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Abstract

This paper develops a dynamic error analysis procedure for the numerical errors arising from spatial discretization in
large-eddy simulation. The analysis is based on EDQNM closure theory, and is applied to the LES of decaying isotropic
turbulence. First, the effects of finite-differencing truncation error, aliasing error and the dynamic Smagorinsky model are
independently considered. The time-evolution of kinetic energy and spectra predicted by the analysis are compared to
actual LES using the Navier–Stokes equations, and good agreement is obtained. The analysis is then extended to simul-
taneously consider all sources of error in a second-order discretely energy conserving, central-difference LES solver. Good
agreement between the analysis and actual LES is obtained. The analysis is used to compare the contribution of the subgrid
model to that of numerical errors, and it is shown that the contribution of the subgrid scale model is much higher than the
numerical errors. The proposed one-dimensional EDQNM-LES model shows potential as a more general tool for the anal-
ysis of numerical error, and SGS model in simulations of turbulent flow.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Large eddy simulation (LES) appears to be a promising tool for the simulation of complex flows of engi-
neering importance [1–3]. Most LES of complex flows use low order (typically second order) finite difference/
volume methods for spatial discretization. An important concern when using finite difference/volume methods
in LES, is whether the subgrid scale (SGS) model can function as intended, in the presence of the numerical
error. Unlike DNS, flow at the smallest resolved scales in LES is still energetic. As a result, LES solutions are
more sensitive to numerical errors than DNS. Therefore, the analysis and control of numerical errors in LES
have been investigated by a number of workers [4–12].
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An error analysis by Ghosal [6] suggests that numerical errors in LES can completely mask the subgrid-
scale model (SGS) contribution. Ghosal’s analysis considers isotropic turbulence, and compares the power
spectral densities of the error terms to the ‘‘exact’’ SGS force in the discrete Navier–Stokes equations. The
turbulence is assumed to follow the von Kármán energy spectrum, and the joint normal hypothesis [13] is
applied. We will refer to Ghosal’s methodology as ‘‘static error analysis’’, since it does not consider the
time-evolution of the solution, and characterizes errors by their own statistical measure. Such comparison
of the power spectra shows that finite differencing error is the dominant error for low-order schemes, which
overwhelms the SGS force at all wavenumbers. Aliasing error is dominant for high-order schemes. Ghosal
showed that this conclusion holds regardless of cutoff wavenumber, and proposed explicit filtering technique
as a remedy to avoid contamination of the solution. Ghosal’s analysis has inspired subsequent studies on the
analysis of numerical errors in LES [9,11,12].

Numerical errors in turbulent channel flow were considered by Kravchenko and Moin [7], who used a
spectral numerical method, and replaced physical wavenumbers in the derivative operators with modified
wavenumbers [22] to approximate the effect of numerical error. This work concluded that for low-order
finite-difference schemes, the high wavenumber part of the spectrum, could be adversely affected by trunca-
tion error, which could reduce the relative contribution of the subgrid model.

Ghosal’s results raise the possibility that low order schemes may not be suitable for LES. However, many
successful LES have been reported using low order (not higher than fourth order) finite difference/volume
schemes (e.g. [5,12,14–16]). A theory which can predict results obtained from actual LES is therefore required.
Development of such a theory is pursued in this paper. An approach similar to [7] is used to introduce numer-
ical error in a spectral LES code for isotropic turbulence. Predictions of kinetic energy decay, and energy spec-
tra from the LES code are used to validate the proposed theory.

A missing element in the static error analysis is the dynamic interaction between numerical errors, the
SGS term and the solution. A dynamic theory should at the very least, involve a transport equation for a
physical quantity and a reliable theoretical closure. This paper uses the kinetic energy transport equation in
wave space; i.e. the energy spectrum evolution equation, to model the dynamic evolution. The nonlinear
term is then closed using the eddy-damped quasi-normal Markovian (EDQNM) theory [17,18]. The
EDQNM theory has been developed for the Navier–Stokes equations; this paper extends it to the LES
equations using the dynamic Smagorinsky model, in the presence of numerical error. Since we solve for
the energy spectrum, the analysis is one-dimensional in space. Since the notion of modified wavenumber
is used to model numerical error, the analysis is general in the choice of spatial discretization. We consider
Fourier, and second-order, staggered grid energy-conserving disretizations in this paper. After validation
against actual LES, the analysis is used to compare the magnitude of the subgrid contribution to that
of numerical error. This comparison suggests a possible justification for the use of low-order, discretely
energy conserving schemes in LES.

The objectives of the present study are therefore, to develop a theoretical model that closely mimics the
actual LES system, and to perform a dynamic analysis of numerical errors using the developed theoretical
model. The paper is organized as follows. In Section 2, theoretical background and numerical methods are
outlined, where EDQNM closure theory is introduced and extended to LES equations adopting SGS model.
Numerical errors are incorporated in the kinetic energy transport equation in the wavespace in Section 3. As
a result, a simple one-dimensional model for the LES code with second order central difference is estab-
lished. The results from error analysis are shown in Section 4. In Section 5, the difference between the pres-
ent analysis and the static error analysis will be highlighted. The paper concludes with a brief summary in
Section 6.

2. Theoretical background

2.1. EDQNM closure

EDQNM theory is discussed in detail in [17,18]. Here, we provide a brief summary in the interests of clarity.
Consider isotropic turbulence in a cubical box X of side L, which obeys the incompressible Navier–Stokes
equations,
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Here, u = (u1,u2,u3) is the solenoidal vector field, m is the molecular viscosity and p is the pressure divided by
density. Throughout this paper, the summation convention is applied to repeated indices unless otherwise
specified. For the convenience of analysis, assume infinite space, or L!1. The Fourier coefficient,
ûiðk; tÞ ¼
1

8p3

Z
X

uiðx; tÞ expð�ik � xÞdx; ð2Þ
where k 2 R3 is the wavevector. This implies that
oûiðk; tÞ
ot

¼ �iP imnðkÞ
Z Z

d3pd3qdðpþ q� kÞûmðp; tÞûnðq; tÞ
� �
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where d is the Dirac delta function, k2 = kiki,Pimn = (knPim + kmPin)/2 and
P ijðkÞ ¼ dij �
kikj

klkl
ð4Þ
is the projection tensor onto the plane perpendicular to k.
Multiplying (3) with ûi(k)* = ûi(�k) and taking the ensemble average, yields the transport equation for the

energy spectrum EðkÞ ¼ 2pk2 ûiðkÞû�i ðkÞ
� �

:
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EðkÞ ¼ 4pk2MijmðkÞ

Z Z
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where Æ æ denotes the ensemble and spherical shell average, ( )* is the complex conjugate, and
Mijm(k) = �iPijm(k). Tijm(k,p,q) ” Æûi(�k)ûj(p)ûm(q)æ is given by its transport equation [19]:
o
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The quadruple nonlinear terms on the r.h.s. of (6) introduce a closure problem which is resolved by introduc-
ing the quasi-normal assumption [6,18]:
hûiðpÞûjðqÞûmðrÞûnðsÞi ¼ dðpþ qÞdðrþ sÞUijðqÞUmnðsÞ þ dðpþ rÞdðqþ sÞUimðrÞUjnðsÞ
þ dðpþ sÞdðqþ rÞUinðsÞUjmðrÞ; ð7Þ
where Uij(k) = Q(k)Pij(k) ” E(k)Pij(k)/(4p k2). Applying (7) to (6) yields
o

ot
þ mðk2 þ p2 þ q2Þ

� �
T ijm ¼ 2dðpþ q� kÞfMjnlðpÞP inðkÞP mlðqÞ � QðkÞQðqÞ

þMmnlðqÞP inðkÞP jlðpÞQðkÞQðpÞ �MinlðkÞP jnðpÞ � P mlðqÞQðpÞQðqÞg
� Lijmðk; p; qÞ: ð8Þ
Thus, Tijm(k,p,q) is obtained as the solution to (8). Note that the joint-normal hypothesis [13] also implies (7).
However, the joint-normal hypothesis assumes zero triple correlation (Tijm = 0), which implies fixed energy
spectrum in the inviscid limit. Whereas, the quasi-normal assumption uses (8) to close the triple correlation
equation.

It is well known [18,20] that the solution of (8) does not guarantee the positive definiteness of E(k). There-
fore, an eddy damping rate lkpq = lk + lp + lq is added to the l.h.s of (8) and ‘‘markovianization’’ [18] is
applied to get
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T ijmðk; p; qÞ ¼ hkpqðtÞLijmðk; p; qÞ; ð9Þ
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A few possibilities exist, for the eddy damping rate [18]. We use
lk ¼ 0:19C3=2
k

Z k

0

n2EðnÞdn

� �1=2

: ð11Þ
Here, Ck is the Kolmogorov constant, which is equal to 1.8 in the present study. Applying (9)–(11), to (5)
closes the kinetic energy equation; i.e.,
o
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where the geometrical factors
J 1ðk; p; qÞ ¼
1

4
P ijmðkÞP inlðkÞP jnðpÞP mlðqÞ;
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1

4
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1

4
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are the functions of scalars k, p and q. See Lesieur [18] and Leslie [19] for further simplification of these terms.
The three-dimensional double integrations, constrained by p + q = k on the r.h.s of (12) are simplified using
[19]
 Z Z

f ðk; p; qÞdðpþ q� kÞd3pd3q ¼
Z Z

Dk

2ppq
k

f ðk; p; qÞdp dq; ð14Þ
where the ‘‘triadic domain’’ Dk in (p,q)-plane satisfies jk � qj 6 p 6 k + q. Thus, (12) finally takes the form
o
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pq
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� �
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Therefore, the evolution equation for the energy spectrum E(k) is a one-dimensional integro-differential equa-
tion, which can be easily solved by an accurate numerical method.

2.2. EDQNM-DNS

This section describes the numerical solution of the EDQNM equations, and their validation by compar-
ison to experiment. The solutions are termed EDQNM-DNS, in the sense that all the energetic scales are
resolved. For a given number of grid points N, the wavespace is discretized on a logarithmic grid [21]:
kðnÞ ¼ k0 � 2
n�1

F ; ðn ¼ 1; 2; . . . ;NÞ; ð17Þ

where k0 is the smallest wavenumber and the parameter F(>2) determines the resolution. The (p,q)-domain for
the integral part of (15) is discretized using the same distribution in each direction. Third order Runge–Kutta,
and Crank–Nicolson schemes are adopted for the nonlinear and viscous terms, respectively. An important is-
sue in the numerical integration is that it should guarantee the conservation of total kinetic energy
q2 ¼

R
EðkÞdk in the inviscid limit, which requires
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Analytically, EDQNM closure (15) guarantees (18) because of the symmetry. However, this is not always true
for the discrete evaluation of Iðk; p; qÞ and its integration. In this paper, the trapezoidal rule integration is
used in direction by direction manner, which discretely satisfies (18). The geometrical factors, J 0is in (13)
are functions of the length of wavevectors and, therefore can be uniquely calculated from any choice of
(k,p,q) that satisfies p + q = k [19]. For example, k = (k, 0,0), p = (pcosc,psinc, 0), and q =
(k � pcosc,�psinc,0) are used in this study, where c = cos�1[(p2 + k2 � q2)/(2pk)] is the angle between p

and k. Although conventional EDQNM uses simpler expressions for J 0i, [19], we use formulation (13) since
it allows the wavevectors to be replaced by ‘‘modified wavevectors’’ [22] to account for numerical discretiza-
tion error.

Throughout this paper, we use the decaying isotropic turbulence experiments of Comte-Bellot and Corrsin
[23] (denoted as CBC hereafter) for validation. These experiments provide energy spectra at three locations.
Using the Taylor hypothesis, the spatial locations are converted to time instants of tU0/M = 42, 98 and
171, where M(=5.08 cm) and U0(=10 m/s) are the grid size and the free-stream velocity, respectively. The Tay-
lor micro-scale Reynolds numbers, Rek = urmsk/m, are in the range of 71.6–60.6. The initial conditions in the
simulations are a divergence-free random field whose energy spectrum matches that at tU0/M = 42. The sim-
ulation is performed using F = 8, N = 65, and k0 = 1 which gives the maximum wavenumber kc = 256. Here,
all wavenumbers are normalized by the reference length scale Lref = LB/2p, where LB = 11M is the side of the
computational box. Fig. 1 shows temporal evolution of total kinetic energy and the energy spectra at three
locations from EDQNM-DNS and the experimental data. Here, and in what follows, the energy spectrum
is non-dimensionalized by Lref and reference velocity scale U ref ¼

ffiffiffiffiffiffiffiffi
3=2

p
urms, which are chosen such that the

non-dimensional initial total kinetic energy is 1. As shown in Fig. 1, the EDQNM-DNS and experimental
results for total kinetic energy and energy spectra agree very well with each other.

2.3. EDQNM-LES

We extend EDQNM theory to the LES equations where the dynamic Smagorinsky model [24] is used to
model the subgrid stresses. The resulting formulation is termed ‘‘EDQNM-LES’’, and is validated against
LES performed using the Navier–Stokes equations, termed ‘‘NS-LES’’.

Assume that the LES is performed on a infinite, but discrete space X0 with grid spacing Df. Description of
the equation on a discrete space X0 causes nontrivial mathematical problems, including the definition of SGS
tu0/M
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stress [6]. Therefore, consider the equation on the continuous space X, and represent the effect of discretization
(or finite-dimensional nature) by cutoff filtering with filter width, Df. The LES equations are given by
ob�uiðkÞ
ot

¼ �iP imnðkÞHðkÞ
Z
�

Z
�

d3pd3qdðpþ q� kÞûmðpÞûnðqÞ
� �

� mk2b�uiðkÞ þcSiðkÞ; ð19Þ
where the domain size h = [�kc,kc]
3 = [�p/Df,p/Df]

3, and the filter kernel H(k) = 1 if k 2 h and H(k) = 0

otherwise. The exact SGS force cSiðkÞ ¼ �iP imnðkÞHðkÞŝmnðkÞ is given by
ŝmnðkÞ ¼
Z Z

�
Z
�

Z
�

� �
d3pd3qdðpþ q� kÞûmðpÞûnðqÞ: ð20Þ
However, note that use of the exact subgrid model is not only impractical, but also not very meaningful, since
the modeled SGS stress sM

ij is used to close (19) in actual simulations. We therefore replace Si with the mod-
eled force SM

i . Including this effect of the modeled SGS stress is very important, since it allows the LES model
to interact with numerical error. Section 5 provides more details on this issue. Note that due to modelling er-
ror, the solution of this system is no longer the ideal LES solution, �ui. We will continue to use the symbol �ui for
notational convenience.

Since LES is essentially a finite-dimensional approximation of the fully resolved solution of the Navier–
Stokes equation, the above EDQNM closure can be directly applied to the governing equation for LES.
Applying EDQNM closure to (19) using the same procedure as Eqs. (6)–(15), the transport equation for
resolved energy spectrum EðkÞ ¼ 2pk2hb�uiðkÞb�uið�kÞi takes the form
oEðkÞ
ot
¼ 8pk2GðkÞ

Z
O

Z
O

d3pd3qdðpþ q� kÞhkpq½J 1QðpÞQðqÞ þ J 2QðkÞQðpÞ þ J 3QðkÞQðqÞ�

� 2mk2EðkÞ þ T M
SGSðkÞ; ð21Þ

¼
Z Z

D0k

dp dqhkpq J 1EðpÞEðqÞ k
pq
þ J 2EðkÞEðpÞ q

kp
þ J 3EðkÞEðqÞ p

kq

� �
� 2mk2EðkÞ þ T M

SGSðkÞ; ð22Þ
where T M
SGSðkÞ ¼ 4pk2hSM

i ðkÞb�uið�kÞi and D0k ¼ Dk \ ðp 6 kc; q 6 kcÞ. Note that we have replaced the ‘‘box’’
integration domain h in (19) with the spherical domain O = {kj jkj 6 kc}, and the box cutoff filter H(k) with
the spherical filter G(k) (G(k) = 1 if jkj 6 kc and G(k) = 0 otherwise) accordingly. The truncation of wavevec-
tors near the eight corners of the domain h is a result of the spherical symmetry of the domain. Note that the
true SGS force (20) is used for the derivation of (21) so that the EDQNM closure is not influenced by the SGS
model or the numerical error. In what follows, we refer to (22) as reference EDQNM-LES system. The solu-
tion of (22) is regarded as the error-free LES solution. Note that this reference system is different from the
exact LES equation, and that the modeled SGS transfer T M

SGSðkÞ is used instead of the exact term, since we
are interested in the effect of the numerical error and SGS model on the computed LES system.

The dynamic Smagorinsky model (DSM) [24] is used for the subgrid stress: sM
ij � 1

2
sM

kkdij ¼ �2mT ðx; tÞ
Sij ¼ �2CsD

2
f jSjSij, where jSj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
. It is well known [25,26] that the Smagorinsky model can be approx-

imated by the ‘‘plateau’’ version of the spectral eddy viscosity model [27] in wavespace, which requires the use
of the model
sM
ij �

1

3
sM

kkdij ¼ �2CsD
2
f hSiSij ¼ 2mT ðtÞSij ð23Þ
instead of the original DSM. Here, hSi denotes the ensemble average of jSj. Let TM
ij � 1

3
dijT

M
kk ¼�2CsD

2
T heSieSij

be the subtest scale stress, where DT = aDf (a > 1) is the size of test filter and eS ij is the test-filtered strain rate

tensor. Note that the property eS ij ¼ eS ij for the cutoff filter is used. Applying the Germano identity to sM
ij and

TM
ij , we get
TMa
ij � ~sMa

ij � La
ij ¼ �ij; ð24Þ
where the superscript a denotes the traceless tensor, Lij ¼g�ui�uj � ~ui~uj is the resolved scale stress, and �ij is the

error term which should vanish when sM
ij ¼ sij and TM

ij ¼Tij. The Smagorinsky constant that minimizes �ij�ij

in the least square sense [28] is
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2
f ¼ �

hLijRiji
2hRklRkli

; Rij ¼ a2heSieS ij � ghSiSij : ð25Þ
The ensemble averages in (25) are introduced to enhance the stability of the solution. Since hSi and heSi are
constants, (25) can be further simplified to obtain
CsD
2
f ¼ �

hLij
eS iji

2hheS ij
eS iji

; ð26Þ
where h ¼ a2hSi � heSi. We further assume that
hSi ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hSijSiji

q
¼ 2

Z kc

0

k2EðkÞdk
� �1=2

: ð27Þ
Similarly, heSi is approximated as heSi ¼ 2
R kT

0 k2EðkÞdk
� �1=2

. Using this assumption, the eddy viscosity mT can
be expressed as
mT ¼
hLij
eS iji

ð2� 2a2BÞ
R kT

0 k2EðkÞdk
; ð28Þ
where B ¼
R kT

0
k2EðkÞdk=

R kc

0
k2EðkÞdk

� �1=2

. Finally, the expression for hLij
eS iji ¼

R kT

0
T MðkÞdk should be gi-

ven. TM(k) is the transfer spectrum given by
T MðkÞ ¼
Z

O

Z
O

MijkðkÞ eU ið�kÞ gU jðpÞU kðqÞ � eU jðpÞ eU kðqÞ
h iD E

� d3ðpþ q� kÞd3p d3q: ð29Þ
The EDQNM closure can be again used to compute Eq. (29) yielding
T MðkÞ ¼
Z Z

D00k

Iðk; p; qÞdp dq: ð30Þ
Here, Iðk; p; qÞ denotes the integrand in Eq. (22). The integration domain D00k is defined as
D00k : ðp; q 6 kcÞ \ ðkT < p 6 kc or kT < q 6 kcÞ \ ðp; q 2 DkÞ; ð31Þ

which is illustrated in Fig. 2. Once the eddy viscosity mT is obtained, it is straightforward to show that
T M

SGSðkÞ ¼ �2mT k2EðkÞ. Thus, the reference EDQNM-LES system (22) is now written as
o

ot
þ 2ðmþ mT Þk2

� �
Eðk; tÞ ¼

Z Z
D0k

Iðk; p; qÞdp dq: ð32Þ
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Domain in the (p,q)-plane D00k (dashed region) for the evaluation of the dynamic constant in EDQNM-LES with the dynamic
rinsky model.
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The only adjustable parameter in DSM is a = DT/Df = kc/kT. The computation with the typical choice of a = 2
(kT = 0.5kc) results in Cs � 0.2, which is about 30% higher than Cs � 0.15, a common value obtained for iso-
tropic turbulence.

Recall the use of global strain rate hSi instead of the local value. The impact of this assumption on SGS
dissipation was tested by performing LES of the Navier–Stokes equations (denoted as NS-LES hereafter)
using DSM with the global strain rate. The NS-LES uses a dealiased pseudo-spectral method, and semi-impli-
cit time discretization at 323 resolution. See Ref. [12] for more details on the numerical method. Results from
the NS-LES are plotted in Fig. 3, which shows the time evolution of volume-averaged eddy viscosity ÆmTæ nor-
malized by the molecular viscosity. As shown in figure, NS-LES overpredicts the SGS dissipation when the
global strain rate is used, for a = 2. Also, the evolution of SGS eddy viscosity from NS-LES in this case is
in good agreement with that from EDQNM-LES. The discrepancy observed in the initial stages is due to
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Fig. 4. NS-LES and EDQNM-LES with and without SGS model: three-dimensional energy spectra for (a) NS-LES and (b) EDQNM-
LES; (c) time evolution of resolved total kinetic energy.
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the random-phase initialization of NS-LES that gives initial Cs � 0. It is also clear that NS-LES with global
strain rate agrees well (in terms of SGS dissipation) with the reference solution using local strain rate, when
a = 5/3, (kT/kc = 0.6). This result again is in good agreement with that from EDQNM-LES. Thus, in what
follows, a = 5/3 is adopted for EDQNM-LES and results are compared with NS-LES results with DT = 2Df

as the ‘‘compensation’’ for the use of global strain rate.
The results from two reference simulations (19) and (22) with DSM mentioned above are compared in

Fig. 4, together with results without SGS models. Here and in what follows, all EDQNM-LES simulations
are performed with N = 33 (k0 = 1,F = 8). This corresponds to the cutoff wavenumber kc = 16 at which
NS-LES is conducted. As shown in Fig. 4, EDQNM-LES agrees well with NS-LES for both the energy spectra
and resolved kinetic energy, with and without SGS model. Note that resolved kinetic energy is compared with
filtered experimental data at Df. When the SGS model is turned off, a large pile-up of energy is observed. This
demonstrates that the role of molecular viscosity is small and, thus the contribution of SGS model is signif-
icant in stabilizing the solution. It is also remarkable to see a good agreement between results from NS-LES
and EDQNM-LES, without SGS model. This shows the reliability of EDQNM closure even in situations far
removed from well-resolved isotropic turbulence.

3. Numerical errors

Finite-difference simulations involve two distinct sources of numerical error: finite-differencing error and
aliasing error. In this section, we incorporate these sources of numerical errors individually in the reference
EDQNM-LES system, and perform LES of CBC-isotropic turbulence. These results are validated against
those from corresponding NS-LES.

3.1. Finite-differencing error due to the nonlinear term

A staggered second order-finite difference scheme (denoted as SCD2) is considered, which takes the form
N s
i ¼

d1

d1xj
ðvi

xj vj
xiÞ; ð33Þ
where the notation of Morinishi et al. [29] is used for the difference operator d1( )/d1xj and the averaging oper-
ator ð Þxi . Note that the summation convention is not applied to the averaging operators. Applying SCD2 to
(19), we get
ov̂ðk; tÞ
ot

¼ �iP imnðk0ÞHðkÞ
Z
�

Z
�

d3pd3qdðpþ q� kÞv̂mðp; tÞk1
aðpÞv̂nðq; tÞk2

aðqÞ
� �

� mk2v̂iðk; tÞ

� iP imnðkÞŝM
mnðk; tÞ; ð34Þ
where k 0 is the modified wavevector [22], which results from the finite-difference approximation of the first
derivative, and k1

a and k2
a denote modified wavenumbers for the averaging operators in SCD2. Note that

numerical error due to time integration is neglected. For SCD2, the modified wavenumber and averaging fac-
tors are given as
k0mDg ¼ 2 sinðkmDg=2Þ; k1
aðpÞ ¼ cosðpnDg=2Þ; k2

aðqÞ ¼ cosðqmDg=2Þ: ð35Þ

Here, Dg is the grid size that is not necessarily equal to the filter size Df. However, we assume Dg = Df through-
out this paper. The fact that the solution of (34) is denoted by vi rather than �ui reflects the deviation of the
solution from the reference value due to the finite-differencing error. This distinction is important since the
comparison between �ui and vi reveals the numerical error as will be shown later.

Then, the corresponding nonlinear transport term of reference EDQNM-LES is
T rðkÞ ¼ 4pk2Mijmðk0ÞGðkÞ
Z

O

Z
O

T 0ijmdðpþ q� kÞd3pd3q; ð36Þ

T 0ijmðk; p; qÞ ¼ hv̂ið�kÞv̂jðpÞk1
aðpmÞv̂mðqÞk2

aðqjÞi: ð37Þ
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Because of the directional dependence of the averaging factors, it is not straightforward to apply the quasi-
normal hypothesis to (36). In order to circumvent this difficulty, we introduce the following assumption:
E
(k

)

10

10

Fig. 5.
(a) NS
T 0ijmðk; p; qÞ � hk1
aðpmÞk2

aðqjÞihv̂ið�kÞv̂jðpÞv̂mðqÞi ð38Þ
� AðpÞAðqÞT ijmðk; p; qÞ; ð39Þ
where A is the isotropic averaging factor
AðpÞ ¼ fkaðpmÞ
1gp ¼

1

4p

Z 2p

0

Z p

0

cos½ðp cos hÞDg=2� sin hdhd/: ð40Þ
Here, the first component of p, or p1 = pcosh is used to evaluate A(p), but the same result is obtained with
p2 = psinhcos/ or p3 = psinhsin/ due to the isotropy. Thus, the directional sensitivity of the averaging factor
is removed. Using (39), it is straightforward to obtain the following modification of the reference system:
o

ot
þ 2ðmþ mc

T Þk2

� �
Ecðk; tÞ ¼

Z Z
D0k

AðpÞAðqÞIcðk; k0; p; qÞdp dq; ð41Þ

Icðk; k0; p; qÞ ¼ hkpq J 01EcðpÞEcðqÞ k
pq
þ J 02EcðkÞEcðpÞ q

kp
þ J 03EcðkÞEcðqÞ p

kq

� �
; ð42Þ
where
J 01ðk; k
0; p; qÞ ¼ 1

4
P ijmðk0ÞP inlðkÞP jnðpÞP mlðqÞ ð43Þ
and J 02ðk; k0; p; qÞ and J 03ðk; k0; p; qÞ are defined in a similar manner. The reason that the modified wavevectors
are considered only for the first term Pijm(k 0), is that other terms are invoked during the closure of Tijm. Ec(k)
denotes the spectrum of the solution that is contaminated by finite-differencing errors in the convection term.
The expression mc

T indicates that the numerical error also influences the computation of eddy viscosity (see Sec-
tion 5).

Ec(k) computed from (41) and (42) is shown in Fig. 5, together with the spectrum from the corresponding
NS-LES system, (34) and (35). As shown in Fig. 5, the agreement between two results are good, in that Ec(k) is
larger than E(k) in the intermediate wavenumbers and smaller near the cutoff. Consequently, total kinetic
energy is overpredicted by up to 20% in the presence of the finite-differencing error (Fig. 5(c)).
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NS-LES and EDQNM-LES with second-order central difference scheme in a staggered grid: three-dimensional energy spectra for
-LES and (b) EDQNM-LES; (c) time evolution of resolved total kinetic energy.
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Note that the conservative second-order scheme on a collocated mesh N c
i ¼ d1

d1xj
ðvi

xj vj
xjÞ is approximated

by the same form as (39), due to the symmetry of the averaging factor. We conducted NS-LES with N c
i to

obtain essentially the same result with that from SCD2 reported in this section (not shown here). Note also
that the skew-symmetric form of the nonlinear term on a regular mesh, is equivalent to N c

i for second
order scheme, as shown by Ducros et al. [30]. However, in actual simulations in physical space, kinetic
energy is not exactly conserved for the collocated scheme N c

i due to the conservation error from pressure
gradient term [16].

3.2. Finite-differencing error due to viscous and SGS term

Next, the finite-differencing error due to the viscous and SGS terms is considered. When the finite difference
scheme is applied to the second derivative of (32), it would take the form
o

ot
þ 2ðmþ mv

T Þk0023DðkÞ
� �

Evðk; tÞ ¼
Z Z

D0k

Ivðk; p; qÞdp dq; ð44Þ
where Ev(k) denotes the energy spectrum of the solution that is contaminated by finite-differencing errors in
the viscous and SGS terms. k0023D is the three-dimensional, or the spherical shell-averaged modified wavenumber
defined by
k0023DðkÞ ¼
1

4p

Z 2p

0

Z p

0

½k002ðk1Þ þ k002ðk2Þ þ k002ðk3Þ� sin hdhd/; ð45Þ
where k002 is the one-dimensional modified wavenumber for second derivative. In this study, we consider the
following two schemes for an arbitrary function / defined on uniform grid:
d2/
dx2
¼

/jþ1 � 2/j þ /j�1

D2
g

!k002D2
g ¼ 2½1� cosðkDgÞ�; ð46Þ

d
dx

d/
dx

� �
¼

/jþ2 � 2/j þ /j�2

4D2
g

!k002D2
g ¼ sin2ðkDgÞ; ð47Þ
where subscripts j, j + 1, . . . denote discrete grid indices. Eq. (46) corresponds to the conventional three-
point stencil, second order central difference (denoted as 3pt-stencil CD2), and (47) is obtained by the dou-
ble applications of the first derivative, that results in a five-point stencil scheme (5pt-stencil CD2) in phys-
ical space. Although this scheme is rarely used in incompressible simulations, compressible flow simulations
often use schemes similar to (47) due to the complexity of the viscous term (see, e.g. Ref. [31]). In the con-
text of LES, the 5pt-stencil CD2 may appear even in the incompressible simulation, if one implements the
SGS model in the form � o

oxj
sij. In that case, if sa

ij ¼ �mT ðovi=xj þ ovj=xiÞ and its derivatives are evaluated at
the same point using the second-order central difference, the resulting algorithm corresponds to the 5pt-
stencil CD2.

Three-dimensional modified wavenumbers for 3pt- and 5pt-stencil CD2 given by (45) are shown in Fig. 6.
Note the superiority of the compact stencil scheme. Ev(k) and total kinetic energy predicted from (44) with
3pt- and 5pt-stencil CD2 are shown in Fig. 7, together with comparable results from NS-LES. The agreement
between results from EDQNM-LES and NS-LES is excellent for the spectra and the evolution of resolved
kinetic energy. It is shown that results from 5pt-stencil CD2 are unacceptably erroneous, as expected from
the modified wavenumber behavior. The error causes reduced dissipation at high wavenumbers, which results
in the pile-up of the energy at high wavenumbers, and slow decay of resolved kinetic energy (Fig. 7(c)). In this
problem, this pile-up is mostly caused by the lack of SGS dissipation, which is about 10 times larger than vis-
cous dissipation as shown in Fig. 3.

3.3. Aliasing error

Aliasing error arises due to the point-wise multiplication in physical space to compute the nonlinear term
[6,7]. Including the aliasing error in (19), we get
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three-dimensional energy spectra for (a) NS-LES and (b) EDQNM-LES; (c) time evolution of resolved total kinetic energy.
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ov̂iðk; tÞ
ot

¼�iP imnðkÞHðk0Þ
X
a2K

Z
�

Z
�

d3pd3qdðpþ q�k� aÞv̂mðp; tÞk1
aðpÞv̂nðq; tÞk2

aðqÞ
" #

� mk2v̂iðk; tÞþcSM
i ðkÞ;

ð48Þ

where K is the set of wavevectors of the form (2pkc, 2qkc, 2rkc), where p, q, and r can independently take on
values of 0 or ±1. All modes except for (0, 0,0) represents aliasing errors. To highlight aliasing error, finite-
differencing error is excluded so that k 0 = k and k1

a ¼ k2
a ¼ 1 are assumed during the derivation of EDQNM

expression for the aliasing error. Later in this section, we will again consider the modified wavenumbers
and averaging factors for the aliasing error of SCD2.

Multiplying by v̂ið�kÞ and taking the ensemble average of (48) yields the following expression for the ali-
asing error:
T aliasðkÞ ¼ 4pk2MijmðkÞGðkÞ
X
a2K0

Z
O

Z
O

d3pd3qdðpþ q� k� aÞ � hv̂ið�kÞv̂jðpÞv̂mðqÞi; ð49Þ
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where K0 = K � (0, 0,0) denotes the pure aliasing modes, and here again spherical symmetry is assumed. Since
the transport equation of hv̂ið�kÞv̂jðpÞv̂mðqÞi should have the same form as (8) except that p + q = k + a, it is
easy to show that (49) is modeled by EDQNM theory as
T aliasðkÞ ¼
X
a2K0

Z
O

Z
O

d3pd3qdðpþ q� k� aÞ k
2ppq

J 1EaðpÞEaðqÞ k
pq
þ J 2EaðkÞEaðpÞ q

kp
þ J 3EaðkÞEaðqÞ p

kq

� �
ð50Þ

¼
X
a2K0

Z Z
D0jkþaj

k
jkþ ajI

aðk; p; qÞdpdq: ð51Þ
Here, Ea denotes the energy spectrum contaminated by the aliasing error, and D0jkþaj denotes the same form of
triadic domain as D0k, except that k is replace by jk + aj. In deriving (51), the formulation [19]
Z

O

Z
O

f ðk; p; qÞdðpþ q� k� aÞd3pd3q ¼
Z Z

D0jkþaj

2ppq
jkþ aj f dp dq ð52Þ
is invoked, which directly comes from (14). Since (51) depends on the vector k, the aliasing error T s
aliasðkÞ to be

added to (32) requires an additional spherical shell average to yield
T s
aliasðkÞ ¼

1

4p

X
a2K0

Z 2p

0

Z p

0

Z Z
Djkþaj

k
jkþ ajI

aðk; p; qÞdp dq

" #
sin hdhd/ ð53Þ

¼ 6T 1D
aliasðkÞ þ 12T 2D

aliasðkÞ þ 8T 3D
aliasðkÞ; ð54Þ
where T 1D
alias is the one-dimensional aliasing mode from any of six vectors a = (±2kc,0,0), (0, ± 2kc,0), or

(0,0, ± 2kc). Two and three-dimensional modes T 2D
alias and T 3D

alias are defined similarly [6] and therefore compu-
tation of three modes is required instead of 33 � 1 = 26 modes. However, the computational overhead to com-
pute (53) is very high and thus EDQNM-LES with the aliasing error requires as much computational time as
NS-LES.

In order to retain the simplicity of EDQNM-LES, an approximate evaluation of the aliasing term is per-
formed. We assume that the aliasing error for a given k occurs only through a representative value of
jk + aj ” K defined by
Kðk; aÞ ¼ 1

AaliasðkÞ

Z 2p

0

Z p

0

Hð2kc � jkþ ajÞjkþ ajk2 sin hdhd/; ð55Þ
where H is the heaviside function and Aalias(k) is the area of the part of the spherical shell that corresponds to
the aliasing mode, or AaliasðkÞ ¼

R 2p
0

R p
0

Hð2kc � jkþ ajÞk2 sin hdhd/. Thus, (55) is the conditional shell aver-
age of jk + aj under the condition that jk + aj belongs to the aliasing mode. Once K is given, the aliasing error
is approximated by
T s
aliasðkÞ �

AaliasðkÞ
4pk2

� �X
a2K0

Z Z
D0K

k
Kðk; aÞI

aðk; p; qÞdp dq: ð56Þ
The ‘‘exact’’ aliasing term within the EDQNM context (53), and the approximation (56) are compared in
Fig. 8 for the spectral method and SCD2 for the initial field of CBC-isotropic turbulence at tU0/M = 42.
The aliasing error of SCD2 is derived from (48) and (36)–(40). It is shown that the approximated aliasing error
shows similar behavior in the wavespace, and that the agreement is reasonable except for high wavenumber
regions near the cutoff. As expected, the aliasing error from SCD2 is smaller than that from the spectral
method.

Inserting the aliasing error in (32), we get the EDQNM-LES system for an aliased spectral method:
o

ot
þ 2ðmþ ma

T Þk2

� �
Eaðk; tÞ ¼

Z Z
D0k

Iaðk; p; qÞdp dqþ T s
aliasðkÞ: ð57Þ
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Fig. 8. The transfer functions of aliasing error for the initial field of CBC-isotropic turbulence (tU0/M = 42): (a) spectral method;
(b) staggered second order central difference.
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Ea(k), the solution of (57), is shown in Fig. 9 together with comparable results from NS-LES. The most notice-
able aspect of the aliasing error in Fig. 9, is that the error is small. The aliasing error is shown to contaminate
only very high wavenumber region so that total kinetic energy evolution is nearly unchanged for both NS-LES
and EDQNM-LES. It is also shown that the approximate aliasing error is acceptable, to represent the effect of
aliasing error; i.e. the approximation is satisfactory, except at very high wavenumber regions, and that the ali-
asing error itself does not contribute significantly to the solution.

This result may contradict previous studies (see, e.g. [7]) that emphasized the significance of the aliasing
error. One possible reason is the use of the spherical cutoff filter which removes energy at resolved wavenum-
bers in the range kc < k <

ffiffiffi
3
p

kc. Thus, a part of the aliasing error is removed by this filter. Actually the ali-
asing error defined in this manner corresponds to the ‘‘lower bound’’ of true aliasing error defined in domain
h [6]. Another possible explanation is accumulation of the ‘‘conservation error’’. It is well known that aliased
Fourier spectral methods do not conserve the total kinetic energy when the nonlinear term is written in diver-
gence form [7]. Thus, in this case, the conservation error is the main characteristic of the aliasing error, whose
cumulative effect can be revealed only through a long time integration. However, EDQNM-LES even with the
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Fig. 9. NS-LES and EDQNM-LES with aliased spectral method: three-dimensional energy spectra at tU0/M = 98 for (a) NS-LES and
(b) EDQNM-LES; (c) time evolution of resolved total kinetic energy.
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aliased spectral method (53) conserves the total kinetic energy so that this aspect is not correctly modeled with
EDQNM closure (see Appendix A for more discussion on the conservation issue.)

Since the divergence form of the spectral method violates ‘‘local’’ conservation as well as global conserva-
tion [7], it is expected that the error appears as a source term at each control volume (= grid) where the local
conservation is defined. Therefore, the conservation error should grow from very high-wavenumber regions
near the cutoff. This explains the difference between the energy spectra predicted by NS-LES and
EDQNM-LES in Fig. 9(a) and (b).

In order to support this argument, the energy spectrum from NS-LES with aliased spectral method with
skew-symmetric nonlinear term is shown in Fig. 9(a), which is indistinguishable from the reference solution
with dealiased spectral method. It is well known that the skew-symmetric form conserves the kinetic energy,
even in the presence of the aliasing error [7]. Therefore, it appears that the aliasing error matters only when it
causes the violation of the kinetic energy conservation. Otherwise, its effect should be small. In this sense, the
failure of EDQNM-LES in predicting conservation error for the spectral method will not cause any problem
in the results that will be given in Section 4 for SCD2, since EDQNM-LES shows good conservation property
for SCD2 with and without aliasing error (see Appendix A).

4. Modeling numerical error in second-order LES code

4.1. EDQNM model

Combining all the elements introduced in Section 3, we construct a complete EDQNM model for an actual
LES code with second-order accurate finite-difference scheme. The model takes the form:
E
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)
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Fig. 10
spectra
o

ot
þ 2ðmþ mCD2

T Þk0023D

� �
ECD2ðkÞ ¼

Z Z
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AðpÞAðqÞICD2 dp dq

þ AaliasðkÞ
4pk2

� � X
a2K0

Z Z
D0K

k
Kðk; aÞAðpÞAðqÞI

CD2 dp dq

" #
; ð58Þ
where the energy spectrum from this system is denoted by ECD2(k). SCD2 is adopted for the nonlinear term
and the aliasing error, and 3pt-stencil second order difference is adopted for the viscous term.

Fig. 10 shows the energy spectra and kinetic energy evolution computed by (58) and those from corre-
sponding NS-LES. Here again, the agreement between EDQNM-LES and NS-LES is good in that the spectra
k
10 20 30

-3

-2

reference (spectral)
model for CD2-LES code

tU0/M=98, 171

a

k
10 20 30

10-3

10-2

reference (spectral)
model for CD2-LES code

b

tU0/M=98, 171

tU0/M

q2 /q
02

50 100 150
0

0.2

0.4

0.6

0.8

1 NS-LES
EDQNM-LES

reference

CD2-LES code

c

. NS-LES and EDQNM-LES as the model for the LES code with second-order central difference scheme: three-dimensional energy
for (a) NS-LES and (b) EDQNM-LES; (c) time evolution of resolved total kinetic energy.
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from both simulation show the overprediction at intermediate and high wavenumber regions. From the com-
parison among Figs. 5, 7 and 10, it appears that the overprediction of energy at intermediate wavenumbers is
mainly due to the finite differencing error associated with the convection term, and the overprediction at high
wavenumber is due to finite differencing error of viscous term. As shown in Fig. 10, numerical error leads to
approximately 10% overprediction of total kinetic energy. However, a more important issue is how this error
affects the performance of the SGS model, and if the SGS model is masked by this error.

4.2. Relative magnitudes of error

A dynamic error analysis of LES with a second-order central difference scheme is performed. Dynamic
error analysis implies that the effect of numerical errors and SGS terms are traced by their contribution to
the solution.

In Section 3, the reference system uses a dealiased spectral method and individual components of numerical
errors and SGS model were individually introduced. This approach is effective as a means to validate the
EDQNM-LES system, and the impact of numerical error. In order to evaluate the numerical error for the sec-
ond-order central difference scheme, ECD2(k), the solution of (58) is used as the reference solution in this sec-
tion. Then, the contribution of SGS model, finite-differencing error, and aliasing error are evaluated by
‘‘turning off’’ each element from the reference system of (58). For example, the contribution of SGS term rSGS

is defined by
Fig. 11
rSGSðtÞ ¼
R kc

0
jECD2ðk; tÞ � ECD2

SGS�ðk; tÞjdkR kc

0 ECD2ðkÞdk
; ð59Þ
where ECD2
SGS�ðkÞ denotes the solution of (58) with mT = 0. The contribution of numerical errors are defined in a

similar way. For example, the contribution of the aliasing error is defined by replacing ECD2
SGS�ðkÞ in (59) with

the spectra from dealiased finite differencing scheme. Resolved kinetic energy of the reference solution is used
to normalize each contribution.

Fig. 11 shows the contribution of the SGS model and numerical errors for two cutoff wavenumbers kc = 16
and kc = 32 for CBC-isotropic turbulence. It is clear that the SGS contribution overwhelms all numerical
errors, whose magnitude is comparable or larger than resolved kinetic energy. On the other hand, the magni-
tude of total error is less than 10% of resolved kinetic energy for both cutoff wavenumbers, which is consistent
with total kinetic energy evolution in Fig. 10(c). The contribution of total numerical error is evaluated from
(59) by replacing ECD2

SGS�ðkÞ with EðkÞ, or reference solution. Note that total numerical error is even smaller than
the contribution of convection term alone. Comparison of Ec(k) (Fig. 5) and ECD2(k) (Fig. 10) suggests that
the viscous term error reduces the overprediction of energy at intermediate wavenumbers, that is caused by the
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error in the convection term. Consequently, total error defined by (59) is smaller than the error due to the con-
vection term alone. Also note that aliasing error is a negligible source of the numerical error; it is about 1% of
resolved kinetic energy, consistent with results in Section 3.

In order to generalize the above conclusion, we consider isotropic turbulence at much higher Reynolds
number of Rek = 104, initialized by the Gaussian energy spectrum
Fig. 12
code: (
square
Eðk; 0Þ ¼ 16

ffiffiffi
2

p

r
u2

0=k5
p

 !
k4 expð�2k2=k2

pÞ; ð60Þ
where u0 = 1 and kp = 5. Temporal evolutions of the contributions of numerical error and SGS model for
kc = 32 are shown in Fig. 12(a). The behavior is essentially the same as that observed for CBC-isotropic tur-
bulence in Fig. 11. The main difference is that the finite-differencing error is larger than the SGS contribution
in the initial stage. However, this only reflects the fact that there is negligible energy at high wavenumbers of
the initial spectrum (60), and therefore the SGS term, viscous error term and aliasing error are not activated.
Only after two eddy turn-over time te, the SGS contribution starts dominating other numerical errors and its
contribution grows in time to reach 10 times of resolved kinetic energy.

From Figs. 11 and 12(a), it seems that the temporal variation of contributions are small except the SGS
contribution, which continuously grows in time. Thus, it is reasonable to consider the time average of the con-
tribution defined, for example, by �rSGS ¼ 1

ðT�t0Þ
R T

t0
rSGSðtÞdt: Such averaged contributions for the isotropic tur-

bulence of Rek = 104 at five (kc = 8, 16, 32, 64 and 128) cutoff wavenumbers are shown in Fig. 12(b). Note that
all cutoff wavenumbers belong to the inertial range and that five independent EDQNM-LES are performed at
each cutoff wavenumber to construct data to plot Fig. 12(b). To remove the initial condition effect, t0 = 4te is
used. It is clear that the SGS contribution dominates the numerical errors at all filter sizes, when the cutoff lies
in the inertial range.

As a summary of the error estimation in this section, we note that the numerical error of SCD2 in LES is
responsible for approximately 10% of resolved kinetic energy for flows at sufficiently high Reynolds numbers,
whereas the solution is entirely dependent upon SGS model because its absence results in unacceptable
solution.

5. Static vs. dynamic error analysis

5.1. The static error analysis

The Navier–Stokes counterpart of (58) takes the following form:
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ov̂ðk; tÞ
ot

¼ �iP imnðk0ÞHðkÞ
X
a2K

dqdðpþ q� k� aÞv̂mðp; tÞk1
aðpÞv̂nðq; tÞk2

aðqÞ
" #

� mk00v̂iðk; tÞ

� iP imnðk0ÞŝM
mnðk0; tÞ: ð61Þ
When vi(x, t) is initialized by viðx; t0Þ ¼ �uiðx; t0Þ, it will deviate from �ui at a rate proportional to the magnitude
of the numerical errors. The numerical error may be considered the origin of this deviation. Ghosal [6] defines
the error by the difference between terms on the right-hand side of (19) and (61). This definition is valid under
the condition of vi ¼ �ui, which is satisfied at t = t0. Then, the numerical errors EiðkÞ ¼ EðFDÞ

i ðkÞ þ EðaliasÞ
i ðkÞ are
EðFDÞ
i ðkÞ ¼ iHðkÞ P imnðk0Þ � P imnðkÞ½ �

Z
�

Z
�

d3pd3qdðpþ q� kÞ�̂umðpÞ�̂unðqÞ þ ŝM
mnðkÞ

� �
þ mðk00 � k2Þ�̂uiðkÞ;

ð62Þ

EðaliasÞ
i ðkÞ ¼ iP imnðk0ÞHðkÞ

X
a2K0

Z
�

Z
�

d3pd3qðqÞdðpþ q� k� aÞ�̂umðpÞ�̂un

� �
; ð63Þ
where EðFDÞ
i ðkÞ and EðaliasÞ

i ðkÞ respectively denotes the finite-differencing and aliasing error. For simplicity,
k1

a ¼ k2
a ¼ 1 is assumed in (62) and (63) following Ghosal [6], which means that only the divergence form of

the nonlinear term on the regular mesh is considered. Then, these errors are characterized by the power spec-
tral densities (PSDs) of the form
�FDðkÞ ¼ 4pk2 lim
L!1

8p3

L3
EðFDÞ

i ðkÞ � EðFDÞ
i ðkÞ�

D E
k
; ð64Þ
where Æ æk denotes the ensemble and spherical shell average at k = jkj. PSD of aliasing error and true SGS
force also takes the same form. Quadruple nonlinear terms that appear in PSDs are closed by using the joint
normal hypothesis [13] given by Eq. (7) to get their analytic expressions. By ignoring the viscous term, these
PSDs can be computed once the three-dimensional energy spectrum E(k) and modified wavenumbers are gi-
ven. Then, the ‘‘static error analysis’’ is performed in terms of PSDs of numerical errors and SGS force.

For the compatibility of the dynamic error analysis in Section 4 with CBC-isotropic turbulence, the static
error analysis is performed on the CBC-isotropic turbulence at the initial stage of tU0/M = 42 as shown in
Fig. 13. Here, the second-order central difference with divergence-form of nonlinear term is considered at
kc = 16 and 64. As shown in Fig. 13, the results are essentially the same with those from the von Kármán spec-
trum [6] in that both the power spectral densities of finite-differencing and aliasing errors overwhelm that of
SGS force nearly at all wavenumbers. By approximating integration within the domain h in terms of two
spherical domains, lower and upper bounds for SGS force and aliasing error are introduced [6]. Since the pres-
ent cutoff filter corresponds to the inner sphere, the upper bound of SGS force and lower bound of the aliasing
error should be selected. Although this reduces the gap between SGS force and numerical error, this still does
not change the conclusion of the static error analysis. Especially, it is remarkable that even the lower bound of
the aliasing error is comparable to SGS force at all wavenumbers. These results clearly contradict those
obtained from dynamic error analysis and actual LES in Section 4. The following section attempts to explain
this discrepancy.
5.2. A critical look at the static error analysis

Based on the present results, we suggest the following four limitations of the static error analysis.

	 Fully-coupled nature between numerical error and solution

The PSDs are not functions of energy spectrum when viðx; tÞ 6¼ �uiðx; tÞ, which is true for all t > t0. In this
case, difference between terms on the r.h.s of (19) and (61) becomes a complex expression such that its PSD
cannot be analytically computed with statistical closure theories. Sharing the same symbol, the difference
between the reference �ui and numerical solution vi is often overlooked when numerical error is defined. The
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numerical error defined in this manner only reflects the deviation from the exact solution at any given instant,
and thus the cumulative nature of error cannot be accounted. Tracing the contribution of numerical error on
the solution appears more preferable.

	 Positive nature of the power spectral density

In the static error analysis, the magnitude of errors are quantified by the power spectral density (PSD). The
PSD is probably not the best measure to quantify errors in the dynamic system. The ‘‘positive nature’’ of PSD
can cause the overprediction of numerical error and misleading conjectures. For example, Park et al. [12] show
that PSD of the aliasing error for upwind scheme is larger than that of comparable central difference schemes.
This result is obviously wrong because numerical dissipation embedded in upwind schemes actually reduces
aliasing error, while the imaginary part of modified wavenumber of such schemes increase PSD of aliasing
error. It is informative to analyze terms in (58) in the form of
oEðkÞ
ot






t¼t0

¼
Z Z

D0k

Idp dq� 2ðmþ mT Þk2EðkÞ þ T FDðkÞ þ T aliasðkÞ; ð65Þ

T FDðkÞ ¼
Z Z

D0k

ðAðpÞAðqÞICD2ðk; k0; p; qÞ �Iðk; p; qÞÞdp dqþ 2 �mðk0023D � k2Þ � mCD2
T k003D � mT k2

� �
EðkÞ;

ð66Þ

T aliasðkÞ ¼
X
a2K0

Z Z
Djkþaj

kAðpÞAðqÞ
jkþ aj ICD2ðk; k0; p; qÞdp dq

" #( )
k

; ð67Þ
where terms on the r.h.s. of (65) respectively denote the resolved nonlinear term, viscous and SGS term, finite-
differencing error and aliasing error. Note that the exact form of aliasing error given by (54) is considered.
These five terms for CBC-isotropic turbulence at the initial state (tU0/M = 42) are shown in Fig. 14. As dis-
cussed above, the error transfer term TFD(k) and Talias(k) are meaningful only when t = t0 or EðkÞ ¼ ECD2ðkÞ.
From Fig. 14, it is again clear that numerical errors are smaller than SGS contribution and this is especially
true for the aliasing error. More importantly, the transfer functions of numerical errors and that of SGS model
are of opposite sign. Furthermore, SGS term is the only element that gives the dissipation at high wavenum-
bers since the viscous term is negligible at this resolution (kc = 16). Thus, it is easy to imagine the extreme pile-
up of energy would happen to the solution in the absence of SGS term as shown in Fig. 4. From Fig. 14, it
appears important that a quantitative estimate of numerical error or SGS force needs to determine if the error
is a source or a sink for the system. The PSD does not provide this information.
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	 Interaction between SGS model and numerical error

Next, the interaction between SGS model and numerical error can be considered as a time-stepping effect,
that is neglected in the static error analysis. One may argue that the sensitivity of DSM to numerical error is
evidence that numerical error corrupts the SGS model, but this sensitivity appears to be a welcome feature of
DSM. Consider Fig. 15, where EðkÞ (reference) and Ev(k) (denoted as RUN1) with 5pt-stencil scheme for the
viscous term (See Section 3) are plotted at tU0/M = 171 together with the evolution of corresponding Smago-
rinsky constant Cs. Note that the large pile-up at high wavenumber due to finite-differencing error has resulted
in a significant increase of Cs. From a simple numerical test, one can see that the result would be even worse if
Cs did not increase. To verify this argument, RUN2, a similar simulation to RUN1 except that Cs from the
reference simulation is prescribed, is conducted. As can be readily imagined, RUN2 shows severe pile-up of
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with 5-pt second stencil order central difference for viscous terms described in Section 3.2. RUN2 is the same with RUN1 except that the
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energy. This is due to the dynamic adjustment mechanism of DSM to keep the equilibrium of SGS dissipation
[12], which should be taken into consideration in error analysis.

	 divergence-form of the nonlinear term

Finally, the use of the divergence-form of the nonlinear term for the static error analysis needs to be con-
sidered. It is well known that the skew-symmetric form or staggered approach predicts smaller finite-differenc-
ing and aliasing error [7,12] than divergence form. Besides, the use of divergence form cannot give stable
solution in the actual turbulence simulation due to the violation of kinetic energy conservation [7,29], and
therefore should not be considered, even in the theoretical analysis.

6. Concluding remarks

A dynamic theory is developed to predict the impact of numerical error in solutions to the LES equations
for isotropic turbulence. Kinetic energy evolution equation in the wavespace is considered, and the evolution
equation for the energy spectrum is closed by EDQNM theory. Finite differencing error, aliasing error and
dynamic Smagorinsky model for the energy-conserving second order central difference scheme are incorpo-
rated in this one-dimensional equation using the notion of modified wavenumber. The resulting model predic-
tions are compared to solutions from actual three-dimensional LES, where the same errors are introduced. It
is shown that the proposed model equation is capable of reproducing actual LES results.

The model equation is used to perform a dynamic error analysis for the decaying isotropic turbulence of
Comte-Bellot and Corrsin [23]. The contributions of numerical error and SGS term on the solution are
evaluated. This analysis shows that the contribution of SGS model to LES solution is much more signif-
icant that those of finite-differencing and aliasing errors for LES with energy-conserving second order cen-
tral difference scheme. The analysis of energy transfer shows that numerical errors result in the injection of
energy at intermediate wavenumbers, whereas the transport of SGS term indicates a large drain, or the
forward transfer, of the energy having the peak at the cutoff. Therefore, numerical error cannot mask
SGS contribution on the solution, at least for isotropic turbulence, and the non-dissipative numerical
method considered.

The present conclusions strictly hold for isotropic turbulence. Complex inhomogeneous flows involve
sources of numerical errors which were not considered in this paper such as the grid non-uniformity, mesh
skewness, smooth filter and boundary conditions. Finally, note that the one-dimensional EDQNM-LES
model introduced in the present study can be a more general tool for the analysis of numerical error and
the performance of SGS model in turbulence simulations.
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Appendix A. Note on conservation properties

Discrete conservation of kinetic energy allows non-dissipative schemes to be stable at high Reynolds num-
bers. For Fourier spectral methods, the skew-symmetric form of the convection term conserves kinetic energy
in the presence of aliasing error. Other forms (divergence and advection) are conservative only when aliasing
error is absent [7]. For second-order central differences, the skew-symmetric form on a regular mesh, and
divergence form on a staggered mesh conserve kinetic energy even in the presence of aliasing error [7].

It is difficult to represent local conservation of kinetic energy in the framework of EDQNM-LES. Instead,
global conservation of total kinetic energy can be investigated by checking the symmetry

P
I ¼ Iðk; p; qÞ

þIðp; q; kÞ þIðq; k; pÞ ¼ 0 [19]. This takes the form
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I ¼ C1 � EðpÞEðqÞ
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þ C3 � EðkÞEðpÞ
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; ð68Þ

C1ðk; p; qÞ ¼ J 1ðk; p; qÞ þ J 3ðq; k; pÞ þ J 2ðp; q; kÞ;
C2ðk; p; qÞ ¼ J 3ðk; p; qÞ þ J 2ðq; k; pÞ þ J 1ðp; q; kÞ; ð69Þ
C3ðk; p; qÞ ¼ J 2ðk; p; qÞ þ J 1ðq; k; pÞ þ J 3ðp; q; kÞ:
For the Fourier spectral method,
P

I ¼ 0 is automatically satisfied, since C1 = C2 = C3 = 0 due to symmetry.
However, note that

P
I ¼ 0 even in the presence of aliasing error aliasing error (53); an aliased spectral meth-

od in divergence form therefore conserves kinetic energy for EDQNM-LES. Fig. 16(a) shows kinetic energy
evolution in the inviscid limit for CBC-isotropic turbulence. From Fig. 16(a), an aliased spectral method rap-
idly diverges in the actual Navier–Stokes simulation, whereas EDQNM simulation exactly conserves kinetic
energy. This explains the discrepancy of energy spectra between EDQNM-LES and NS-LES shown in
Fig. 9(a).

For finite-difference schemes with divergence form, it is easy to show C1 ¼ J 01ðk; k
0; p; qÞ þ J 02

ðq; q0; k; pÞ þ J 03ðp; p0; q; kÞ 6¼ 0 due to asymmetry. Similarly, C2 6¼ 0 and C3 6¼ 0 for these cases. Thus, in gen-
eral

P
I 6¼ 0 for finite-difference schemes. From numerical experiments, it is found that this error is dissipa-

tive in EDQNM-LES. This is contrary to the conservation error of NS-LES that causes the solution to diverge
(see Fig. 16(a)). Note that there is no aliasing error in this simulation. Thus, the conservation error is part of
the finite-differencing error in this case.

It is illustrative to compare Ec(k, t) from EDQNM-LES and NS-LES, for the divergence-form, second
order central difference scheme as shown in Fig. 16(b). The agreement between two spectra is good up to
k = 10, but they show large deviation at higher wavenumbers. If there were no conservation error, the correct
spectrum should resemble that from the EDQNM-LES, since the nonlinear transfer term goes to zero at the
cutoff, due to the modified wavenumber. Only viscous and SGS terms are significant near the cut-off. Consis-
tent with our conjecture in Section 3, conservation error occurs at the smallest scale due to violation of local
conservation property. Morinishi et al. [29] show that the conservation error at each node is �ujui(d2ui/d2xj)
for the divergence form CD2. It might be desirable to somehow model this effect in EDQNM closure; how-
ever, such modification was not pursued in this study.

On the other hand, it is found from numerical experiments that the approximation of staggered second
order central difference scheme (SCD2), Eq. (39), result in

P
I ¼ 0 although C0is are nonzero. However,
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the aliasing error introduces a small dissipation as shown in Fig. 16(a). Since this error is very small, it does
not affect the overall accuracy of the simulation. Therefore, as far as SCD2 is concerned, both NS-LES and
EDQNM-LES show good conservation property. This property serves as the basis of the good agreement
between EDQNM-LES and NS-LES shown in Sections 3 and 4.
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