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The stability of low-speed jets in cross-flow (JICF) is studied using tri-global linear
stability analysis (GLSA). Simulations are performed at a Reynolds number of 2000,
based on the jet exit diameter and the average velocity. A time stepper method is used
in conjunction with the implicitly restarted Arnoldi iteration method. GLSA results are
shown to capture the complex upstream shear-layer instabilities. The Strouhal numbers
from GLSA match upstream shear-layer vertical velocity spectra and dynamic mode
decomposition from simulation (Iyer & Mahesh, J. Fluid Mech., vol. 790, 2016,
pp. 275–307) and experiment (Megerian et al., J. Fluid Mech., vol. 593, 2007,
pp. 93–129). Additionally, the GLSA results are shown to be consistent with the
transition from absolute to convective instability that the upstream shear layer of
JICFs undergoes between R = 2 to R = 4 observed by Megerian et al. (J. Fluid
Mech., vol. 593, 2007, pp. 93–129), where R = vjet/u∞ is the jet to cross-flow
velocity ratio. The upstream shear-layer instability is shown to dominate when R= 2,
whereas downstream shear-layer instabilities are shown to dominate when R= 4.

Key words: absolute/convective instability, jets, turbulent flows

1. Introduction
Jets in cross-flow (JICF), or transverse jets, are a canonical flow where a jet of fluid

is injected normal to a cross-flow. An incoming flat-plate boundary layer interacts
with a wall-normal jet, creating a complex array of inter-related vortical structures.
The shear-layer vortices and the Kelvin–Helmholtz instability are typically observed
on the upstream side of the jet. The counter-rotating vortex pair (CVP), which
dominates the jet cross-section (Kamotani & Greber 1972; Smith & Mungal 1998),
persists far downstream and is a characteristic feature of transverse jets. Additionally,
horseshoe vortices are formed near the wall just upstream of the jet exit and wrap
around the jet (Krothapalli, Lourenco & Buchlin 1990; Kelso & Smits 1995). As
the horseshoe vortices travel downstream they begin to tilt upward during ‘separation
events’ (Fric & Roshko 1994) caused by the adverse pressure gradient created as
the jet entrains fluid from the boundary layer. This process forms wake vortices
that extend up in the wall-normal direction through the jet wake (Fric & Roshko
1994; Eiff, Kawall & Keffer 1995; Kelso, Lim & Perry 1996; McMahon, Hester &
Palfery 1971; Moussa, Trischka & Eskinazi 1977). Transverse jets may be found in
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many real-world engineering applications including: gas turbine combustor dilution
jets, film cooling, vertical and/or short take-off and landing (V/STOL) aircraft and
thrust vectoring. Reviews by Margason (1993), Karagozian (2010) and Mahesh (2013)
compile most of this research, both experimentally and computationally, over the last
seven decades.

The JICF may be characterized by the following parameters: the jet Reynolds
number,

Re= vjetD/νjet, (1.1)

based on the average velocity (vjet) at the jet exit, the diameter (D), and the kinematic
viscosity of the jet (νjet); the cross-flow Reynolds number,

Re∞ = u∞D/ν, (1.2)

based on the free-stream velocity (u∞) and kinematic viscosity of cross-flow (ν); the
momentum flux ratio,

J = ρjetv
2
jet/ρ∞u2

∞
, (1.3)

where ρjet and ρ∞ are the density of the jet and free stream, respectively. When the
jet and free-stream densities are equal, as in isodensity flows, the jet to cross-flow
velocity ratio is appropriate and is defined as,

R= vjet/u∞. (1.4)

This ratio can also be defined as,

R∗ =
vjet,max

u∞
(1.5)

based on the maximum velocity at the jet exit. The present work considers low-speed
jets in cross-flow that are isodensity, and R is used as the characterization parameter.

Megerian et al. (2007) performed experiments on the JICF at Re of 2000 and 3000
over the range 16R6 10. They collected vertical velocity spectra along the upstream
shear layer and observed this region to transition from absolutely to convectively
unstable between R= 2 and R= 4. When R= 2, Megerian et al. (2007) observed in
the upstream shear layer a strong tone at a single Strouhal number (St = fD/vjet,max),
based on the jet exit diameter (D) and the maximum velocity at the jet exit (vjet,max).
This disturbance originated near the jet exit and was also observed further downstream.
This is consistent with an absolute instability, which grows at the point of origin and
travels downstream. Conversely, when R = 4 Megerian et al. (2007) observed that
upstream shear-layer instabilities are weaker and a broader spectrum formed further
downstream. This behaviour is consistent with a convective instability, which grows
as it travels downstream.

Iyer & Mahesh (2016) performed direct numerical simulations (DNS) matching the
experimental set-up of Megerian et al. (2007) and were able to capture the complex
shear-layer instability. Vertical velocity spectra from simulation show good agreement
with experiment and observed the same stability transition between R = 2 and
R = 4. In an effort to further understand this transition, Iyer & Mahesh (2016)
suggested that the leading edge shear layer is actually a counter-current shear layer.
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According to the classic analysis by Huerre & Monkewitz (1985), the following
velocity ratio characterizes the stability of counter-current mixing layers:

Q=
V1 − V2

V1 + V2
, (1.6)

where V1 and V2 are the velocities of the two mixing layers. Huerre & Monkewitz
(1985) show that for Q> 1.315 a mixing layer is absolutely unstable, whereas if Q<
1.315 the mixing layer is convectively unstable. Iyer & Mahesh (2016) calculated Q
from their simulation for R = 2 and R = 4. The mixing layer velocities were taken
as the maximum and minimum (most negative) vertical velocities across the upstream
shear layer of the turbulent mean flows. Iyer & Mahesh (2016) found that Q= 1.44
and Q = 1.20 for R = 2 and R = 4, respectively. This suggests that the mechanism
that drives the stability for free shear layers may also drive stability characteristics
for complex flows like the JICF.

Furthermore, experiments of Narayanan, Barooah & Cohen (2003) have shown
that when R = 6, low-amplitude excitation of JICFs that have convectively unstable
upstream shear layers could promote mixing. Conversely, M’Closkey et al. (2002)
and Shapiro et al. (2006) have shown that when R 6 4, high-amplitude excitation
has little success increasing jet penetration or mixing. These results highlight the
importance of furthering our understanding of the upstream shear layer’s transition
from absolutely to convectively unstable, due to the effect on which control strategies
are most successful.

Alves, Kelly & Karagozian (2008) have studied the stability of JICFs using local
linear stability analysis. They study the spatial stability of two different base flows;
a modified version of the potential flow solution by Coelho & Hunt (1989) and
continuous velocity model based on the same potential flow solution (valid for larger
values of Strouhal number). In their analysis they prescribe a temporal wavenumber, ω,
which is real (i.e. zero growth rate), and solve for the complex spatial wavenumber, α.

The linear stability of the JICF has been studied by Bagheri et al. (2009), which
marks one of the first simulation-based tri-global linear stability analysis (LSA) of a
fully three-dimensional base flow. From this point on, global LSA (GLSA) will refer
to tri-global linear stability analysis unless otherwise specified. Bagheri et al. (2009)
studied the stability of the JICF at a jet to cross-flow velocity ratio R∗= 3 (1.5), with
a Reynolds number Reδ∗0 = U∞δ∗0/ν = 165, based on the displacement thickness δ∗0
at the inlet of the cross-flow, or equivalently Recf =Du∞/ν∞ = 495, based on the jet
exit diameter D. The steady base flow at this value of R∗ was obtained using selective
frequency damping (SFD) (Åkervik et al. 2006). The jet nozzle was not included in
their simulation and a parabolic velocity profile from pipe Poiseuille flow was imposed
at the jet exit. Unstable high-frequency modes associated with the upstream shear layer
as well as lower-frequency wake modes were identified in their work. Additionally,
it was shown that the shedding frequency for the upstream shear layer was not far
from the nonlinear shedding frequency. However, the linear wake mode frequency
was far from the nonlinear wake frequency. Bagheri et al. (2009) suggested that the
differences in shedding frequencies could be related to the differences between the
SFD solution and the time-averaged solution.

Peplinski, Schlatter & Henningson (2015) extended upon the analysis of Bagheri
et al. (2009) to include R∗ = 1.5 and R∗ = 1.6. Peplinski et al. (2015) used modal
and non-modal linear analysis to study the JICF. They observed an almost identical
wavepacket develop for the stable (R∗ = 1.5) and unstable (R∗ = 1.6) cases, and were
able to determine the bifurcation point of R∗ to lie between 1.5 and 1.6.
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In the present work, the stability of the JICF is studied using GLSA of the
turbulent mean flow. To the best of our knowledge, the grid resolution and size of
the eigenvalue problem for GLSA go beyond what has been reported in the literature.
The jet nozzle is included in our simulation and matches the experimental nozzle
used by Megerian et al. (2007), which is designed to produce a top-hat profile at
the jet exit. When performing DNS of the JICF, it is very computationally expensive
to solve the tri-global eigenvalue problem directly. For example, using a grid with
80 million elements poses an eigenvalue problem with a dimension of 240 million. A
variant of the Arnoldi iteration method (Arnoldi 1951) is therefore used to efficiently
calculate the leading eigenvalues and their associated eigenmodes.

In § 2 the numerics used for DNS (§ 2.1) and LSA (§ 2.2) are discussed. The
validation cases for GLSA are described in § 3. Next, § 4 provides an overview of
the computational set-up for studying the JICF. Section 5 highlights the results from
GLSA, along with an in-depth analysis of the GLSA eigenmodes. Concluding the
paper is § 6 which includes a brief summary and discussion of the presented results
as well as some applications to control.

2. Numerical methodology
The numerical method in the unstructured fluid solver is briefly discussed. Next,

an overview of modal linear stability analysis and details regarding the iterative
eigenvalue solver are provided.

2.1. Direct numerical simulation
Simulations are performed using an unstructured, finite-volume algorithm developed
by Mahesh, Constantinescu & Moin (2004) for solving the incompressible Navier–
Stokes (N–S) equations:

∂ui

∂t
+

∂

∂xj
uiuj =−

∂p
∂xi
+ ν

∂2ui

∂xj∂xj
,

∂ui

∂xi
= 0, (2.1a,b)

where ν is the kinematic viscosity of the fluid. The spatial discretization emphasizes
discrete kinetic energy conservation, which allows for the simulation of complex flows
at high Reynolds numbers without added numerical dissipation. Adams–Bashforth
second-order time integration is used to advance the predictor velocities through the
momentum equation. A Poisson equation for pressure is then derived by taking the
divergence of the momentum equation and satisfying continuity. This is used in a
corrector step to project the solution onto a divergence-free velocity field.

The algorithm has been validated for a variety of canonical and complex flows,
including: a gas turbine combustor (Mahesh et al. 2004), free jet entrainment (Babu
& Mahesh 2004) and transverse jets (Muppidi & Mahesh 2005, 2007, 2008; Sau &
Mahesh 2007, 2008).

2.2. Linear stability analysis
Modal LSA is the study of the dynamic response of a base state (i.e. base flow)
subject to external perturbations (see Theofilis (2011) for a review). In the present
work, the incompressible Navier–Stokes equations (2.1) are linearized about a base
state, ui and p. The base state can be assumed to vary arbitrarily in space. If the flow
field is decomposed into a base state subject to a small O(ε) perturbation,

ui = ui + εũi, p= p+ εp̃, (2.2a,b)
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816 M. A. Regan and K. Mahesh

the governing equations (2.1) can be linearized by neglecting the ε2 terms. Additionally,
if the base state is a solution to the incompressible Navier–Stokes equations (2.1),
the base flow equations can be subtracted. This yields the linearized Navier–Stokes
(LNS) equations:

∂ũi

∂t
+

∂

∂xj
ũiuj +

∂

∂xj
uiũj =−

∂ p̃
∂xi
+ ν

∂2ũi

∂xj∂xj
,

∂ũi

∂xi
= 0. (2.3a,b)

Note that the same numerical techniques are used to solve the LNS equations (2.3)
and the N–S equations (2.1). A molecular viscosity is used to obtain both the base
flow and in LSA since the base flow is obtained from DNS where all relevant scales
are directly resolved and no subgrid-scale model is used.

The LNS equations (2.3) may be rewritten as a system of linear equations,

∂ũi

∂t
= Aũi, (2.4)

where A is the LNS operator and ũi is the divergence-free velocity perturbation field.
In modal LSA, our interest is in the long-time behaviour of ũi. Consequently, the
solutions to the linear system of equations (2.4) are of the form:

ũi (x, y, z, t)=
∑
ω

ûi (x, y, z) eωt
+ c.c., (2.5)

where ω and ûi can be complex. This defines the Re(ω) as the growth/damping rate
and the Im(ω) as the temporal frequency of the complex velocity coefficient (ûi).
Substituting the ansatz (2.5) into the LNS system (2.4) transforms the system of
equations into a linear eigenvalue problem,

ΩÛi = AÛi, (2.6)

where ωj = diag(Ω)j is the jth eigenvalue and ûj
i = U i[ j, :] is the jth eigenvector

(i.e. eigenmode). For GLSA, the size of the eigenvalue problem (2.6) can be
O(106–108). This makes solving the eigenvalue problem using direct methods
very computationally expensive, often prohibitively so. Instead, an extension of
the Arnoldi iteration method (Arnoldi 1951) called the implicitly restarted Arnoldi
method (IRAM), a matrix-free method, is used. The present work makes use of the
IRAM implemented in the open-source P_ARPACK library (Lehoucq, Sorensen &
Yang 1997) to efficiently calculate the leading (i.e. most unstable) eigenvalues and
their associated eigenmodes.

A temporal exponential transformation of the eigenvalue spectrum is then performed.
This transforms the most unstable eigenvalues into the most dominant (i.e. largest
magnitude) eigenvalues, which P_ARPACK can solve for efficiently. To do this, the
eigenvalue problem (2.6) is integrated over some time, τ :∫ τ

0
ΩÛi dt=

∫ τ

0
AÛi dt. (2.7)

This yields the exponential of the eigenvalue problem (2.6):

eΩτ Ûi = eAτ Ûi, (2.8)
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which can be rewritten as:

ΣÛi = BÛi, (2.9)

where σj = diag(Σ)j. The matrix exponential B = eAτ is a time integration operator,
which acts as a numerical simulation of the LNS equations (2.3) over a time τ .
This method is therefore called a time stepper method. Note that between the two
eigenvalue problems (2.6), (2.9), the eigenvectors, Ûi, are the same. However, the
eigenvalues of the original problem (2.6) must be recovered using the following
relationship:

ωj =
1
τ

ln σj. (2.10)

When using a time stepper method, the choice of the integration time τ is dependent
on the time scales of interest for the problem at hand. It is imperative that τ is less
than the smallest time scales ts of interest; usually τ = ts/2 is appropriate. As for
capturing the largest time scales tL of interest, the number of Arnoldi vectors NA
is important. Once τ is determined, the number of Arnoldi vectors must be greater
than tL/τ ; usually NA > 2tL/τ is appropriate. Overall, some knowledge of the range
of time scales is needed to effectively use the IRAM in conjunction with a time
stepper method. Additionally, note that performing stability analysis on problems with
a large range of time scales can drastically effect the computational cost and storage
requirements as each Arnoldi vector must be stored for each Arnoldi iteration.

For increasingly complex and globally unstable flows, a steady-state solution may
be difficult and computationally expensive to obtain. As modal stability analysis looks
to study the stability of more interesting problems, other approaches are being taken
to solve for base states. SFD may be used to solve for a steady-state solution. This
is achieved by adding a forcing term to the right-hand side, which acts as a temporal
low-pass filter. Some knowledge of the lowest unstable frequency is required when
choosing the filter width. In order to converge to a steady solution, the filter cutoff
frequency must be lower than that of all of the flow instabilities. Although this method
lends itself to easy implementation, the computational cost is governed by the range
of time scales. Additionally, SFD fails to damp instabilities that are non-oscillatory, as
shown by Vyazmina (2010).

Another option is to use a turbulent mean flow as a base state. Perhaps the
best known example where LSA about the turbulent mean flow succeeds over the
steady-state solution is the oscillating wake of a circular cylinder; which agree
at onset, but LSA about the steady-state solution fails to capture the observed
vortex shedding frequency far away from the bifurcation. Recent studies by Turton,
Tuckerman & Barkley (2015) and Tammisola & Juniper (2016) look to further our
understanding of what it means to perform GLSA around a turbulent mean flow.
Additionally, Barkley (2006) and Turton et al. (2015) show that performing a LSA
around a turbulent mean flow results in eigenvalues which have small real parts and
non-zero imaginary frequencies.

Since a turbulent mean flow is a solution to the Reynolds-averaged N–S equations,
a nonlinear Reynolds stress term is effectively added to the LNS equations when the
base flow equations are removed (2.1)–(2.3). This translates into a mode-dependent
Reynolds stress being present in the eigenvalue problem (2.6). A scale-separation
argument, first introduced by Crighton & Gaster (1976), and more recently discussed
in the review by Jordan & Colonius (2013), can be used to justify when the
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Case Flow Re Reference(s)

Parallel flow Blasius boundary layer 580 Criminale et al. (2003)
Bi-global 2-D lid-driven cavity 200 Ding & Kawahara (1998)
Tri-global 3-D lid-driven cavity 1000 Gómez et al. (2014),

Giannetti, Luchini & Marino (2009)
Tri-global Laminar channel flow 1000 Juniper, Hanifi & Theofilis (2014)

TABLE 1. Descriptions of the cases used for validation.

mode-dependent Reynolds stress term is negligible. Only for the modes of interest
(typically low frequency and large scale) must the Reynolds stress term be shown to
be unimportant. For turbulent problems, multiple orders of magnitude can separate the
time and length scales of turbulent motions (tη and η, respectively) with the motions
of interest (L and tL, respectively). Relationships between turbulent and large-scale
motions of interest can be determined from the Kolmogorov scales as seen in Pope
(2000, pp. 186):

L/η= Re3/4, tL/tη = Re1/2. (2.11a,b)

Therefore, if the scale-separation argument is to hold, there must be a significant
gap between scales of interest for GLSA and the turbulent motions themselves. It can
be shown by using the relationships above (2.11) that using a turbulent mean flow as a
base state in GLSA may provide meaningful physical insight with respect to stability.

3. Validation

The LSA capability developed for the present work is validated in this section.
Table 1 outlines the validation cases for the present work. First, parallel flow LSA
of a Blasius boundary layer subject to a streamwise Tollmien–Schlichting (T–S)
wave is compared to the results of Criminale, Jackson & Joslin (2003). Second,
bi-global LSA of a two-dimensional (2-D) lid-driven cavity with a spanwise wave
disturbance is compared to the work of Ding & Kawahara (1998). Next, GLSA of a
3-D lid-driven cavity is validated against Gómez, Gómez & Theofilis (2014). Finally,
GLSA of laminar channel flow is compared to the classic parallel flow LSA results
for Poiseuille flow.

3.1. Parallel flow LSA
Parallel flow LSA assumes wave-like homogeneity in time and two spatial directions.
This allows for the governing equations to be simplified to an ordinary differential
equation, which reduces the computational cost of solving the associated LSA
eigenvalue problem. Here, the stability of a Blasius boundary layer is chosen as
a validation case due to its simplicity and the extensive analysis in the literature. For
this problem the spanwise and streamwise directions are assumed to be homogeneous.

Criminale et al. (2003) provide temporal LSA results for a Blasius boundary
layer subject to a streamwise T–S disturbance. The applied T–S disturbance has a
wavenumber α = 0.179 and is applied at Re = 580, based on the boundary layer
thickness. The eigenvalue problem corresponding to the Orr–Sommerfeld equations
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Re α Criminale et al. (2003) Present

580 0.179 0.007970+ i0.3641 0.007835+ i0.3657
−0.2787+ i0.2897 −0.2765+ i0.2922
−0.1921+ i0.4839 −0.1925+ i0.4862
−0.3653+ i0.5572 −0.3648+ i0.5597
−0.3308+ i0.6863 −0.3307+ i0.6885
−0.4341+ i0.7937 −0.4334+ i0.7959
−0.4147+ i0.8874 −0.4131+ i0.8879

TABLE 2. The leading eigenvalues (cj=ωj/α) from parallel flow LSA results for a Blasius
boundary layer at Re= 580, subject to a streamwise T–S wave, (α= 0.179), compared to
Criminale et al. (2003) for validation.

Re β Ding & Kawahara (1998) Present

200 6 −0.38+ i0.57 −0.38+ i0.56
9 −0.54+ i0.75 −0.54+ i0.72

TABLE 3. The leading eigenvalues (ωj) from bi-global LSA of a 2-D lid-driven cavity
subject to different spanwise wavenumbers (β) compared to Ding & Kawahara (1998) for
validation.

is solved directly by Criminale et al. (2003). Conversely, in the present work the
eigenvalue problem associated with the 2-D LNS (2.3) is instead solved directly for
consistency throughout the validation process. The seven leading eigenvalues show
good agreement with the present work as shown in table 2.

3.2. Bi-global LSA
A 2-D lid-driven cavity is studied using bi-global LSA. Here, time and the spanwise
direction are assumed to be homogeneous. Consequently, the base state is the 2-D
steady-state solution for the square lid-driven cavity at Re= 200, based on the cavity
height and lid velocity. Two purely real (i.e. oscillatory) spanwise wavenumbers (β =
6, 9) are individually applied as perturbations to the base state. The 2-D LNS (2.3)
are solved in conjunction with the time stepper method and IRAM that was outlined
in § 2.2.

Results from bi-global LSA are compared with Ding & Kawahara (1998) in table 3.
The leading eigenvalues for the two spanwise perturbations show good agreement with
the results of Ding & Kawahara (1998).

3.3. GLSA
When performing GLSA, no directions are assumed to be homogeneous, which can
be very computationally expensive. Only until recently have computational resources
made studying the stability of complex 3-D problems practical. The stability of a
3-D lid-driven cavity has been studied by multiple authors using different numerical
techniques.

The stability of a steady cubic 3-D lid-driven cavity is studied at a Reynolds
number of 1000, based on the cavity height and lid velocity. Giannetti et al. (2009)
and Gómez et al. (2014) have both performed GLSA of a cubic 3-D lid-driven cavity.
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Re Giannetti et al. (2009) (643) Gómez et al. (2014) (1443) Present (2883)

1000 −0.1276± i0.285 −0.1292± i0.329 −0.1352± i0.299
−0.1301± i0.457 −0.1348± i0.485 −0.1304± i0.487
−0.1457 −0.1382 −0.1375

TABLE 4. The leading eigenvalues (ωj) from GLSA for a stable 3-D lid-driven cavity at
Re = 1000 compared to Giannetti et al. (2009) and Gómez et al. (2014) for validation.
The number inside of the brackets represents the number of elements in the grid that was
used.

All three results were obtained using some form of the Arnoldi iteration method.
Giannetti et al. (2009) solve the LNS (2.3) and utilize the IRAM within the ARPACK
library. Conversely, Gómez et al. (2014) directly applies the output from a N–S (2.1)
solver to generate approximate results for GLSA using the classic Arnoldi algorithm.
The present work solves the LNS, but utilizes the IRAM implemented in the parallel
P_ARPACK library. Results show good agreement across the different numerical
methods as shown in table 4.

Furthermore, the real part of the leading eigenmodes from the present work are
shown in figure 1 and highlight positive and negative isocontours of the perturbation
velocity fields. Eigenmode results shown in Gómez et al. (2014) show good qualitative
agreement with the present work. The complexity as well as the symmetry of the
3-D cavity can be seen in the eigenmode results. The third eigenmode is a stable
stationary mode (i.e. non-oscillatory), and has been described by Gómez et al. (2014)
as resembling different families of linear modes with Taylor–Görtler-like structures.

3.4. GLSA and parallel flow LSA
As a final point of validation, results from GLSA are compared to classic parallel flow
LSA. The stability of a laminar channel is chosen because the assumption that the
streamwise and spanwise directions are homogeneous holds true, making the parallel
flow assumption valid.

The stability of a laminar channel at Re=5780, based on the centreline velocity and
channel half-height h, is first computed using GLSA. The channel half-height h is 1,
while the streamwise length is 4π and the spanwise width is 4π/3. Periodic boundary
conditions are applied in the streamwise and spanwise directions, whereas the no-
slip condition is applied at the top and bottom of the channel. Since the streamwise
and spanwise wavenumbers (α and β, respectively) are not specified in GLSA, any
combination of wavenumbers may be present in the GLSA results. Therefore, the jth
pair of ωj and ûj

i may have a non-zero αj and/or βj that can then be extracted using
streamwise and spanwise fast Fourier transforms. The αj and βj can then be used as
input into parallel flow LSA.

The non-zero components of two leading eigenmodes from GLSA are shown in
figures 2(a,b) and 3(a). A quantitative comparison between the GLSA results and
the results from parallel flow LSA are shown in figures 2(c) and 3(b). The complex
Fourier coefficients, ûj

i, as well as their magnitudes, are plotted against the results from
parallel flow LSA. The comparison shows good agreement for both eigenmodes in all
three velocity components.

The same two leading eigenvalues from GLSA and parallel flow LSA are shown in
table 5. The eigenvalues are non-dimensionalized by the centreline velocity and the
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(a)

(b)

(c)

FIGURE 1. (Colour online) Real part of the eigenmodes from GLSA for a 3-D lid-driven
cavity at Re = 1000. The results are shown with positive and negative isocontours of
ũ, ṽ, w̃=±0.15. The associated eigenvalues are shown, with the real part being the growth
rate, and the imaginary part being the frequency. Modes (a–c) show good qualitative
agreement with Gómez et al. (2014). A comparison to the eigenvalues results of Giannetti
et al. (2009) and Gómez et al. (2014) may be found in table 4.

Re α β Juniper et al. (2014) (Parallel flow LSA) Present (GLSA)

1000 1 0 −2.33610× 10−2
+ i9.77640× 10−1

−2.33374× 10−2
± i9.77638× 10−1

1 1.5 −2.56110× 10−2
+ i9.77640× 10−1

−2.55906× 10−2
± i9.77638× 10−1

TABLE 5. Two leading eigenvalues (ωj) from GLSA for laminar channel flow at Re=1000.
Streamwise wavenumbers, α, and spanwise wavenumbers, β, are observed in the global
eigenmodes (see figures 2 and 3) and are used as input to parallel flow stability analysis
of Poiseuille flow. The parallel flow stability results are produced by a code available in
the supplementary material from Juniper et al. (2014).
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x

y

z

 0.5

 0

 –0.5

 –1.0

1.0

0 0.5–0.5 0 0.5–0.5 0 0.5–0.5

Juniper et al. (2014)

(a)

(b)

FIGURE 2. (Colour online) Shown are the real parts of the first eigenmode corresponding
to the eigenvalues in table 5 from GLSA for laminar channel flow at Re = 1000.
Periodic boundary conditions in x and z are applied. Here, there is no variation in the
z-direction, making a single slice sufficient to display all relevant data. The results are
shown as an x–y slice (z = 0) with contours of w̃ (note: ũ = ṽ = 0). The streamwise
and spanwise wavenumbers (α = i1, β = i0) are extracted and used as input to classic
parallel flow stability analysis of Poiseuille flow. Additionally, the tri-global eigenmode
Fourier coefficients (ûi) are compared with the results from parallel stability of Juniper
et al. (2014) for |û|, |v̂| and |ŵ|. Note that every fourth point from Juniper et al. (2014)
is plotted in an effort to not obscure other data.

channel half-height h. The agreement between the two different numerical methods,
utilizing drastically different numerical techniques and different assumptions, is very
strong. Reasonable agreements for growth rates and frequencies are obtained.

Thus, the present unstructured grid LSA solver can be considered validated. This
LSA solver will now be used to study the GLSA of the JICF.

4. Problem description
Figure 4 shows the simulation set-up. At the inflow, a laminar Blasius boundary

layer profile is prescribed. The computational grid and boundary layer profile are the
same as those used by Iyer & Mahesh (2016). The boundary layer has been shown
to match well with experiments at x/D=−5.5. The jet nozzle is located at the origin
of the computational domain and is included in all simulations. It has been shown
by Iyer & Mahesh (2016) that the jet nozzle plays a crucial role in setting up the
mean flow near the jet exit, thus affecting the stability characteristics of the flow. A
fifth-order polynomial is used to model the nozzle shape used in the experiments of
Megerian et al. (2007). The jet exit diameter D is 3.81 mm and the average velocity
at the jet exit vjet is 8 m s−1. Additional simulation details are outlined in table 6.
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Juniper et al. (2014)

 0.5

 0

 –0.5

 –1.0

1.0

0 0.5–0.50 0.5–0.5 0 0.5–0.5

xy

z

xy

z

x

y

z

x

y

z

(a)

(b)

(c)

FIGURE 3. (Colour online) Similar to figure 2, shown is the real part of the second
eigenmode corresponding to the eigenvalues in table 5 from GLSA for laminar channel
flow at Re = 1000. Periodic boundary conditions in x and z are applied. Here, there is
variation in the z-direction, requiring an additional slice to be shown. The results are
shown as x–y (z= 0) and z–x (y= 0) slices with contours of ũ and w̃ (note: ṽ= 0). The
streamwise and spanwise wavenumbers (α = i1 and β = i1.5) may be extracted and used
as input to a classic parallel flow stability analysis of Poiseuille flow. Additionally, the
tri-global eigenmode Fourier coefficients (ûi) are compared with the results from parallel
stability of Juniper et al. (2014) for |û|, |v̂| and |ŵ|. Note that every fourth point from
Juniper et al. (2014) is plotted in an effort to not obscure other data.

Simulation cases R2 and R4 are performed at the same conditions as the experiments
of Megerian et al. (2007).

The unstructured capabilities of the solver allow the cross-flow domain and
jet nozzle to be simulated together. Figure 4 also describes the extent of the
computational domain. The domain extends 8D upstream of the jet exit to the
inflow boundary where the Blasius laminar boundary layer solution is applied. 16D
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Blasius
boundary layer

Outflow

Jet inflow

8D 16D

16D
D

16D

13.33D

x

y

z

FIGURE 4. A schematic of the jet in cross-flow computational domain is shown. The
origin is located at the centre of the jet exit. A Blasius boundary layer is prescribed as
the leftmost inflow condition. Additionally, uniform inflow is prescribed for the jet inflow.
The nozzle shape is modelled using a fifth-order polynomial that matches the nozzle used
in experiments of Megerian et al. (2007).

1–1–2 0 2 3
–1

0

1

2

–1

0

1

1–1 0 4–4 0

–6

–3

0

–9

–12

(a) (b) (c)

FIGURE 5. The computational grid is shown. A view of the symmetry plane (a) as well
as a wall-normal plane near the jet exit (b) and the nozzle (c) are shown. The grid is
composed of 80 million elements.

downstream of the jet exit is the outflow boundary. In addition, Neumann boundary
conditions are applied to the sides located 8D from the origin in the spanwise
directions. The simulated nozzle extends 13.33D below the jet orifice, at which point
a uniform inflow is prescribed to achieve the correct velocity at the jet exit. The top
of the domain is located 16D above the origin and also has a Neumann boundary
condition applied.

The computational grid is shown in figure 5, and is made up of 80 million elements
divided into 4096 partitions. This allows for 80 elements inside of the inflow laminar
boundary layer in the y-direction and 400 elements around the jet exit. Downstream
of the jet exit, the grid maintains a spacing of 1x/D= 0.033 and 1z/D= 0.02, with
a 1ymin/D = 0.0013, which are finer than the spacings used by Muppidi & Mahesh
(2007) to simulate a turbulent JICF. After making the assumption that downstream of
the jet exit the boundary layer is turbulent, viscous wall units may be computed using

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

48
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
ri

es
, o

n 
06

 O
ct

 2
01

7 
at

 0
4:

47
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.489
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Global linear stability analysis of jets in cross-flow 825

x
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0
0.25
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–0.25
–0.50
–0.75
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0
0.25
0.50
0.75
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–0.25
–0.50
–0.75
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u

u

(a)

(b)

FIGURE 6. (Colour online) Isocontours of Q-criterion coloured by streamwise velocity for
the instantaneous turbulent flow field for R=2 (a) and R=4 (b). The upstream shear-layer
roll up is clear and defined for both case R2 and R4, whereas the downstream shear-layer
roll up is less obvious. Additionally, long wake vortices are visible for case R2 near the
wall. Both cases showcase fine-scale turbulent structures far downstream.

Case R= vjet/u∞ R∗ = vjet,max/u∞ Re=Dvjet/νjet Recf =Du∞/ν∞ θbl/D

R2 2 2.44 2000 1000 0.1215
R4 4 4.72 2000 500 0.1718

TABLE 6. Details are shown for the simulations used to study the stability of the JICFs.
Jet to cross-flow ratios R of 2 and 4 are studied at a Reynolds number Re of 2000, based
on the average velocity vjet at the jet exit and the jet exit diameter D. Also shown is
the jet to cross-flow ratio R∗, based on the jet exit peak velocity vjet,max and the Reynolds
number Recf , based on the cross-flow velocity u∞. The momentum thickness of the laminar
cross-flow boundary layer is described at the jet exit when the jet is turned off.

cf = 0.0576Re−0.2
x (Schlichting & Gersten 1979). Wall spacings may then be calculated

at the outflow as 1x+/D, 1y+min/D and 1z+/D, as 2.74, 0.1, and 1.66 when R = 2
and 1.48, 0.058 and 0.89 when R= 4, respectively.

Instantaneous isocontours of Q-criterion (Hunt, Wray & Moin 1988) coloured by
streamwise velocity for the turbulent flow field are shown in figure 6 for case R2 (a)
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and R4 (b). Q is defined as

Q=−0.5
∂ui

∂xj

∂uj

∂xi
. (4.1)

The Q-criterion highlights vortex cores by representing regions where pressure is a
local minimum. The complexity of the turbulent JICF is shown in these instantaneous
results. Important features include the coherent upstream shear-layer roll up, as well
as long string-like wake vortices near the wall. Additionally, a less visible downstream
shear-layer roll up is visible that interacts with the upstream shear layer at the collapse
of the potential core. Many fine-scale turbulent structures are also visible downstream
in the jet wake. In the section that follows, GLSA results are discussed that provide
valuable insight to the stability of these two flow configurations.

5. Results
GLSA is performed for the R2 and R4 cases described in table 6. These cases

match the experimental and computational set-ups of Megerian et al. (2007) and Iyer
& Mahesh (2016), respectively. Choosing an appropriate base flow is important for
LSA. The scale-separation argument from § 2.2 provides the following results:

L/η= Re3/4
≈ 300,

tL/tη = Re1/2
≈ 45.

}
(5.1)

This shows that 1 or more orders of magnitude separate the time and length scales of
turbulent motions and the motions of interest. SFD has been shown by Bagheri et al.
(2009) to alter some important features of the JICF; specifically the collapse of the
potential core and the near-wall reverse flow downstream of the jet exit. Therefore,
turbulent mean flow solutions are used as the base states in GLSA for the present
work.

Turbulent mean flow solutions were generated by Iyer & Mahesh (2016) using
32 000 and 39 000 samples from DNS to temporally average cases R2 and R4,
respectively. Iyer & Mahesh (2016) have shown that there is good agreement between
the temporally averaged solutions from simulation and experiment.

A grid convergence study was performed to study the sensitivity of the leading
eigenvalue for three different grids when R= 2. The upstream shear-layer eigenvalue
was computed for a coarse grid (10 million elements), the present work grid (80
million elements) and a finer grid (99 million elements). All three eigenvalues are
shown in figure 7 and show good agreement. Peplinski et al. (2015) have shown that
the leading eigenvalue can also be sensitive to the size of the computational domain.
Iyer & Mahesh (2016) have shown that the domain size in their DNS successfully
captures both the upstream boundary layer and upstream shear-layer frequencies when
compared to experiment. We use the same domain length as Iyer & Mahesh (2016).

For case R2, the 15 leading eigenvalues were computed to a maximum residual
of 1 × 10−14. In addition, 60 Arnoldi vectors were generated for each iteration in
the IRAM. The LNS (2.3) were integrated 0.114 time units (non-dimensionalized by
D/vjet,max) to generate each Arnoldi vector. This allowed for a more than adequate
temporal resolution to solve for the highest frequency in the upstream shear layer,
which were observed in DNS at a St = 0.65 (i.e. period of 1.54 time units). After
generating the 60 Arnoldi vectors, they spanned 6.85 time units, allowing for the
IRAM to efficiently resolve the lower-frequency wake modes as well.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

48
9

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
ri

es
, o

n 
06

 O
ct

 2
01

7 
at

 0
4:

47
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2017.489
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Global linear stability analysis of jets in cross-flow 827

0 0.35
0.65

0.70

0.02

0.01

0.03

0.04

0.05

0.06

St

G
ro

w
th

 r
at

e

FIGURE 7. (Colour online) Results from the grid convergence study used to determine
the sensitivity of the leading eigenvalue to the mesh for case R2. Three different grids
were tested: coarse (10 million elements), present work (80 million elements), fine (99
million elements). The eigenvalues have been non-dimensionalized so that the growth rate
is Re(ω)D/(2πvjet,max) and the Strouhal number is Im(ω)D/(2πvjet,max). St1 highlights the
primary Strouhal number observed along the upstream shear layer in simulations by Iyer
& Mahesh (2016).

Similarly for case R4, the 16 leading eigenvalues were computed to the same
maximum residual of 1 × 10−14. In addition, 100 Arnoldi vectors were generated
for each iteration in the IRAM. Time was integrated 0.157 time units (non-
dimensionalized by D/vjet,max) to generate each Arnoldi vector. This allowed for
a temporal resolution that could sufficiently capture the high-frequency upstream
shear-layer modes, which were observed in DNS at St = 0.39 and St = 0.78
(i.e. periods of 2.56 and 1.28 time units, respectively). Once the 60 Arnoldi vectors
were generated, they spanned 15.7 time units, allowing for the IRAM to efficiently
resolve lower-frequency modes.

Figure 8 shows the eigenvalue spectra obtained from GLSA for case R2 (a) and
R4 (b). The eigenvalues have been non-dimensionalized so that the growth rate is
Re(ω)D/(2πvjet,max) and the Strouhal number is Im(ω)D/(2πvjet,max). As discussed in
§ 2.2, Barkley (2006) and Turton et al. (2015) showed that when performing GLSA
around a turbulent mean flow, the resulting eigenvalues have very small growth
rates; which is consistent with the results in figure 8. The circled eigenvalues have
Strouhal numbers closest to those found in experiments (Megerian et al. 2007) and
simulations (Iyer & Mahesh 2016) (i.e. St1 (R2), St2 (R4)) when analysing vertical
velocity spectra from the upstream shear layer. The eigenvalues from GLSA have
Strouhal numbers associated with the upstream shear layer of 0.62 for R2 and 0.75
for R4. Comparatively, vertical velocity spectra show that Strouhal numbers of 0.65
for R2 and 0.78 for R4 dominate the upstream shear layer. Figure 9 gives an isometric
view of the two eigenmodes for R2 (a) and R4 (b), that are associated with the circled
eigenvalues in figure 8. Dynamic mode decomposition (DMD) modes from Iyer &
Mahesh (2016) are also shown in figure 9 for R2 (c,e) and R4 (d, f ). Additionally,
figure 10 shows cross-sectional views of the upstream shear-layer eigenmodes and
DMD modes at the symmetry plane (z= 0). The DMD results from Iyer & Mahesh
(2016) have Strouhal numbers of 0.65 and 1.3 for R2 and 0.39 and 0.78 for R4,
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FIGURE 8. (Colour online) GLSA eigenvalue spectrum for the JICF at Re = 2000 for
R=2 (a) and R=4 (b). The eigenvalues have been non-dimensionalized so that the growth
rate is Re(ω)D/(2πvjet,max) and the Strouhal number is Im(ω)D/(2πvjet,max). The vertical
blue dashed lines correspond to most dominant frequencies from DNS vertical velocity
spectra results taken from the upstream shear layer by Iyer & Mahesh (2016). The DNS
frequency of St2=1.3 from Iyer & Mahesh (2016) is not shown in (a) as it would obscure
the lower-frequency GLSA results. Eigenvalues (ωj) with red symbols are unstable modes
(i.e. positive growth rate), while stable values are coloured green. The circled eigenvalues
have their corresponding eigenmodes shown in figure 9 for R= 2 (a) and R= 4 (b).

that match the frequencies from vertical velocity spectra. For case R4, it is not
as clear how the eigenmode and DMD modes compare from figure 9(b,d, f ) alone.
However, the cross-sectional views in figure 10 show that the eigenmode at St= 0.75
(figure 10b) agrees well qualitatively with the DMD mode at St= 0.78 (figure 10f ).

GLSA for case R2 predicts an eigenmode at St= 0.62 originating near the jet exit
and propagating along the upstream shear-layer. DMD and vertical velocity spectra
capture St= 0.65 and a higher harmonic at St= 1.3 along the upstream shear layer. It
is clear from the isometric views in figure 9 that the upstream shear-layer eigenmode
at St = 0.62 (figure 9a) and DMD mode at St = 0.65 (figure 9c) for case R2 agree
well qualitatively. Additionally, figure 10 shows good agreement for the cross-section
between the eigenmodes and DMD modes when R= 2. As expected, GLSA does not
predict the nonlinear higher harmonic at St= 1.3≈ 0.65× 2.

For the R4 case, GLSA predicts an eigenmode at St=0.75 along the upstream shear
layer, while DMD and vertical velocity spectra show St = 0.39 and an harmonic at
St = 0.78. Iyer & Mahesh (2016) have shown St = 0.78 to include about 43 % of
the spectral energy when compared to the most dominant DMD mode (St = 0.39).
However, note that the DMD mode at St = 0.78 presents itself much closer to the
nozzle and is clearly a shear-layer mode. St= 0.39, on the other hand, has its largest
magnitude further downstream and is located between the upstream and downstream
shear layers. This can be observed in the cross-sectional view as a part of figure10(d).

Rowley et al. (2009) compared the JICF GLSA results of Bagheri et al. (2009) with
DNS and DMD. They showed that GLSA recovers an upstream shear-layer instability
mode with a different frequency than what is captured by DNS and DMD. Note
that Bagheri et al. (2009) computed a steady-state base flow using SFD. Additionally,
the jet nozzle was not included in the simulation and top-hat jet exit profile was
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FIGURE 9. (Colour online) Real part of the eigenmodes for case R2 at St = 0.62 (a)
and R4 at St = 0.75 (b) are shown with positive and negative isocontours of ũ and v.
Isocontours of Q-criterion for the DMD modes by Iyer & Mahesh (2016) are shown for
R2 at St= 0.65 (c) and St= 1.3 (e) and for R4 at St= 0.39 (d) and St= 0.78 ( f ).

prescribed. Interestingly, the present work has shown that using the turbulent mean
flow as the base state in GLSA, the captured upstream shear-layer instability mode
has the same frequency as the DNS and DMD results of Iyer & Mahesh (2016).
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FIGURE 10. (Colour online) Slices of eigenmodes and DMD modes (from Iyer & Mahesh
(2016)) at the symmetry plane (z= 0) with contours of Q-criterion. The eigenmodes have
frequencies of St = 0.62 (a) and St = 0.75 (b) for R = 2 and R = 4, respectively. The
DMD modes have frequencies for case R2 at St= 0.65 (c) and St= 1.3 (e) and case R4
at St= 0.39 (d) and St= 0.78 ( f ).
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FIGURE 11. (Colour online) Real part of the eigenmodes for case R2 are shown with
positive and negative isocontours of ũ and v contours of the base state in the background.
The eigenvalues are shown above, with the real part being the growth rate, and the
imaginary part being the Strouhal number. Mode (a) corresponds to the most unstable
and highest-frequency upstream shear-layer mode. Modes (b–e) are lower frequency and
originate near the downstream shear layer and travel far downstream. Modes (d) and (e)
also show a connection between near-wall motions and motions in the jet wake.

5.1. Stability analysis of R2
Figure 11 shows the eigenmodes that are associated with the eigenvalues in figure 8(a)
for case R2. To better characterize the eigenmodes, they can be grouped according to
their frequencies and spatial structures. For this case, we notice that there are three
main groups.

The first group consists of the shear-layer mode seen in figure 11(a). This
eigenmode oscillates at a frequency very close to what is observed in DNS and
experiments. Additionally, it originates near the jet exit at the initiation of the
upstream shear layer. Furthermore, this eigenmode extends downstream after the
collapse of the potential core while still maintaining a large magnitude. This implies
that the eigenmode is growing as it travels downstream but also growing at the jet
exit; characteristic of an absolute instability.

Next is the group that occupies a range of lower frequencies that may be identified
as the wake modes. This group consists of figure 11(b–e). Low frequencies have
been shown by Iyer & Mahesh (2016) to include a significant portion of the spectral
energy, highlighting their importance and relevance in the overall flow physics for
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832 M. A. Regan and K. Mahesh

this configuration. The four wake modes are qualitatively similar, but exhibit different
spatial length scales. Additionally, the lower-frequency wake modes highlight the
connection between the near wall motions and motions deep in the jet wake. The
wake modes originate behind the downstream shear layer after the collapse of the
potential core and dominate far downstream. Figure 11(b,c) shows the eigenmodes
that persist downstream, but remain in the jet wake. Specifically, the eigenmodes
observed in figure 11(d,e) act at the lowest of frequencies for this configuration. The
observed frequencies are consistent with notion that Strouhal numbers associated with
the jet diameter (D) will be lower than those associated with the shear layer.

Finally, the Reynolds stresses present in the turbulent mean flow show up in
GLSA as stationary eigenmodes. This is because the Reynolds stress becomes a
steady forcing term in the LNS equations once the base flow equations are subtracted
(2.3). The stationary eigenmodes are not relevant to the present analysis and are not
included.

5.2. Stability analysis of R4
All of the eigenmodes for case R4 are shown in figure 12 and are associated with
the eigenvalues in figure 8(b). Again, it is convenient to group the eigenmodes. We
observe from the spectrum in figure 8(b) and the eigenmodes from figure 12 that there
are two main groups.

The high-frequency eigenmodes make up the first group. These eigenmodes are all
located along the downstream shear layer. Not much attention has been given to the
stability of the downstream shear layer. However, the present work shows that two of
the downstream shear-layer modes have higher growth rates than the upstream shear
layer, and therefore must not be ignored when considering the stability at R= 4. Note
that the downstream shear-layer modes occupy a range of frequencies. All of these
modes interact with the upstream shear layer at the collapse of the potential core. This
may explain why different frequencies are present along the shear layer as seen from
upstream shear-layer vertical velocity spectra for R= 4.

Case R4 has been shown to change its dominant frequencies along the upstream
shear layer; conversely to case R2. When R= 4, the upstream shear-layer eigenmode
at St=0.75 originates much further away from the jet when compared to the upstream
shear-layer mode of case R2. This is consistent with a convective instability where the
flow instability travels downstream, but does not grow at the point of origin (i.e. near
the jet exit).

6. Summary
A GLSA capability has been developed for studying complex flows with unstructured

grids to further study the low-speed JICF. The use of turbulent mean flows for GLSA
is justified using a scale-separation argument. GLSA has been shown to successfully
capture the upstream shear-layer instabilities at the same Strouhal numbers as those
found using DNS and DMD analysis of Iyer & Mahesh (2016) for both cases R2
and R4. GLSA has also provided supportive evidence for the upstream shear-layer’s
transition from absolutely to convectively unstable as R increases from 2 to 4. The
present work has shown that the downstream shear layer plays an important role in
the stability of JICFs at higher R values.

When analysing the entire GLSA spectrum for case R2, as shown in figure 8(a),
note the eigenvalue with the highest growth rate, which has a frequency of St= 0.62.
The associated dominant eigenmode observed in figure 9(a) is located along the
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FIGURE 12. (Colour online) Real part of the eigenmodes for case R4 are shown with
positive and negative isocontours of ũ and v contours of the base state in the background
to highlight the jet base flow. The associated eigenvalues are shown above, with the real
part being the growth rate and the imaginary part being the Strouhal number. Modes (a–g)
correspond to the higher-frequency downstream shear-layer modes. Mode (h) is associated
with the upstream shear layer.

upstream shear layer. This sheds light on the most dominant instability for this flow.
Leveraging this knowledge by either attempting to dampen or amplify the upstream
shear-layer mode near the jet exit has often been an effective control strategy in
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834 M. A. Regan and K. Mahesh

other applications. However, note that further downstream, this mode has a dramatic
reduction in amplitude, which suggests this mode is only dominant 4–5D downstream
of the jet orifice. The rest of the GLSA spectrum for R = 2 has growth rates less
than 30 % of the growth rate for the upstream shear-layer mode, which may convey
less relevance to the overall stability. However, after examining the spatial structure
of these lower-frequency modes reveals that they continue to have a large impact
far downstream. This could be important when attempting to control the JICF. For
example, if mixing downstream is important, damping or amplifying these unstable
wake modes may be more effective than trying to control the upstream shear-layer
instability. Note that the origin of the wake modes appears to be slightly above the
jet orifice, which makes it unclear how effective actuation in the nozzle or near the
jet orifice may be.

For case R4, again note that GLSA has been shown to capture the relevant flow
physics in § 5. Unlike the R2 case, the GLSA spectrum for case R4 in figure 8(b)
shows that the most unstable eigenvalue is not associated with the upstream shear
layer. Instead, the most unstable eigenvalue sits on the downstream shear layer, and is
accompanied by a range of other eigenvalues also located along the downstream shear
layer. These downstream shear-layer eigenvalues have a range of Strouhal numbers
from approximately 1.7–2.5. Not much attention has been given to the downstream
shear layer in the past, but for higher R values it should not be ignored.
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