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a b s t r a c t 

A numerical approach based on preconditioning and dual-time stepping ( DTS ) is proposed to simulate 

cavitating flows at low Mach numbers. The methodology is based on a fully-compressible homoge- 

neous mixture model and finite rate mass transfer as discussed in Gnanaskandan and Mahesh (2015). 

The method has shown promising results for capturing the large-scale cavitation in developed cavitation 

regimes (e.g. Bhatt and Mahesh, 2020; Gnanaskandan and Mahesh, 2016a). Small-scale vapor regions in 

the incipient cavitation, cavitation inception and wetted conditions are sensitive to free-stream nuclei 

content (e.g. Hsiao and Chahine, 2005; Bhatt and Mahesh, 2019, 2020). In these regimes, lower values of 

free-stream nuclei are necessary than what is typically prescribed in homogeneous mixture models that 

use a fully-compressible formulation. While important for the physical modeling, lower values of free- 

stream nuclei lead to acoustic stiffness. The goal of the present work is to present a numerical approach 

to enable such low free-stream nuclei calculations in an accurate manner and in a reasonable amount of 

time. The key aspects of the numerical approach are: (i) preconditioning applied to the cavitating flow 

equations in a fully-compressible (density-based) solver, (ii) modifications based on the all-speed Roe- 

type scheme to the characteristic-based filtering, and (iii) implementation in parallel and on unstructured 

grids that allow the simulation of complex problems. The numerical formulation of the time-derivative 

preconditioning matrix, the DTS framework, and modification to the shock-capturing are discussed. A 

proper conditioning of the preconditioned system of equations is obtained. The methodology is demon- 

strated for the unsteady flow over a cylinder under wetted and cavitation inception conditions, and LES of 

flow over a propeller under wetted conditions. Overall, a significant saving in total run-time as compared 

to the original solver is obtained, without compromising accuracy. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cavitation is the phase change of a liquid into vapor when the 

iquid pressure drops below vapor pressure. In many cavitation 

pplications, it is essential to capture the propagation of acous- 

ic waves and strong shock waves and therefore, the compress- 

bility of the medium. The shock waves emitted by vapor cavity 

ollapse are the major cause of noise, vibration, and material dam- 

ge ( Franc and Michel, 2006 ) in marine applications and rotating 

urbo-machinery. Bubbly shock wave propagation has been iden- 

ified as an intrinsic mechanism behind sheet to cloud transition 
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 Ganesh et al., 2016 ). In marine applications, acoustic waves are 

sed as an indicator to detect cavitation inception. Numerical mod- 

ling of the compressibility in such problems poses a challenge due 

o the range of Mach numbers. It is known that the speed of the 

ound of a pure water can drop by orders of magnitude (e.g. from 

480 m/s to 10 m/s) with the addition of a gaseous phase and/or 

hase change. Fig. 1 shows a sharp decrease in the sound speed 

ith the increase in the gaseous phase volume fraction starting 

rom pure water. Hence, cavitating flows can be highly compress- 

ble despite the nearly incompressible nature of the water. In the 

resent work, we propose a numerical approach based on precon- 

itioning and dual-time stepping ( DTS ) to address the challenge 

osed by the range of Mach numbers. The goal of the present work 

s to extend a density-based solver that is generally robust at high 

ach numbers to the low Mach number calculations in cavitating 
ows. 

https://doi.org/10.1016/j.ijmultiphaseflow.2021.103568
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2021.103568&domain=pdf
mailto:kmahesh@umn.edu
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Fig. 1. Comparison of sound speed in water-gas mixture to experiments at 0.1 MPa. 

Current , Karplus (1957) . 
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The most commonly used physical model to simulate cavitat- 

ng flows is the homogeneous mixture model ( Budich et al., 2018; 

nanaskandan and Mahesh, 2015; Bensow and Bark, 2010; Seo and 

ele, 2009; Schnerr et al., 2008; Saito et al., 2007; Liu et al., 2004;

inghal et al., 2002; Ahuja et al., 2001; Kunz et al., 20 0 0 ). The

odel treats the mixture of water and vapor as a single medium. 

ne major difference between cavitation solvers based on the ho- 

ogeneous mixture model is whether they use a pressure-based 

e.g. Singhal et al., 2002 ) or a density-based algorithm (e.g. Seo and 

ele, 2009 ); both of which have to address the range of Mach 

umbers in cavitating flows. Pressure-based algorithms proposed 

or single-phase flow often experience convergence problems due 

o the significant reduction in the speed of sound in the water- 

apor mixture regions. Various modifications to pressure-based al- 

orithms have been proposed to obtain the correct speed of sound 

n cavitating flows (e.g. Bensow and Bark, 2010; Senocak and Shyy, 

002; Singhal et al., 2002 ). On the other hand, density-based al- 

orithms suffer from the accuracy and numerical stiffness due to 

early incompressible regions in water. To mitigate very low Mach 

umbers in water, several studies based on the fully-compressible 

ormulation have used relatively high values of free-stream nu- 

lei ( Bhatt and Mahesh, 2020; Gnanaskandan and Mahesh, 2016a; 

016b; Seo and Lele, 2009; Saito et al., 2007 ) than typical free- 

tream nuclei concentrations measured in the experiments (e.g. 

enning et al., 2018 ). Here, ‘free-stream nuclei’ refers to initial lev- 

ls of vapor or non-condensable gases ( NCG ) present in the water. 

t sufficiently low pressures (typically the vapor pressure) these 

uclei act as the starting point for the liquid to cavitate ( Franc and

ichel, 2006 ). The high values of free-stream nuclei reduce the 

peed of sound in the water and avoid extremely small time steps 

ue to the acoustic stiffness. 

Studies have shown that good agreement can be obtained with 

he experiments for capturing the large regions of vapor in the de- 

eloped cavitation regimes ( Bhatt and Mahesh, 2020; Gnanaskan- 

an and Mahesh, 2016a; Saito et al., 2007 ) with high free-stream 

uclei values. Although, wetted conditions, cavitation inception 

nd incipient cavitation are highly sensitive to the free-stream nu- 

lei content ( Bhatt and Mahesh, 2019, 2020; Hsiao and Chahine, 

005 ). In such cases, lower values of free-stream nuclei consis- 

ent with the orders of magnitude observed in the experiments 

re necessary. For example, Bhatt and Mahesh (2020) studied par- 

ial cavitation over a range of regimes spanning the incipient to 

eriodic shedding over a wedge. They obtained a very good com- 

arison of the volume fraction data to the X-ray measurement of 

anesh et al. (2016) for the large regions of vapor in the developed 

avitation regimes. However, in the incipient regime, they observed 
2 
 noticeable difference in vapor void fraction compared to the ex- 

eriments with the high values of free-stream nuclei. Bhatt and 

ahesh (2019) showed that the propeller loads are sensitive to 

he choice of free-stream nuclei and the lower values are nec- 

ssary for the accurate prediction of the propeller performance. 

randao et al. (2020) obtained experimentally consistent behav- 

or of separation location over a range of regimes in the cylin- 

er cavitation with the experimentally consistent values of the 

ree-stream nuclei. The behavior was not captured with high free- 

tream nuclei content in the prior study of the same configuration 

 Gnanaskandan and Mahesh, 2016b ). While important for physical 

odeling, lower values of free-stream nuclei impose a stringent re- 

uirement on the time step of the numerical method and affect 

he solution accuracy. Thus, for the density-based solvers, another 

pproach is to retain the low free-stream nuclei and use precondi- 

ioning. 

Preconditioning applied to the compressible flow equations 

lows the acoustic wave speed ( u + c) towards the fluid speed ( u );

hereby reducing the disparity in the eigenvalues. Precondition- 

ng has provided a powerful remedy for the accuracy and con- 

ergence of compressible solvers at low Mach numbers ( Guillard 

nd Viozat, 1999; Hsu and Jameson, 2002; Kunz et al., 20 0 0; 

eMartelot et al., 2013; Li and Gu, 2008; Lindau et al., 2001; 

erkle, 1998; Turkel, 1999; Vatsa and Turkel, 2003; Weiss and 

mith, 1995 ). Many studies have made use of preconditioning for 

ingle-phase flows. A few studies also report algorithms for mul- 

iphase mixtures. Kunz et al. (20 0 0) developed a preconditioning 

ormulation in their two-fluid model using volume fraction as the 

ependent variable. The authors demonstrated efficient and ac- 

urate computations of various steady-state and transient sheet 

nd super-cavity flows. However, in the formulation, they assumed 

onstant densities in each phase and compressibility effects were 

ot accounted for in the two-phase mixture region. Ahuja et al. 

2001) developed a preconditioning algorithm accounting for the 

ompressibility effects in the component phases and demonstrated 

esults for steady-state flows. Lindau et al. (2001) discussed in de- 

ail the choice of preconditioning variables and the corresponding 

igenvalues of the system for the homogeneous mixture model. 

enkateswaran et al. (2002) presented the artificial compressibil- 

ty based formulation for time-marching systems. They used per- 

urbation theory to provide scaled preconditioning forms for the 

umerical computations. The algorithms use Jameson-type artifi- 

ial dissipation term for the upwinding ( Jameson, 1995 ) that is 

reconditioned as suggested in Turkel (1999) . For density-based 

olvers, Hou and Mahesh (2005) demonstrated an approach to 

btain the incompressible Navier–Stokes equation in the limit of 

ow Mach by using the incompressible scaling for pressure in the 

ompressible Navier–Stokes equations. Li and Gu (2008) proposed 

n all-speed Roe-type scheme and its asymptotic analysis of the 

ow Mach behavior. They perform preconditioning of the Roe-type 

hock-capturing schemes by scaling the eigenvalues of the Jaco- 

ian matrix. LeMartelot et al. (2013) demonstrated the methodol- 

gy to simulate liquid and liquid-gas flows at all-speeds. They ex- 

end the preconditioning variant of Guillard and Viozat (1999) for 

ulti-phase flows that conserves energy and the phase transition 

s achieved in a thermodynamically consistent way. 

In the present work, we extend the methodology of 

nanaskandan and Mahesh (2015) based on a compressible 

omogeneous mixture model to address the acoustic stiffness 

n cavitating flows. The method is parallel, unstructured and 

as shown promising results for the large scale cavitation in 

he developed cavitation regimes (e.g. Bhatt and Mahesh, 2020; 

nanaskandan and Mahesh, 2016a ). The goal of the present work 

s to allow the methodology to simulate wetted conditions, in- 

ipient cavitation/cavitation inception calculations that typically 

equire low free-stream nuclei, and consequently the solution 
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nvolving low Mach regions in the flow. We present a numerical 

pproach based on the preconditioning and DTS to enable such 

alculations. The shock-capturing based on the characteristic-based 

ltering is modified by following the all-speed approach suggested 

y Li and Gu (2008) for Roe-type schemes. For constructing the 

ime-derivate matrix, we use the strategies of pressure-based 

lgorithms (e.g. Lindau et al., 2001 ). The current methodology 

iffers from the prior studies on the preconditioning of multi- 

hase homogeneous mixture system in the following ways; (i) 

he preconditioning that accomodates matrix dissipation in the 

hock capturing scheme alongside the traditional time-derivative 

reconditioning matrix, (ii) a use of fully-compressible formulation 

hat uses a density-based solver (including compressible viscous 

uxes), and (iii) use of conserved variables for physical time 

erivative and shock-capturing. The paper is organized as follows. 

he governing equations and the physical model is described 

n Section 2 . The details of the preconditioning methodology 

re discussed in Section 3 . The numerical experiments for the 

roblems of interest are discussed in Section 4 . Finally, the paper 

s summarized in Section 5 . 

. Governing equations and physical model 

We use the homogeneous mixture approach where the mix- 

ure of water and vapor is considered as a single compressible 

edium. We assume mechanical equilibrium (i.e. each phase has 

he same pressure as the cell pressure and slip velocity between 

he phases is not considered) and thermal equilibrium (i.e. temper- 

ture of each phase is the same as the cell temperature). Sub-grid 

cale bubble dynamics and surface tension effects are neglected. 

n hydrodynamic cavitation, the high specific heat capacity of the 

ater, results in only minor temperature fluctuations. Hence, an 

sothermal formulation is used to reduce simulation time. Thus, 

he formulation somewhat differs from Gnanaskandan and Ma- 

esh (2015) , as the energy equation is not considered here. The 

overning equations are the compressible Navier–Stokes equations 

or the mixture quantities along with the transport equation for 

apor mass fraction: 

∂ρ

∂t 
= − ∂ 

∂x j 
(ρu j ) , 

∂ρu i 

∂t 
= − ∂ 

∂x j 
(ρu i u j + pδi j − σi j ) , 

∂ρY v 

∂t 
= − ∂ 

∂x j 
(ρY v u j ) + S e − S c . 

(1) 

ere ρ, u i and p are density, velocity, and pressure of the mixture 

espectively, and Y v is the vapor mass fraction. The mixture density 

s defined as 

= ρl (1 − αv ) + ρv αv , (2) 

here ρl and ρv are densities of liquid and vapor respectively, and 

v is the volume fraction of vapor. Volume fractions of each con- 

tituent phase are related to their respective mass fractions by 

l (1 − αv ) = ρ(1 − Y v ) and ρv αv = ρY v . (3) 

he system is closed using a mixture equation of state obtained us- 

ng a stiffened equation of state for the liquid, and ideal gas equa- 

ion of state for vapor: 

p = Y v ρR v T + (1 − Y v ) ρK l T 
p 

p + P c 
, (4) 

here K = 2684 . 075 J/(Kg K) and P c = 786 . 333 × 10 6 Pa are the
l 

3 
onstants associated with the equation of state for the liquid. The 

arameters were derived by Gnanaskandan and Mahesh (2015) to 

atch speed of sound in liquid at a prescribed density to the NIST 

ata. Gnanaskandan and Mahesh (2015) also validated the thermo- 

ynamic model for a variety of problems including sheet to cloud 

avitation. R v = 461 . 6 J/(Kg K) is the specific gas constant for equa-

ion of state of vapor obtained from Saito et al. (2007) . The viscous

tress tensor ( σi j ) is given by 

i j = μ

(
∂u i 

∂x j 
+ 

∂u j 

∂u i 

− 2 

3 

∂u k 

∂x k 
δi j 

)
, (5) 

here the mixture viscosity is defined as 

= μl (1 − αv )(1 + 2 . 5 αv ) + μv αv , and (6) 

l and μv are the dynamic viscosity of water and vapor respec- 

ively. S e and S c are source terms for evaporation of water and con- 

ensation of vapor and are given by 

 e = C e α
2 
v (1 − αv ) 

2 ρl 

ρg 

max ((p v − p) , 0) √ 

2 πR g T 
, (7) 

 c = C c α
2 
v (1 − αv ) 

2 max ((p − p v ) , 0) √ 

2 πR g T 
, 

here p v = 2 . 3 kPa is the vapor pressure. C e (1 /m ) and C c (1 /m ) are

he empirical constants based on the interfacial area as defined by 

aito et al. (2007) . 

The isothermal mixture speed of sound is obtained by taking 

he derivative of the mixture equation of state (4) with respect to 

at constant T. The expression for mixture sound speed is given 

n Appendix A . Note that the isothermal speed of sound is chosen 

o keep consistency with the isothermal assumption in the gov- 

rning equations. The change in the speed of sound with gaseous 

hase volume fraction at a temperature of 298 K and a pressure of 

.1 MPa obtained from the computations is compared to the exper- 

mental data of Karplus (1957) in the Fig. 1 . Note the good agree-

ent with experiments in the mixture region. The effect of gas 

olume fraction in changing the acoustic characteristics of the wa- 

er is evident by the orders of magnitude drop in the sound speed. 

he derivation of sound speed in the Eq. (A.1) does not account for 

he variation in Y v , which implies no mass transfer between the 

hases. Hence, it is considered as the frozen speed of sound. Alter- 

atively, if instantaneous mass transfer is assumed, then it is called 

he equilibrium speed of sound. Due to the finite rate of phase 

hange, the speed of sound in a water-vapor mixture is lower 

han the frozen sound speed limit and higher than the equilibrium 

peed of sound limit ( Franc and Michel, 2006 ). Sound speed in 

uch cases depends on the accurate rate of phase change, subgrid- 

cale bubble dynamics, and non-condensable gas nuclei. Hence, it 

ften depends on the problem. Analytical expressions for the speed 

f sound are available only in the limit of no mass transfer (i.e. 

rozen speed of sound) and equilibrium mass transfer (i.e. equi- 

ibrium speed of sound) ( Franc and Michel, 2006 ). Bhatt and Ma- 

esh (2020) showed very good agreement with the Ganesh et al. 

2016) experiments for the bubbly shock propagation speed and 

apor void fraction data using the frozen speed of sound. Hence, 

n this work, we retain the frozen speed of sound for our simula- 

ions. Note that the eigenvalues of the preconditioned convective 

acobian also yield the frozen speed of sound; and are therefore, 

onsistent with the numerical modeling presented in Section 3 . 
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. Preconditioning with dual-time stepping 

.1. Vector form of the governing equations 

The governing equations ( Eq. (1) ) are recast in the vector form 

s: 

∂U 

∂t 
+ 

∂F j 

∂x j 
= S, where 

U = 

⎛ 

⎜ ⎜ ⎝ 

ρ
ρu 

ρv 
ρw 

ρY v 

⎞ 

⎟ ⎟ ⎠ 

, F j = F c 
j 

+ F v 
j 
, 

F c 
j 

= 

⎛ 

⎜ ⎜ ⎝ 

ρu j 

ρuu j + pδ1 j 

ρv u j + pδ2 j 

ρwu j + pδ3 j 

ρu j Y v 

⎞ 

⎟ ⎟ ⎠ 

, F v 
j 

= 

⎛ 

⎜ ⎜ ⎝ 

0 

σ1 j 

σ2 j 

σ3 j 

0 

⎞ 

⎟ ⎟ ⎠ 

, and 

S = 

⎛ 

⎜ ⎜ ⎝ 

0 

0 

0 

0 

S e − S c 

⎞ 

⎟ ⎟ ⎠ 

. 

(8) 

ere, U is the vector of conserved variables, F is the flux vector, F c 

s the convective part of the flux vector, F v is the viscous part of 

he flux vector, and S is the source vector. δi j is the Kronecker delta 

unction. For solving unsteady problems using preconditioning, a 

seudo-time derivative term is added to the Eq. (8) . Precondition- 

ng is applied to the pseudo-time derivative to preserve the time 

ccuracy of the unteady problem. The derivative term is written in 

erms of the time derivative matrix as: 

∂Q 

∂τ
+ 

∂U 

∂t 
+ 

∂F j 

∂x j 
= S, where � = 

∂U 

∂Q 

, 

 = 

⎛ 

⎜ ⎜ ⎝ 

p 
u 

v 
w 

Y v 

⎞ 

⎟ ⎟ ⎠ 

, and � = 

⎛ 

⎜ ⎜ ⎝ 

ρp 0 0 0 ρ
Y v 

uρp ρ 0 0 uρ
Y v 

v ρp 0 ρ 0 v ρ
Y v 

wρp 0 0 ρ wρ
Y v 

Y v ρp 0 0 0 Y v ρY v 
+ ρ

⎞ 

⎟ ⎟ ⎠ 

. 

(9) 

ere, Q is the primitive variable vector. Different choices of the 

rimitive variables are possible (e.g. Kunz et al., 20 0 0; Lindau 

t al., 2001; Venkateswaran et al., 2002 ). Lindau et al. (2001) and 

enkateswaran et al. (2002) have shown that the choice of ei- 

her α or Y v as primitive variable leads to identical eigenvalues 

f the system. Here, we choose p and Y v along with the velocity 

omponents as the primitive variables. � is the Jacobian matrix 

pecifying the changes in the conserved variables with respect to 

he primitive variables. ρp = 

∂ρ
∂ p 

| 
T 
, which is inverse of the square 

f isothermal speed of sound ( 1 
c 2 

). Similarly, ρ
Y v 

= 

∂ρ
∂Y v 

| 
T 

. Expres- 

ions for these derivatives are given in Appendix A . The eigen- 

alues of the system of equation ( Eq. (8) ) can be obtained from

he matrix A � = �−1 A, where A = 

∂F 
∂Q 

is the convective flux Jaco- 

ian with respect to the primitive variable vector Q . The matri- 

es A, �−1 and A � are given in Appendix B . The eigenvalues of A �

re λ� = [ V n , V n , V n , V n − c, V n + c] . Here, V n is the velocity normal

o the face. Note that in the low Mach regions, V n is very small

ompared to c. Hence, the condition number of the matrix A � is 

ery high, which leads to the acoustic stiffness. This is a typical 

ondition in the water with very low vapor nuclei. 

.2. Preconditioning 

Time derivative preconditioning ( Turkel, 1999 ) is used for the 

roper conditioning of A � . ρp in the � matrix is modified as ρ
′ 
p to 
4 
onstruct the preconditioned time derivative matrix �p as: 

p = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

ρp ′ 0 0 0 ρ
Y v 

uρp ′ ρ 0 0 uρ
Y v 

v ρp ′ 0 ρ 0 v ρ
Y v 

wρp ′ 0 0 ρ wρ
Y v 

Y v ρp ′ 0 0 0 Y v ρY v 
+ ρ

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (10) 

ote that the rest of the elements of the �p matrix are the same 

s �. Here, ρ
′ 
p = 

1 

U 2 ∞ 

( Lindau et al., 2001 ). Note that for ρ
′ 
p various

ther preconditioners can also be used (e.g. Venkateswaran et al., 

002; Ahuja et al., 2001 ). The eigenvalues of the preconditioned 

ystem can be obtained from the matrix A p� = �−1 
p A . The matrices 

−1 
p and A p� are given in Appendix B . The eigenvalues of A p� are 

p� = [ V n , V n , V n , 
1 
2 (V n (1 + 

c 
′ 2 

c 2 
) −

√ 

V 2 n (1 − c 
′ 2 

c 2 
) 2 + 4 c 

′ 2 ) , 1 2 (V n (1 + 

c 
′ 2 

c 2 
) + 

√ 

V 2 n (1 − c 
′ 2 

c 2 
) 2 + 4 c 

′ 2 )] , where c ′ is the modified speed of 

ound based on ρ
′ 
p = 

1 

c 
′ 2 . Note that all the eigenvalues are of the 

rder V n ; when c 
′ 2 = 1 /ρ

′ 
p = U 

2 ∞ 

is used for the preconditioning.

ence, the matrix A p� is well conditioned. Note that the pseudo- 

ime derivative vanishes as one marches to the next time step in 

he physical-time. Hence, time accuracy is preserved when solving 

nsteady problems. 

.3. Time marching with DTS 

The governing equation ( Eq. (9) ) after finite-volume integration 

nd simplifications is given as, 

p 
∂Q 

∂τ
+ 

∂U 

∂t 
= R (U) where R (U) = − 1 

V 

∫ 
S 

F j n j d S + 

1 

V 

∫ 
V 

Sd V . 

(11) 

ere, V is the volume and S is the surface area of the cell. The 

ime marching is performed using a DTS procedure (e.g. Vatsa and 

urkel, 2003; Hsu and Jameson, 2002 ), where the physical-time 

erivative is discretized using a second order backward differenc- 

ng ( BDF-2 ) and the pseudo-time derivative is discretized using 

he explicit Euler. Alternatively, a fourth order Runge–Kutta ( RK-4 ) 

ethod was considered for discretizing the pseudo-time derivative. 

owever, overall cost of computing 4 stages of RK-4 outweighed 

he CFL gain compared to the single step of the explicit Euler. Also, 

he explicit Euler is chosen for the simplicity of the preconditioned 

TS framework. Indicating the current physical-time with ‘ n ’ and 

he pseudo-time with ‘ m ’, the discretized form of the equation is 

iven as: 

p 
Q 

m +1 − Q 

m 

�τ
+ 

3 U 

n +1 − 4 U 

n + U 

n −1 

2�t 
= R (U 

m ) . (12) 

ere, U 

n +1 is unknown. It is treated implicitly with respect to 

seudo-time by considering it at m + 1 . Following the linearization 

 

m +1 = U 

m + �τ� �Q 
�τ , the Eq. (12) can be written as: 

�p + 

3�τ

2�t 
�

)
�Q 
�τ = R 1(U 

m ) , where 

R 1(U 

m ) = −
(

3 U 

m − 4 U 

n + U 

n −1 

2�t 

)
+ R (U 

m ) . 

(13) 

ere, �Q = Q 

m +1 − Q 

m . The matrices on the left-hand side can 

e combined as �ip = �p + 

3�τ
2�t 

�. The pseudo-time marching is 

erformed by inverting the matrix �ip . �−1 
ip 

is given in the 

ppendix B . After the pseudo-time iterations are converged, the 

rimitive variables are updated as Q 

n +1 = Q 

m +1 . Subsequently, the 

onserved variables are obtained from the primitive variables. 
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.4. Shock capturing 

Guillard and Viozat (1999) showed that preconditioning of the 

umerical dissipation term is necessary for the accurate scaling of 

he pressure fluctuations of the discrete system. They performed 

symptotic analysis of the compressible Euler equation discretized 

sing Roe’s dissipation scheme, and proposed preconditioning of 

he numerical dissipation tensor to recover the correct scaling 

f the pressure. Turkel (1999) discusses various preconditioners 

or artificial dissipation terms. Turkel (1999) shows that different 

hoices for variables and preconditioners can be used in the time 

erivative matrix and the artificial dissipation term. Also, it is sug- 

ested that if one wishes to capture shocks, the fluxes be evalu- 

ted in terms of conserved variables ( U) and subsequently precon- 

itioned. Hence, for shock capturing the conservative variables are 

etained. 

The convective fluxes can be written as the sum of the central 

art and the dissipation part as: 

 

c = F c c + F c 
d 
. (14) 

ere, F c c is the central part, which is discretized using a symmetric 

on-dissipative finite volume scheme, where fluxes at a cell face 

re given by 

f c = 

φicv 1 + φicv 2 

2 

+ 

1 

2 

(∇φ| icv 1 · �x 

icv 1 + ∇φ| icv 2 · �x 

icv 2 ) , (15) 

here �x icv 1 = x f c − x icv 1 , and ∇φ| icv 1 denotes gradient defined 

t icv 1 , which is computed using a least-squares method. ‘ icv 1 ’
s the current cell, ‘ icv 2 ’ is the neighbouring cell, and ‘ f c’ is the

ommon face. The viscous fluxes are split into the compressible 

nd the incompressible contributions, and treated separately. See 

 Gnanaskandan and Mahesh, 2015 ) for the details. 

F c 
d 

is the dissipation part, which is treated using the charac- 

eristic based filtering ( Yee et al., 1999 ). Originally, the method 

as developed by Yee et al. (1999) for ideal gases on structured 

rids. Park and Mahesh (2007) extended this to unstructured grids. 

nanaskandan and Mahesh (2015) extended this to the mixture of 

uids and the mixture equation of state used in the present work. 

hey implemented the methodology in a predictor-corrector man- 

er, where the filtering is applied in the corrector step. Alterna- 

ively, the filtering can also be directly applied for the dissipative 

art of the flux in a single step as discussed in Yee et al. (1999) . In

he present work, we compute both the central part and the dis- 

ipation part in a single step as shown in the Eq. (14) . It is done

or the simplicity in adopting the fluxes in a DTS framework. The 

ormulation for the characteristic filtering is the same as used in 

nanaskandan and Mahesh (2015) . However, the eigenvalues are 

odified to obtain the proper conditioning at the low Mach num- 

ers. F c 
d 

in the characteristic filtering is of the following form: 

 

c 
d f c 

= 

1 

2 

R f c  f c . (16) 

ere, R f c is the matrix of right eigenvectors of the Jacobian B = 

∂F 
∂U 

.

t is computed at the face using the Roe average of the variables 

rom the left and the right cell-centered values. The matrices R, 

 

−1 and B are given in the Appendix of Gnanaskandan (2015) . ∗
f c 

s a vector, lth component of which, φ∗l , is given by 

∗l 
f c = kθ l 

f c φ
l 
f c , (17) 

here k is an adjustable parameter and θ f c is Harten’s switch func- 

ion, given by 

θ f c = 

√ 

0 . 5( ˆ θ2 
icv 1 + 

ˆ θ2 
icv 2 ) , 

ˆ θicv 1 = 

| β f c | − | β f 1 | 
| β f c | + | β f 1 | , 

ˆ 
icv 2 = 

| β f 2 | − | β f c | 
| β f 2 | + | β f c | . (18) 
5 
ere, β f = R −1 
f 

(U icv 2 − U icv 1 ) is the difference between charac- 

eristic variables across the face. q For φl , the Harten–Yee to- 

al variation diminishing (TVD) form is used as suggested by 

ee et al. (1999) : 

l 
f c 

= 

1 

2 

�(a l f c )(g l icv 1 + g l icv 2 ) − �(a l f c + γ l 
f c ) β

l 
f c , 

γ l 
f c 

= 

1 

2 

�(a l 
f c 
)(g l 

icv 2 − g l 
icv 1 ) β

l 
f c 

(β l 
f c 
) 2 + ε

, 

(19) 

here ε = 10 −7 , �(z) = 

√ 

δ + z 2 ( δ being 1 / 16 ) is introduced for

ntropy fixing and a l 
f c 

is an eigenvalue of the Jacobian matrix B . 

B has the set of eigenvalues λB = [ V n , V n , V n , V n − c, V n + c] . Note

hat the matrix is ill-conditioned in the low Mach limit. One way 

o rectify this is to use a typical low-speed preconditioner (e.g. 

eiss and Smith, 1995 ). This works well in the incompressible 

imit. However, for cavitating flows Mach numbers can range from 

he extremely low values in the water to the supersonic regions in 

he mixture. Hence, in the present work, we use an all-Mach pre- 

onditioning approach proposed by Li and Gu (2008) . The imple- 

entation of this approach is straight-forward as it only involves 

hanges in the eigenvalues of B, keeping both the Jacobian matrix 

nd the eigenvector matrix the same. Li and Gu (2008) discusses 

his in detail. Following that, we modify the eigenvalues as: 

λB = [ V n , V n , V n , V n − f (M) c, V n + f (M) c] , where 

f (M) = min (M 

2 , 1) . 
(20) 

ere, f (M) is a function of local Mach number that satisfies the 

ollowing three criteria: 

0 < f (M) < 1 when 0 < M < 1 

f (M) → 0 when M → 0 

f (M) = 0 when M > = 1 

The limiter function g icv is computed using the minmod 

imiter. Park and Mahesh (2007) and Gnanaskandan and Ma- 

esh (2015) proposed a modification to the Harten switch to ac- 

urately represent under-resolved turbulence for single phase and 

ulti phase flow mixtures respectively by multiplying θ f c with θ� 
f c 

iven by 

θ� 
f c 

= 

1 

2 

(
θ� 

icv 1 + θ� 
icv 2 

)
+ | (αicv2 − αicv1 ) | , (21) 

� 
icv 1 = 

(∇ · u ) 2 
icv 1 

(∇ · u ) 2 
icv 1 + �2 

icv 1 + ε
. 

.5. Rotating frame of reference 

For simulating flow over a propeller in Section 4.3 , we use ro- 

ating frame of reference approach. The governing Eqs. 1 are fil- 

ered for LES and the sub-grid terms are modeled using the Dy- 

amic Smagorinsky Model (DSM) ( Moin et al., 1991 ). For rotating 

rame of reference we use absolute velocity formulation as dis- 

ussed in Bhatt and Mahesh (2019) . The governing Eq. (1) after LES 

ltering can be written in rotating frame of reference in terms of 

bsolute velocity as: 

∂ ρ ˜ u i 

∂t 
= − ∂ 

∂x k 
( ρ ˜ u i ̃  u k + p δik − ˜ σik − τik ) (22) 

+ 

∂ 

∂x k 

(
ρ ˜ u i εk jl w j x l 

)
+ ρεi jk w j u r k . 

ere, w is angular velocity of rotating frame of reference. Abso- 

ute velocity u is related to the velocity in rotating reference frame 

 u r ) as u = u r + εi jk w j x k . Eq. (22) is solved in rotating frame of ref-

rence in terms of absolute velocity, therefore it does not invole 

ny contribution due to centrifugal force. This also simplifies the 
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Table 1 

Details of the simulations conducted for the flow over a cylinder at Re = 200 . Here, αv ∞ is the free-stream nuclei 

content, and M ∞ is the free-stream Mach number. 

Cases simulated ( αv ∞ ) M ∞ Description 

Case-O 10 −2 0.01 Original solver - no preconditioning ( Gnanaskandan and Mahesh, 2015 ) 

Case-OLM 10 −6 0.001 Original solver at low Mach 

Case-P 10 −2 0.01 Preconditioning with DTS 

Case-PLM 10 −6 0.001 Preconditioning with DTS at low Mach 

Case-PRLM 10 −6 0.001 Preconditioning with DTS with RS at low Mach 
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oundary condition implementation as it is now applied to abso- 

ute velocity directly. Note that this formulation adds additional 

ontribution due to the Coriolis force and modifies the advection 

erms in the governing Eq. (1) . Changes in the advection terms 

ubsequently requires modification to the shock capturing of the 

ethod. This additional contribution due to rotation indeed only 

hanges the diagonal of the jacobian matrix. Thus the precondi- 

ioned eigenvalues in Eq. (20) can be modified as: 

B = [ V 

′ 
n , V 

′ 
n , V 

′ 
n , V 

′ 
n − f (M) c, V 

′ 
n + f (M) c] . (23)

ere, V 
′ 
n = V n − (w × r) . ̂  n , where r is the radial vector from axis of

otation and ˆ n is the unit normal vector. 

. Results 

We assess the methodology using the following numerical ex- 

eriments. First, we consider the unsteady flow over a cylinder un- 

er wetted conditions. The problem is used to assess the precon- 

itioning and DTS framework for the unsteady low Mach number 

roblem in water. Various aspects of the simulation such as total 

un-time, shedding frequency, pressure, and velocity field are con- 

idered for comparison and analysis. Next, the background pressure 

s dropped to examine cavitation inception in the cylinder config- 

ration. Here, the method is assessed for its ability to handle the 

mall scale vapor regions at the low free-stream nuclei concentra- 

ion. Finally, the ability of the method to extend to the complex 

roblems is assessed by doing the LES of flow over a marine pro- 

eller under wetted conditions. The calculations were previously 

ery expensive and formidable due to the convergence issues at 

ow Mach numbers. In the simulations, we discuss run-time, the 

ffect of free-stream nuclei on the propeller loads, and comparison 

o both the experiments and the incompressible solver results. 

.1. Unsteady flow over a cylinder 

We simulate the flow over a circular cylinder at Reynolds num- 

er (Re) = 

ρ∞ 

U ∞ 

D 
μ∞ 

= 200 , where the subscript ‘ ∞ ’ represents the

ree-stream values and D is the cylinder diameter. The domain 

ize and mesh used in the present study are the same as those 

onsidered in Brandao et al. (2020) and Gnanaskandan and Ma- 

esh (2016b) . Gnanaskandan and Mahesh (2016b) performed a grid 

efinement study and showed that the time evolution of the drag 

oefficient and the profiles of the mean and the fluctuations in 

he void fraction show a good agreement among the chosen grids. 

o avoid the reflection of pressure waves from the boundaries, a 

arge domain of 50 D is used. Also, we apply acoustically absorb- 

ng sponge layers at the boundaries ( Colonius, 2004 ) to further 

educe any reflections. The simulations are initialized with a spa- 

ially uniform void fraction of vapor ( αv ∞ 

) as a background nuclei. 

he flow Mach number is changed by choosing different values 

f free-stream nuclei. Table 1 summarizes the simulated cases. All 

he cases are simulated at a cavitation number ( σ ) = 

p−p v 
0 . 5 ρ∞ 

U 2 ∞ 

= 5 ,

uch that no cavitation is observed. Only the free-stream nuclei 
6 
re varied that change the free-stream Mach number, and conse- 

uently the acoustic stiffness. The changes in Mach number are 

ithin the incompressible limit, thus, the unsteady vortex shed- 

ing is expected to be identical for the considered cases. 

Fig. 2 shows the instantaneous snapshots of ˜ u and ˜ p for 3 

ases: (i) original solver of Gnanaskandan and Mahesh (2015) at 

igh Mach number (Case-O), (ii) original solver at low Mach num- 

er (Case-OLM) and (iii) preconditioning with dual time stepping 

t low Mach number (Case-PLM); respectively in the Fig. 2 (a)–

c). Here, ˜ u = u/U ∞ 

is the non-dimensional axial component of 

he velocity, and ˜ p = 

p 

ρ∞ 

U 2 ∞ 

is the non-dimensional pressure. For 

he Case-O, the sinusoidal velocity field and the pockets of low- 

ressure cores of the vortices indicate that the compressible solver 

s reasonably capturing the vortex shedding at this Mach number. 

owever, at low Mach numbers, for Case-OLM, the pressure field 

s completely intangible. This is due to the incorrect scaling of the 

ressure field for the compressible solver in the incompressible 

imit ( Turkel, 1999 ). Interestingly, the Case-PLM shows that with 

he use of preconditioning, the accurate pressure field is retained 

ven at low Mach number (Case-PLM). 

We consider Case-O as the baseline to compare the Case-PLM. 

he profiles of the mean pressure and the root-mean-squared 

 RMS ) pressure are chosen for the comparison and shown in the 

igs. 3 and 4 respectively. Very good agreement is observed in both 

he mean pressure and the RMS pressure with the Case-O. This 

emonstrates the ability of the methodology with preconditioning 

o capture the accurate pressure field at low Mach numbers. 

The Strouhal number for the vortex shedding is obtained 

s St = 

f D 
U ∞ 

. Here, ’ f ’ is the vortex shedding frequency ob- 

ained from the Fast Fourier Transform ( FFT ) of the time-history 

f the drag coefficient. It is compared to the canonical study 

f Williamson (1996) in the Table 2 . Note good agreement 

ith the ( Williamson, 1996 ) for both the Case-O and Case- 

LM. Interestingly, the Case-PLM shows a better comparison to 

illiamson (1996) than Case-O. The identical values the St for both 

ase-P and Case-PLM indicates that the St is not affected by the 

ow Mach number when the preconditioning is used. 

In addition to improving the solution accuracy, precondition- 

ng significantly reduces computer time. The Table 3 compares the 

omputer time for all the cases simulated. At low Mach number, 

he time step for the compressible solver drops by a factor of 50 

rom 5 × 10 −5 to 1 × 10 −6 . This increases the total run-time from 

3.5 min to 1 day for 1 cycle of vortex shedding. Therefore, we 

an see that the acoustic stiffness due to disparities in eigenval- 

es at low Mach numbers significantly affects the run-time. The 

coustic stiffness is eliminated with the use of preconditioning as 

bserved in Table 3 for Case-P, Case-PLM, and Case-PRLM. A sig- 

ificantly higher physical-time step of 1 × 10 −2 can be used with 

he preconditioning. Also, the physical-time step is independent of 

he Mach number. The calculations can be further accelerated by 

sing the residual smoothing ( RS ) (e.g. Vatsa and Turkel, 2003 ) for

he convergence of the pseudo-time step. The RS increases pseudo- 

ime step by a factor of 3 from 2 × 10 −3 to 6 × 10 −3 and reduces

he total run-time by half. 
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Fig. 2. Unsteady flow over a cylinder at Re = 200 . (a) Case-O, (b) Case-OLM, and (c) Case-PLM. Instantaneous snapshots of ˜ u (on the left), and ˜ p (on the right). 

Table 2 

Comparison of the St for the flow over a cylinder at Re = 200 . St is computed from the 

frequency obtained from the Fast Fourier Transform ( F F T ) of the time-history of the 

drag coefficient. 

Case-O Case-OLM Case-P Case-PLM ( Williamson, 1996 ) 

St = f D/U ∞ 0.198 × 0.184 0.184 0.182 

7 
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Fig. 3. Comparison of the mean pressure profiles ( p ) for the unsteady flow over a cylinder at Re = 200 . (a) Contours of p for Case-PLM, and (b) Case-O. (c) Profiles extracted 

along the y -axis at x/D = −1 . 0 , 1.0, 2.0 and 3.0. 

Table 3 

Computational time for the cases simulated for the flow over a 

cylinder at Re = 200 . Here, �t is the physical-time step, �τ is the 

pseudo-time step, and n itr is the number of pseudo-time iterations 

per physical-time step. 

Cases simulated �t �τ run-time/cycle n itr 

Case-O 5 × 10 −5 – 33.5 min –

Case-OLM 1 × 10 −6 – 1 day –

Case-P 1 × 10 −2 2 × 10 −3 6.18 min 30 

Case-PLM 1 × 10 −2 2 × 10 −3 5.6 min 30 

Case-PRLM 1 × 10 −2 6 × 10 −3 3.7 min 11 

4
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.2. Cavitation inception over a cylinder 

In this section, we consider the flow at σ = 1 . 8 . The only differ-

nce from the calculations presented in Section 4.1 is that the free- 

tream pressure is dropped to allow cavitation; thereby, changing 

from 5 to 1.8. For σ lower than 1.8, Brandao et al. (2020) dis- 

uss the developed cavitation regimes in detail. They show that 

t σ = 1 , the cavitation is observed in the vortex core as the lo-

al pressure inside the core drops below vapor pressure; this is 
8 
ermed as the cyclic regime. If σ is further reduced to 0.7, the 

ressure in the near wake of the cylinder also drops below va- 

or pressure. This leads to transitional shedding by condensation 

hock propagation. Given this prior work, the current development 

llows us to extend to higher σ close to cavitation inception, with 

he significant time savings. The details of the flow conditions are 

iven in Table 4 and the corresponding computer time require- 

ents are given in Table 5 . Note that changing the cavitation num- 

er does not affect the time step and the overall run-time when 

reconditioning is used (compare the case in Table 5 to the cases 

n Table 3 ). A significant saving in the run-time over the original 

olver (compare Case-OLM with Case-I) is obtained at low Mach 

umber. 

The solution is visualized using the instantaneous snapshots 

f Y v and ˜ p . Three snapshots are chosen to cover a single vor- 

ex shedding cycle from the bottom of the cylinder. ˜ p is plotted 

n a log scale from 0.01 to 1. The corresponding non-dimensional 

alue of the vapor pressure is 0.011. Hence, the blue regions ob- 

erved at the bottom of the cylinder surface in the Fig. 5 (a) in-

icate the local pressure lower than the vapor pressure. Unlike in 

he cyclic cavitation regime discussed by Brandao et al. (2020) at 

= 1 ; here at σ = 1 . 8 , the regions within the vortex core yield
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Fig. 4. Comparison of the RMS pressure profiles ( p ′ 2 ) for the unsteady flow over a cylinder at Re = 200 . (a) Contours of p ′ 2 for Case-PLM, and (b) Case-O. (c) Profiles extracted 

along the y -axis at x/D = −1 . 0 , 1.0, 2.0 and 3.0. 

Table 4 

Details of the simulations conducted for the cavitation inception over a cylinder. Here, αv ∞ is the free- 

stream nuclei content, and M ∞ is the free-stream Mach number. 

Case simulated ( αv ∞ ) M ∞ Re σ Description 

Case-I 10 −6 0.001 200 1.8 Preconditioning with DTS with RS at low Mach 

Table 5 

Computational time for the simulation of the cavitation incep- 

tion over a cylinder. Here, �t is the physical-time step, and �τ

is the pseudo-time step. 

Cases simulated �t �τ run-time/cycle 

Case-I 1 × 10 −2 2 × 10 −3 4.17 min 

l

t

s

q

l  

t

t

r

Table 6 

Details of the simulations conducted for the LES of high Re flo

is the free-stream nuclei content, and M ∞ is the free-stream 

Cases simulated ( αv ∞ ) M ∞ Description 

Case-O 10 −2 0.03 Original solver - no 

Case-OLM 10 −4 0.005 Original solver at low

Case-PRLM 10 −6 0.002 Preconditioning with

9 
ocal pressure higher than the vapor pressure. This suggests that 

he vapor is incepted on the cylinder surface and advected down- 

tream along the shear-layer into the vortex core. In the subse- 

uent snapshots, after the vortex is shed from the bottom, the 

ow pressure now appears on the top of the cylinder ( Fig. 5 ) con-

inuing the periodic shedding. The St remains unchanged from 

he non-cavitation conditions as shown in Table 2 . Overall, the Y v 
emains of the O (10 −7 ) , which is 3 orders of magnitude lower 
w over a propeller under wetted conditions. Here, αv ∞ 
Mach number. 

preconditioning ( Gnanaskandan and Mahesh, 2015 ) 

 Mach 

 DTS with RS at low Mach 
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Fig. 5. Cavitation inception on the cylinder at Re = 200 and σ = 1 . 8 . (a) Beginning of the vortex shedding, (b) t = 0 . 42 cycle and (c) t = 0 . 84 cycle. Instantaneous snapshots 

of Y v (on the left), and ˜ p (on the right). 
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han what was observed in the developed cavitation regimes 

 Brandao et al., 2020 ). 

.3. LES of flow over a propeller under wetted conditions 

We simulate flow over a five-bladed marine propeller P4381 

t the design advance ratio, J = 0 . 89 , Re = 894 , 0 0 0 , and σ = ∞
i.e. under wetted conditions). The advance ratio is defined as 

 = 

U ∞ , where n is the rotation rate and D is the propeller di-
nD 

10 
meter. Bhatt and Mahesh, (2019) simulated the flow with the 

bove conditions using the original solver of Gnanaskandan and 

ahesh (2015) . They found that the propeller loads are very sen- 

itive to the free-stream nuclei concentration. Also, they obtained 

loser comparison to the experiments when the free-stream nu- 

lei concentration was reduced from 0.01 (i.e. a typical high nuclei 

oncentration prescribed in the numerical solver to avoid acoustic 

tiffness (e.g. Saito et al., 2007 )) to 0.0 0 01. However, a further re-

uction in the nuclei concentration could not be achieved as it sig- 
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Fig. 6. Contours of the phase averaged pressure field along the x − y plane for Re = 894 , 0 0 0 flow over the P4381 propeller under the wetted conditions. (a) Case-OLM, (b) 

Case-PLM and (c) incompressible MPCUGLES ( Mahesh et al., 2004 ). The flow is from left to right. 
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ificantly reduced the time step and increased the total run-time. 

ere, with the preconditioning and DTS , we show that the calcu- 

ations can be performed at such low free-stream nuclei in a rea- 

onable amount of time. Table 6 summariez the cases considered 

n Bhatt and Mahesh (2019) along with the current simulations. 

The computational domain/grid and boundary conditions are 

ept the same as considered in Bhatt and Mahesh (2019) and 

he preconditioning method is applied here. Bhatt and Ma- 

esh (2019) assessed the grid refinement and numerical dissipa- 

ion from the shock-capturing for this problem. Here, we consider 

he grid consisted of 11,532,735 hexahedral control volumes. We 

pply an acoustically absorbing sponge layer spanning a distance 

f D at the inflow, outflow and, the far-field boundaries to avoid 
i

11 
eflections of pressure waves. We apply pressure Neumann bound- 

ry conditions at the outflow. 

First, we compare the propeller loads obtained from the cur- 

ent simulations to Bhatt and Mahesh (2019) and the experimental 

ata of Boswell (1971) in the Table 7 . The notation used for pro-

eller performance is as follows. The thrust ( T ) is the axial com- 

onent of a force and the torque ( Q) is the axial component of 

he moment of force. Non-dimensional thrust coefficient is defined 

s K T = 

T 
ρn 2 D 4 

and the torque coefficient is defined as K Q = 

Q 

ρn 2 D 5 
. 

orces are averaged over 4 propeller revolutions. Bhatt and Ma- 

esh (2019) showed that a better comparison to the experiments 

an be obtained at lower values of free-stream nuclei. This is ev- 

dent from comparing K T and K Q for Case-O and Case-OLM to 
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Fig. 7. Profiles of the phase averaged pressure field for the Re = 894 , 0 0 0 flow over the propeller P4381 under the wetted conditions. The profiles are extracted along the 

y -axis at x = −0 . 5 D, 0 . 25 D, 0 . 5 D and 1 . 0 D . 

Fig. 8. Profiles of the RMS pressure fluctuations for the Re = 894 , 0 0 0 flow over the propeller P4381 under the wetted conditions. The profiles are extracted along the y -axis 

at x = −0 . 5 D, 0 . 25 D, 0 . 5 D and 1 . 0 D . 

B

t

a

a

i

a

p

p

s

oswell (1971) experiments. Case-OLM shows a better comparison 

o the experiments. The preconditioning allowed the calculations 

t an even lower nuclei concentration (Case-PRLM) (consequently, 

t a very low Mach). The preconditioning case shows a significant 

mprovement in the K Q from the prior study. Overall, both the K T 
12 
nd K Q of the Case-PRLM show a very good comparison to the ex- 

eriments. 

As discussed in Section 4.1 , for low Mach number flows it is im- 

ortant to assess the pressure field obtained from the compressible 

olver. Hence, we compare the mean and the RMS pressure field 
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Table 7 

Comparison of propeller performance 

under the wetted conditions. 

K T K Q 

Case-O 0.257 0.055 

Case-OLM 0.226 0.050 

Case-PRLM 0.227 0.0458 

( Boswell, 1971 ) 0.215 0.045 

Table 8 

Computational time for the cases simulated for the at Re = 

894 , 0 0 0 flow over the propeller p4381 under the wetted con- 

ditions. Here, �t is the physical-time step, and �τ is the 

pseudo-time step. 

Cases simulated �t �τ run-time/cycle 

Case-OLM 2 × 10 −6 – ∼ 2 weeks 

Case-PRLM 5 × 10 −3 1 × 10 −3 ∼ 40 h 

o
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ρ

f the original solver (Case-OLM) and the preconditioned solver 

Case-PRLM) with the incompressible MPCUGLES ( Mahesh et al., 

004 ). The incompressible solver is considered as the baseline 

ince the M ∞ 

is less than 0.01. The contours of the mean pres- 

ure field are visualized in Fig. 6 . For the Case-OLM the horizon- 

al stripes upstream of the propeller, the lack of visibility of the 

ip vortices, and the diffused regions of low pressure close to the 

haft are all indicators of the deteriorated pressure field. This be- 

avior is similar to what was observed for the cylinder case in 

ection 4.1 . As noted earlier, it is due to the incorrect scaling of 

he pressure field for the compressible solver in the incompress- 

ble limit ( Turkel, 1999 ). With the use of preconditioning (Case- 

RLM), the improvement on all the fronts is observed. This is ev- 

dent visually from the comparison of the Case-PRLM to the in- 

ompressible MPCUGLES. The secondary vortices close to the shaft 

f the propeller are better captured in the Case-PRLM. A quantita- 

ive comparison of the mean pressure is obtained by taking pro- 

les along the y -axis at various axial locations as indicated by the 

hite dashed lines in Fig. 6 (a). The profiles are compared in Fig. 7 .

or Case-OLM, even the mean pressure upstream of the propeller 

t x = −0 . 5 D is different from the baseline incompressible MPCU- 

LES. Also, the profile shows oscillations along the y -axis. Both 

ase-PRLM and incompressible MPCUGLES are generally in good 

greement at all the locations. The lower pressures near the shaft 

t x = 0 . 25 D and x = 0 . 5 D for the Case-PRLM are due to the sec-

ndary vortices near the shaft as visualized in the Fig. 6 (b). The 

MS pressure is compared in the Fig. 8 . The pressure fluctuations 

re typically very small for the low Mach number flow. However, 

he Case-OLM shows very high-pressure fluctuations close to the 

haft; particularly at the locations downstream of the propeller 

lade (i.e. x = 0 . 25 D, x = 0 . 5 D and x = D ). Here also, the Case-

RLM is generally in good agreement with the incompressible so- 

ution. 

Finally, we compare the computational time savings when us- 

ng preconditioning as compared to the original solver in the 

able 8 . The preconditioning allows a significantly higher physical- 

ime step of 5 × 10 −3 as compared to the physical-time step of 

 × 10 −6 of the original solver. Although, the overall gain in the 

un-time is not directly proportional to the time step gain as the 

dditional time is needed to converge the pseudo-time derivative 

t each physical-time step. Nevertheless, preconditioning saves the 

un-time significantly from ∼ 2 weeks to ∼ 40 h per cycle. 

. Summary 

A numerical approach based on preconditioning and DTS is 

pplied to a fully compressible (density-based) cavitating solver 
13 
 Gnanaskandan and Mahesh, 2015 ). The methodology is based on 

he homogeneous mixture model and finite rate mass transfer. The 

ime-derivative preconditioning matrix is constructed using the 

ass fraction formulation for the primitive variables. The speed of 

ound is preconditioned based on the free-stream velocity as dis- 

ussed by Lindau et al. (2001) . The preconditioned system of equa- 

ion is shown to be well-conditioned from the resulting eigenval- 

es of the flux-Jacobian matrix. The shock-capturing based on the 

haracteristic-based filtering is modified by following the all-speed 

pproach suggested by Li and Gu (2008) for Roe-type schemes. 

lso, the conserved variables are retained for preconditioning the 

hock-capturing to ensure conservation across shocks and contact 

iscontinuities. 

The method is demonstrated for cavitation inception and wet- 

ed flow conditions over a cylinder at Re = 200 . The limitation of 

he original solver for capturing the pressure field at low Mach 

umber is shown using the instantaneous solution. The flow-field 

s compared to the high Mach number solution as a baseline and 

he shedding frequency is validated with ( Williamson, 1996 ). The 

reconditioning allowed accurate computation of both the mean 

ressure and pressure fluctuations at low values of free-stream 

uclei. Overall, a significant saving in the total run-time from 

1 day/cycle to ∼ 4 min/cycle is obtained using the precondi- 

ioning compared to the original solver. Given the prior work of 

randao et al. (2020) on the developed cavitation over the cylin- 

er, the current development allowed the extension to the cavita- 

ion inception regime. The methodology is demonstrated for flow 

ver a marine propeller under wetted conditions at Re = 894 , 0 0 0

sing the LES. The preconditioning methodology allowed the low 

ree-stream nuclei calculations in a reasonable amount of run- 

ime that were formidable in the earlier study of Bhatt and Ma- 

esh (2019) . A very good comparisons for the thrust and torque 

ith the ( Boswell, 1971 ) experiments is obtained. Also, good com- 

arions of the mean pressure and pressure fluctuations with the 

ncompressible solver ( Mahesh et al., 2004 ) are obtained. 
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ppendix A. Derivatives 

The expressions for the derivatives appearing in the time 

erivative matrix ( Eq. (9) ) are derived by substituting the equation 

f state ( Eq. (4) ) in terms of density, and then taking its derivative

t constant T. They are given as: 

Y v 
= 

∂ρ

∂Y v 

∣∣∣
T 

= ρ2 

(
1 

ρl 

− 1 

ρv 

)
, and 

ρp = 

∂ρ

∂ p 
| 

T 
= 

1 

c 2 

= 

2 p + P c − ρY v RgT − (1 − Y v ) ρK l T 
. 

(A.1) 
(p + P c ) Y v RgT + p(1 − Y v ) K l T 

https://doi.org/10.13039/100000006
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ppendix B. Jacobians and eigenvalues 

The convective flux Jacobian matrix with respect to the primi- 

ive variable vector ( Q) is given as: 

 = 

∂F 

∂Q 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

V n ρp ρn x ρn y ρn z ρ
Y v 

V n 

uV n ρp + n x ρun x + ρV n ρun y ρun z uρ
Y v 

V n 

v V n ρp + n y ρv n x ρv n y + ρV n ρv n z v ρ
Y v 

V n 

wV n ρp + n z ρwn x ρwn y ρwn z + ρV n wρ
Y v 

V n 

Y v V n ρp ρV n n x ρV n n y ρV n n z Y v ρY v 
V n + ρV n 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(B.1) 

he matrix A is evaluated at the cell face. n x , n y and n z are the

nit vectors along x, y and z axis respectively. The inverse of the 

ime derivative matrix ( Eq. (9) ) is given as: 

−1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρ+ ρ
Y v 

Y v 

ρρp 
0 0 0 − ρ

Y v 
ρρp 

− u 
ρ

1 
ρ 0 0 0 

− v 
ρ 0 

1 
ρ 0 0 

− w 

ρ 0 0 

1 
ρ 0 

−Y v 
ρ 0 0 0 

1 
ρ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (B.2) 

inally, the eigenvalues of the system of equation ( Eq. (8) ) can be

btained by computing the Jacobian: 

 � = �−1 A = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

V n 
ρn x 
ρp 

ρn y 
ρp 

ρn z 
ρp 

0 

n x 
ρ V n 0 0 0 

n y 
ρ 0 V n 0 0 

n z 
ρ 0 0 V n 0 

0 0 0 0 V n 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (B.3) 

he eigenvalues of the matrix A � are λ� = [ V n , V n , V n , V n − c, V n +
] , where c is the speed of sound given by Eq. (A.1) . When the

reconditioning is used, ρp in the �−1 matrix is modified to ρ
′ 
p to 

onstruct �−1 
p matrix. The rest of the elements of the �p matrix 

re the same as �. Here, ρ
′ 
p = 

1 

U 2 ∞ 

. The eigenvalues of the precon- 

itioned system can by obtained by computing the modified flux 

acobian matrix given as: 

 p� = �−1 
p A = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρp 

ρ
′ 
p 

V n 
ρn x 
ρp 

ρn y 
ρp 

ρn z 
ρp 

0 

n x 
ρ V n 0 0 0 

n y 
ρ 0 V n 0 0 

n z 
ρ 0 0 V n 0 

0 0 0 0 V n 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (B.4) 

he eigenvalues of the matrix A p � are λp� = 

 V n , V n , V n , 
1 
2 (V n (1 + 

c 
′ 2 

c 2 
) −

√ 

V 2 n (1 − c 
′ 2 

c 2 
) 2 + 4 c 

′ 2 ) , 1 2 (V n (1 + 

c 
′ 2 

c 2 
) + 

 

V 2 n (1 − c 
′ 2 

c 2 
) 2 + 4 c 

′ 2 )] , where c ′ is the modified speed of sound 

ased on ρ
′ 
p = 

1 

c 
′ 2 . Note that all the eigenvalues are of the order 

 n ; when c 
′ 2 = 1 /ρ

′ 
p = U 

2 ∞ 

is used for the preconditioning. When

he physical-time derivative terms are treated in an implicit 

anner, they are combined with the preconditioned pseudo-time 

erivative terms. The resulting time derivative matrix inverse is 
14 
iven as: 

−1 
pi 

= 

(
1 + 

3�τ

2�t 

)−1 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ρ+ ρ
Y v 

Y v 

ρρ
′′ 
p 

0 0 0 − ρ
Y v 

ρρ
′′ 
p 

− u 
ρ

1 
ρ 0 0 0 

− v 
ρ 0 

1 
ρ 0 0 

− w 

ρ 0 0 

1 
ρ 0 

−Y v 
ρ 0 0 0 

1 
ρ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (B.5) 

ere, ρ
′′ 
p = 

ρ
′ 
p + 3�τ

2�t 
ρp 

1+ 3�τ
2�t 

. Note that the eigenvalues of the correspond- 

ng flux Jacobian matrix ( A pi � = �−1 
pi 

A ) are the same as A p� . 
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