. Evolution of Rr, upon the oblique compression of sheared tur- 
bulence (&=3). The different curves correspond to different values of the 
oblique angle. 

functions, the procedure for RDT applied to the oblique 
compression problem is as follows. 

( 1) Consider isotropic turbulence that is subjected to 
homogeneous shear in the x2 direction. Denote the wave 
number vector at t= 0 by k,,. For a given total shear (de- 
tined in the previous section) compute the energy spectrum 
tensor at the end of shear. 

(2) With reference to Fig. 10, rotate the energy spec- 
trum tensor and the wave number vector by the angle 8. 
This aligns the field with the compression. 

(3) From the rotated energy spectrum tensor and the 
wave number vector, obtain the vorticity spectrum tensor . 
in the rotated coordinates. 

(4) Using the transfer functions for the compression 
problem, obtain the vorticity spectrum tensor and wave 
number vector after compression. 

(5) Using the inverse of the relation in (3) above, 
obtain the energy spectrum tensor after compression in the 
rotated coordinates. Integrate the energy spectrum tensor 
over k,, to obtain the Reynolds stress tensor in rotated 
coordinates. 

(6) Rotate the Reynolds stress tensor back by the an- 
gle 8. This yields the Reynolds stress tensor after compres- 
sion in the original coordinate system. 

B. Results 

In this section we describe some of the results of RDT 
applied to the oblique compression of sheared turbulence. 
The effect of the oblique angle 19 is gauged by comparison 
to the previously discussed normal compression problem. 
The amplification of the streamwise component of turbu- 
lent kinetic energy upon compression is shown in Fig. 11 
for different angles of obliquity. 

The initial condition corresponds to sheared turbu- 
lence with flo=3. Recall that 8=0 corresponds to normal 
compression. Note the decrease in amplification ratio with 
increasing magnitude of the oblique angle. The effect of 
oblique compression on (r” is shown in Fig. 12. Once again, 
the amplification of d decreases as the oblique angle in- 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 

PlP. 

FIG. 12. Evolution of 8 upon the oblique compression of sheared tur- 
bulence (&= 3). The different curves correspond to different values of the 
oblique angle. 

creases. In the previous section, we emphasized the impor- 
tance of EI1(~*) and q/q2 on the amplification of kinetic 
energy. If oblique compression is viewed in a coordinate 
system aligned with the compression, we see that the effect 
of oblique compression may be explained by the initial 
value of E&K,& and zdq2, where 8 refers to the direction 
of compression. 

In the previous section, we noted how normal com- 
pression could significantly change the nondimensional 
Reynolds stresses of a shear flow. The effect of oblique 
compression on the diagonal elements Of Riir(r’ is shown in 
Figs. 13-15. It is clear that obliquity of compression has a 
significant effect on the evolution of the Reynolds stresses. 
The qualitative difference in the curves for different oblique 
angles is striking to note. This indicates the importance of 
the direction of compression in interpreting experiments on 
shock/turbulence interaction. 

Figure 16 shows the evolution of the nondimensional 
Reynolds shear stress upon oblique compression. Recall 
the effect of normal compression to decrease R,,/q2 and 

‘.“E 

1 .o 1.5 2.0 2.5 3.0 3.5 4.0 

P/P. 

FIG. 13. Evolution of R,t/$ upon the oblique compression of sheared 
turbulence (PO = 3). The different curves correspond to different values of 
the oblique angle. 
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FIG. 14. Evolution of &r/2 upon the oblique compression of sheared 
turbulence (&=3). The different curves correspond to different values of 
the oblique angle. 

even change its sign. In comparison, we see that this trend 
decreases as the compression becomes more oblique and 
for large oblique angles, R12/# slightly amplifies. 

V. COMPRESSION OF AXISYIWMETRIC TURBULENCE 
ALONG THE AXIS OF AXISYWMETRY 

In this section, we consider the compression of axisym- 
metric turbulence along the axis of axisymmetry. A corra 
sponding physical situation would be that of grid turbu- 

. ..’ .’ ,‘. ______.-.. -.- 
-0.15 

F’- 

_--- __----------_T_ _-_____.__ _--.-----..-. 
-.<..--- 

1 
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PIP0 

FIG. 16. Evolution of RI/$ upon the oblique compression of sheared 
turbulence (&=3). The different curves correspond to different values of 
the oblique angle. 

u,=a1, up=-;x2, u,= +, P’POY 

(20) 
where Ut , U,, and U, are the mean velocity components in 
the x1, x2, and x3 directions, respectively, and p is the 
mean density, which is uniform. Here a > 0 corresponds to 
axisymmetric contraction, while a < 0 corresponds to axi- 
symmetric expansion. The above strain is applied until the 
nondimensional time at0 when it is replaced by the one- 
dimensional compression given by Eqs. (4a)-(4c). Axi- 
symmetrically strained turbulence is thus the initial condi- 

lence interacting with a normal shock after passing * .. - .- 4. . . - ---. tion ror tne one-aimensional compression. Ku 1 1s used to 
obtain the energy spectrum tensor at the end of axisym- through a wind-tunnel contraction. Our interest is in see- 

ing how the response of axisymmetric turbulence to com- 
pression is different from that of isotropic turbulence and 
to verify the conclusions drawn from the shear flow prob- 
lem regarding the effect of initial anisotropy. 

A schematic of the problem is shown in Fig. 17. To 
generate axisymmetric turbulence, isotropic turbulence is 
subjected to rapid homogeneous axisymmetric strain; i.e., 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 

FIG. 15. Evolution of Rs,/qr upon the oblique compression of sheared 
turbulence (&3). The different curves correspond to different values of 
the oblique angle. 
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FIG. 17. Schematic of the normal compression of axisymmetric turbu- 
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FIG. 18. Comparison of the amplification of R,, of isotropic turbulence 
to that of axisymmetricalIy contracted turbulence. 

metric straining. This energy spectrum tensor is then used 
as the initial condition for the one-dimensional compres- 
sion. 

Regarding the nature of turbulence subjected to axi- 
symmetric strain, as mentioned earlier, Lee’ has done an 
extensive analysis of the problem using RDT. As a result, 
we do not reproduce the equations for the energy spectrum 
tensor; we just mention that while contraction suppresses 
streamwise fluctuations (decreases z/$) and moves the 
energy distribution in u1 to small ~~ (“rod-like” struc- 
tures) , expansion amplifies streamwise velocity fluctua- 
tions (increases q/2) and moves the energy in u1 to large 
K~ (“disk-like” structures). Further details may be found 
in Lee.’ 

Next we examine the evolution of axisymmetric turbu- 
lence upon compression. In the shear flow problem, we 
noted that a flow with u1 at lower ~~ would have a lesser 
influence of pressure, and hence a higher amplification of 
2. With respect to axisymmetric turbulence, this would 
imply that the amplification of 3 of turbulence that is 
passed through an axisymmetric contraction would be 
higher than that of isotropic turbulence. We compare in 

4.0 I I1 I, 6 I I I, 1 I I I, 1 I1 1 ] I I I I ,I I I I_ 

3.5 1 - Isotropic 
- - - Contracted 

FIG. 19. Comparison of the amplification of # of isotropic turbulence to 
that of axisymmetrically contracted turbulence. 

Fig. 18 the amplification of z of contracted turbulence 
(ato=0.5) to that of isotropic turbulence and see that this 
behavior is reproduced. The amplification of 8 is plotted in 
Fig. 19, where the two curves correspond to initially iso- 
tropic turbulence and contracted turbulence, respectively. 
Recall that the parameters influencing the amplification 
were identified as @, (K~) and the initial value of &‘8. In 
axisymmetrically contracted turbulence, although u1 is at 
lower K~, the initial value of T/g is lower. Therefore, 
there is a competition between these two parameters in 
determining the net amplification of 2. From Fig. 19, we 
see that the lower value of q/g dominates, resulting in the 
contracted turbulence having a lower amplification of 4”. 

VI. CONCLUSlONS 

Homogeneous rapid distortion theory was used to ex- 
amine the response of incompressible, anisotropic turbu- 
lence to a rapid one-dimensional compression. Two prob- 
lems were studied-the compression of sheared turbulence 
and the compression of axisymmetric turbulence along the 
axis of axisymmetry. In the shear flow problem, both nor- 
mal and oblique compressions (with respect to the shear) 
were considered. The response of these anisotropic flows to 
compression is found to be quite different from the previ- 
ously studied, compression of isotropic turbulence. The 
differences are interpreted in a more general framework 
and the relevant parameters influencing kinetic energy am- 
plification are identified. 

Here, El1 (K*) of the initial field is found to determine 
the evolution of the streamwise (the direction of compres- 
sion) component of kinetic energy. Flows with u1 at lower 
~~ have a reduced effect of pressure during compression, 
and hence a higher amplification of ul. The evolution of 4” 
upon compression is influenced by the initial fraction of 
kinetic energy in the direction of compression (q/g>, in 
addition to the initial El 1 ( K~). Flows with a larger value of 
initial z/# and u1 at lower ~~ have a larger amplification 
of 4’. 

Upon normal compression, all components of turbu- 
lent kinetic energy of sheared turbulence are amplified, 
with the streamwise component being amplified the most. 
The amplification of 3 and 42 is higher than that in iso- 
tropic turbulence. Normal compression decreases the tur- 
bulent shear stress and for large enough compressions 
changes its sign. Examination of the terms in the shear 
stress evolution equation show that amplification of the 
pressure-strain correlation upon compression is responsi- 
ble for this behavior. 

The oblique angle between the directions of shear and 
compression is seen to significantly affect the response of 
sheared turbulence to compression. The effect of oblique 
angle on the evolution of kinetic energy may be explained - 
by the initial distribution of Eee( ice) and ue2/g, where 8 is 
the direction of compression. Over a range of oblique an- 
gles varying from -60” to 60” the amplification of 7, and 
q2 is seen to decrease with increasing magnitude of oblique 
angle. Also, oblique compression reduces the tendency of 
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the shear stress to decrease in magnitude; for large oblique 
angles the shear stress amplifies. 

The effect of initial anisotropy on turbulent kinetic en- 
ergy evolution is verified in the compression of axisymmet- 
ric turbulence. The amplification of z of turbulence passed 
through a contraction is higher than that of isotropic 
turbulence-a result of having u1 at lower K~. The ampli- 
fication of 8, on the other hand, is lower than that of 
isotropic-turbulence-a result of a lower initial z/g. 

With respect to the shock/turbulence interaction, our 
results suggest that besides shock strength (detlned in 
terms of the normal Mach number), the anisotropy of the 
turbulence and the shock inclination angle are important 
parameters in determining the evolution of turbulence 
across the shock. It is striking that the evolution of the 
Reynolds stresses upon oblique compression is qualita- 
tively different for different oblique angles. These impor- 
tant effects of initial anisotropy and the shock inclination 
angle should be accounted for in the interpretation of ex- 
periments on the shock/turbulence interaction. 
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