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Abstract

Purely dissipative eddy-viscosity subgrid models have proven very successful in large-eddy simulations (LES) at mod-
erate resolution. Simulations at coarse resolutions where the underlying assumption of small-scale universality is not valid,
warrant more advanced models. However, non-eddy viscosity models are often unstable due to the lack of sufficient dis-
sipation. This paper proposes a simple modeling approach which incorporates the dissipative nature of existing eddy vis-
cosity models into more physically appealing non-eddy viscosity SGS models. The key idea is to impose the SGS
dissipation of the eddy viscosity model as a constraint on the non-eddy viscosity model when determining the coefficients
in the non-eddy viscosity model. We propose a new subgrid scale model (RSEM), which is based on estimation of the unre-
solved velocity field. RSEM is developed in physical space and does not require the use of finer grids to estimate the sub-
grid velocity field. The model coefficient is determined such that total SGS dissipation matches that from a target SGS
model in the mean or least-squares sense. The dynamic Smagorinsky model is used to provide the target dissipation.
Results are shown for LES of decaying isotropic turbulence and turbulent channel flow. For isotropic turbulence, RSEM
displays some level of backward dissipation, while yielding as good results as the dynamic Smagorinsky model. For chan-
nel flow, the results from RSEM are better than those from the dynamic Smagorinsky model for both statistics and instan-
taneous flow structures.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Despite the impressive growth in available computational resources, the broadband nature of turbulence
still hinders the direct numerical simulation (DNS) of all energetic scales at high Reynolds numbers. The small
scales are necessarily discarded, and the simulations considered ‘under-resolved’ at very high Reynolds num-
bers. Such under-resolved simulations are referred to as large-eddy simulation (LES) when the interactions
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between resolved and discarded scales are formally modeled. For incompressible flows, LES is governed by the
filtered incompressible Navier–Stokes equations:
o�ui

ot
þ o�ui�uj

oxj
¼ � o�p

oxi
þ m

o2�ui

oxjoxj
� osij

oxj
; ð1Þ
where u ¼ ðu1; u2; u3Þ ¼ ðu; v;wÞ denotes the solenoidal Cartesian velocity components, p is the pressure di-
vided by density, m is the molecular kinematic viscosity, and x ¼ ðx1; x2; x3Þ ¼ ðx; y; zÞ is the Cartesian position
vector. Repeated indices denote summation unless otherwise specified, and the over-bar denotes spatial filter-
ing. For an arbitrary function /ðxÞ,
�/ðxÞ ¼
Z

X
GDðx; x0Þ/ðx0Þdx0; ð2Þ
where GD is the kernel of a filter whose nominal size is D. In the present study, GD is assumed to be the sharp
cut-off filter. Note that we do not consider finite-differencing errors [1], or any explicit filtering [2] other than
the grid filter. Also, the nonlinear term is dealiased for all results shown in this paper. The subgrid scale (SGS)
stress is defined by sij ¼ uiuj � �ui�uj which for the sharp cut-off filter ¼ �uiu0j þ u0i�uj þ u0iu

0
j. Here, u0i ¼ ui � �ui de-

notes the SGS velocity components. Note that the term, SGS stress is a little misleading since sij is not purely a
subgrid scale (SGS) quantity. Although SGS information ðu0iÞ is required, sij is defined on the LES grid. A new
SGS model proposed in this paper is partly inspired by this simple observation.

Arguably, the most popular SGS models in practical LES are eddy viscosity models of the form,
sij � 1

3
skkdij ¼ �2mT ðxÞSij, where mT ðxÞ is the eddy viscosity, Sij ¼ 1

2
ðo�ui=oxj þ o�uj=oxiÞ is the resolved strain

rate, and dij is the Kronecker delta function. The dynamic Smagorinsky model [3] is particularly popular.
The dynamic Smagorinsky model is purely dissipative, and therefore stabilizing. Its success is due to its ability
to control dissipation according to the local flow state. This dynamic mechanism is achieved by use of the Ger-
mano identity and a scale-invariance assumption, and does not require any adjustable constants. A wide range
of flows have therefore been successfully computed using this modeling approach.

However, from a theoretical standpoint, eddy viscosity models have some limitations. They cannot predict
backward dissipation [4], a priori tests show that their correlation with the true SGS stress is very low [5], and
their underlying local equilibrium hypothesis is questionable [6]. These limitations do not appear to cause seri-
ous problems in practical LES, because the dynamic Smagorinsky model performs quite well at moderate res-
olutions. However, this is not the case for highly under-resolved LES; e.g. channel flow where the near-wall
region is not resolved. Alternative SGS models are perhaps required at coarse resolutions where the underly-
ing assumptions of eddy viscosity, small-scale isotropy and universality of SGS motion, are no longer valid.

An alternative approach to eddy-viscosity models is sometimes termed ‘structural modeling’ [7]. Here, inter-
actions with the subgrid scales are modeled in terms of interactions between larger and smaller resolved scales.
Scale similarity models [8,9] fall into this category; e.g. Liu et al.’s model [9], sij ¼ CLðg�ui�uj � e�ui e�uiÞ, where the
tilde denotes filtering at eD larger scales than D, and CL ¼ Oð1Þ is the closure coefficient. Such models show
very high correlation with the true SGS stress in a priori tests with smooth invertible filters, but become com-
pletely uncorrelated with the true SGS stress when sharp cut-off filters are used [9,10]. More importantly, most
similarity models suffer from the lack of adequate SGS dissipation in actual LES [5,10]. The resulting insta-
bility is often attributed to excessive backscatter by the similarity model. This explanation is however incom-
plete since the true SGS stress also has large levels of backward dissipation. A less discussed limitation of the
similarity model concerns its spectral behavior. Liu et al.’s model [9] for example, vanishes at scales smaller
than ~D, as is evident from its formulation. On the other hand, DNS data [11–13] shows that the most signif-
icant contribution of SGS force to the resolved solution lies in the narrow band very to near the cut-off wave-
number. These limitations result in very poor performance in a posteriori tests; e.g. LES of forced isotropic
turbulence [10]. Although mixed models [14,15,5,13] can improve the stability by adding an eddy viscosity
term, the problems associated with the similarity term remain unaddressed. For example, see [10] for results
and discussion of the dynamic two-component model [13].

We therefore consider an alternative modeling approach; models based on the estimation of SGS velocity
[16–21]. SGS models using u0i have backward dissipation, allow SGS kinetic energy to be computed, and are
free from the local equilibrium hypothesis and linear stress–strain relationship. Also, modeling the subgrid
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scale velocity is attractive for flows involving scalar mixing, chemical reaction, particles, and liquid sprays that
have important physical effects occurring at subgrid scales. In such situations, once the subgrid velocity is
obtained, the subgrid phenomena can be modeled more easily using their unfiltered governing equations.

However, a fundamental issue for such models is that the SGS velocity u0i, by definition, cannot be repre-
sented on the LES grid. Two distinct approaches have been proposed in the literature to overcome this prob-
lem. The first approach is to use a fully resolved, but reduced dimensional (typically one-dimensional) model
to obtain the unresolved velocity, e.g. [16,17]. Another approach is to use a three-dimensional finer (but still
under-resolved) grid to obtain u0i, e.g. [18,19]. There also exist SGS estimation models based on one-dimen-
sional fractal interpolation [21] and subgrid vorticity estimation [20].

The objective of this paper is to propose a simple approach that combines the dissipative nature of eddy
viscosity models with more physically appealing, structural SGS models. This is accomplished in two steps.
First, a new subgrid scale model (RSEM) is proposed, which estimates the unresolved velocity field in physical
space. The SGS velocity components are evaluated on the LES grid, without requiring finer grids. The model
has an unknown coefficient, which is determined such that the resulting SGS dissipation is constrained by that
obtained from an eddy viscosity model. The proposed model can be easily implemented into existing LES solv-
ers that use eddy viscosity models. The performance of the proposed model is evaluated using various a priori

and a posteriori tests on decaying isotropic turbulence and turbulent channel flow (Sections 3 and 4). Two vari-
ants of the model, and different approaches to imposing SGS dissipation as a constraint are evaluated. Both
statistics and instantaneous flow structures are compared to those from the target eddy viscosity model, in
order to study how the proposed model is different from the target eddy viscosity model. The main strengths
and weaknesses of the proposed model are discussed in Section 5.

2. Proposed model

2.1. Formulation

The first step is to approximate the SGS velocity on the LES grid. At first glance, approximating the SGS
velocity u0i on the LES grid does not make sense. However, this approach can be justified by noting that our
ultimate goal is to obtain the SGS stress
sij ¼ �uiu0j þ u0i�uj þ u0iu
0
j: ð3Þ
Here, sij is a grid scale quantity, which means that sij and �ui have the same spectral support and sij can there-
fore be expressed as a function of �ui. There exists a ‘resolved projection’ of SGS velocity, ursg

i such that the
modeled SGS stress
sM
ij ¼ �uiu

rsg
j þ ursg

i �uj þ ursg
i ursg

j ð4Þ
approximates the true SGS stress sij within a suitably defined error measure. Note that Eq. (4) does not have
the global over-bar unlike true SGS stress (3), since �ui, ursg

i and sM
ij are defined on the same LES grid. The

model performance depends on the model for resolved projection ursg
i . From dimensional considerations,

ursg
i is modeled as
ursg
i ¼ RhN i; ð5Þ
where R is an adjustable constant, h is a time scale and N i is a nonlinear term. We set h ¼ D=U ref , where U ref is
a reference velocity. For example, U ref is equal to the initial rms velocity fluctuation urms, and the bulk velocity
Ub for isotropic turbulence and channel flow respectively. h makes R dimensionless; the dynamic behavior of
the model is mostly determined by the nonlinear term
N i ¼ �ujLij; ð6Þ

where Lij is a linear tensor with the same dimensions as velocity gradient. Two candidates, Lð1Þij ¼ o�ui=oxj ¼ Dij

and L
ð2Þ
ij ¼ Sij are considered in this paper. Here, Dij and Sij are the deformation and strain-rate tensors respec-

tively. These choices of Lij are based on dimensional and spectral considerations. Although the spectral behav-
ior of the resolved projection ursg

i is unknown, the synthetic SGS stress sM
ij should scale with N

2
. The velocity



N. Park, K. Mahesh / Journal of Computational Physics 227 (2008) 4190–4206 4193
gradient emphasizes the smallest resolved scales, as required by the spectral behavior of the exact SGS stress.
L
ð1Þ
ij is suggested by the nonlinear term in the Navier–Stokes equations and the work of [18]. However, the

choice of Lð2Þij ¼ Sij is essentially ad hoc, and is adopted after numerical experiments in which the model with
Sij outperforms that with Dij. Once ursg

i is obtained, the synthetic SGS stress is readily given by (4). The pro-
posed model will be referred to as resolved-subgrid scale estimation model (RSEM). Also, the model corre-
sponding to the two forms of Lij will be referred to as RSEM-S and RSEM-D, respectively.

The above form of the model violates Galilean invariance [22], which requires that the system (1) be form-
invariant under the observer transformation x� ¼ xþ Vt þ b, where V and b are constant vectors. Applying
this transformation to the true SGS stress yields
s�ij ¼ sij þ V iu0j þ V ju0i; ð7Þ
where the Galilean invariance of SGS velocity u0� ¼ u0 is invoked. It is easy to see that the invariance error is
zero when u0i ¼ 0, which is the case for the cut-off filter. For RSEM, however, ursg� 6¼ ursg since ursg

i is a resolved
scale quantity unlike true SGS velocity. Furthermore, it is impossible to satisfy Galilean invariance by mod-
ifying ursg

i such that ursg� ¼ ursg, because in that case modeled SGS stress would be sM�
ij ¼ sM

ij þ V iu
rsg
j þ V ju

rsg
i ,

and the invariance is satisfied only when ursg
i ¼ sM

ij ¼ 0. We adopt a simple remedy to enforce Galilean invari-
ance by modifying the model to not have any mean contribution; i.e.
sM
ij ð�uÞ ! sM

ij ð�u�UbÞ; ð8Þ
where Ub;i is the bulk velocity of the entire flow. All expressions involving the resolved velocity �ui in (5) and (6)
are replaced by �ui � U b;i. It is readily seen that the SGS stress sM

ij ð�u�UbÞ is invariant under Galilean trans-
formation. Note that the bulk velocity can change without changes in the local state, for example, by expand-
ing the domain along inhomogeneous directions. As a result of using the bulk velocity to enforce Galilean
invariance, changing the bulk velocity might change the local modeled stress. All results shown in the follow-
ing sections are obtained using this Galilean invariant formulation.

2.2. Coefficient determination

The coefficient R in Eq. (5) is determined from a constraint on the SGS dissipation; i.e. the modeled SGS
dissipation is forced to approximate a target value of the SGS dissipation. In principle, the target dissipation
could be obtained from any model; here it is obtained from the dynamic Smagorinsky model [3]:
st
ij �

1

3
st

kkdij ¼ �2ðCsDÞ2jSjSij; ð9Þffiffiffiffiffiffiffiffiffiffiffiffiffiq

where jSj ¼ 2SijSij, ðCsDÞ2 ¼ hLijMijih;þ=hMijMijih, Lij ¼g�ui�uj � e�ui e�uj , and Mij ¼ ðeD=DÞ2jeS jeS ij � jSjeS ij. Here,

the tilde denotes test filtering at eD ¼ 2D, h� � � ih is an average over homogeneous direction(s), and
h/iþ ¼ 0:5ðh/i þ jh/ijÞ is clipping for positive eddy viscosity. The superscript t represents the target value.
From st

ij, we determine the ‘target SGS dissipation’ Dt ¼ st
ijSij ¼ ðst

ij � 1
3
st

kkdijÞSij.
The coefficient R is chosen such that it minimizes the difference between the dissipation obtained from

RSEM and the target dissipation. This can be done in a number of ways. We define
sM

ij ¼ �uiu
rsg
j þ ursg

i �uj þ ursg
i ursg

j as the SGS stress predicted by RSEM. We exclude the trivial condition
sM
ij Sij ¼ Dt ð10Þ
because sM
ij would then have the same drawbacks as the purely dissipative target model. It is desirable that

SGS dissipation be equal to Dt only in the mean, and have large forward and backward dissipation, similar
to the true SGS dissipation. sM

ij is therefore constrained by the ensemble average of Dt; i.e.
hsM
ij Siji ¼ hDti; ð11Þ
where h i denotes the ensemble average. Note that Eq. (11) can be local in space for complex flows; also R is
constant with respect to the ensemble. Inserting (5) into (11), we obtain
hð�uiu
rsg
j þ ursg

i �uj þ ursg
i ursg

j ÞSiji ¼ hRhð�uiN j þ �ujN iÞSij þ R2h2N iN jSiji ¼ hDti: ð12Þ
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Since R is assumed to be constant with respect to the ensemble average, (12) reduces to
haiR2 þ hbiR ¼ hDti; ð13Þ

where a ¼ h2N iN jSij and b ¼ hð�uiN j þ �ujN iÞSij. When the ensemble average is performed with respect to
time, it is not possible to obtain R from (13) unless hai, hbi, and hDti are known a priori. The ensemble average
is therefore approximated by a cumulative average until steady values of RðxÞ are obtained. The use of a
cumulative average may give the impression that the model could be erroneous during initial transients. How-
ever, even at very short times, R is properly determined from the instantaneous or short-time averaged SGS
dissipation predicted by the dynamic Smagorinsky model. For homogeneous flows, it is reasonable to com-
pute the ensemble average by averaging over the entire volume so that R is a function of time, and constant
in space. This is the case for decaying isotropic turbulence, which will be discussed in the next section. The two
possible solutions to the quadratic Eq. (13) are readily computed; of these the solution that minimizes the fol-
lowing least-square error FðRÞ is chosen:
F ðRÞ ¼
Z

X
ðsM

ij Sij � DtÞ2dx ¼
Z

X
ðaR2 þ bR� DtÞ2dx: ð14Þ
However, the fact that Eq. (13) does not guarantee real roots means that ‘matching total SGS dissipation’ is
not always possible. In this case, R should be given by an alternative condition which guarantees a real solu-
tion. R that minimizes the least-square error FðRÞ seems to be a rational choice. Such R is given by the solu-
tion to oF=oR ¼ 0, yielding
R3

Z
X

2a2 dxþ R2

Z
X

3abdxþ R
Z

X
ðb2 � 2aDtÞdx�

Z
X

bDt dx ¼ 0: ð15Þ
Since Eq. (15) is a cubic equation, the existence of real solution is guaranteed. In the case of multiple roots, the
root that yields the smallest values of
Z

X
sM

ij Sij dx�
Z

X
Dt dx

����
���� ð16Þ
can be chosen. However, it is observed that (15) has only one real root R for all the numerical examples con-
sidered in this paper. This method will be referred to as ‘least-square method’. Since FðRÞ has the form of a L2-
error, sM

ij Sij may be viewed as ‘the best approximation’ to Dt [23] by a lower dimensional approximation to Dt

when R is assumed constant. However, if arbitrary variation of R is allowed, the minimization of (14) is mean-
ingless since it will then reduce to (10). All results in the subsequent sections are based on the ‘matching global
dissipation’ unless otherwise specified. Numerical experiments with ‘least-square method’ are performed for
both RSEM-S and RSEM-D for channel flow in Section 4.2.

In summary, the procedure to obtain R is as follows. Solve the quadratic Eq. (13). If both roots are real,
compute the functional (14) and choose the root which yields the smaller value. If (13) does not have real
roots, solve the cubic Eq. (15). If all roots of (15) are real, compute the functional (16) and choose the root
which yields the smallest value. If (15) has one real root and a complex conjugate pair, choose the real root.

For channel flow, R ¼ RðyÞ is a function of the wall-normal coordinate, and the same procedure as homoge-
neous flow, is applied over each homogeneous plane. Once R is computed, it is inserted into (5) and (4) to con-
struct sM

ij . A practical advantage of the proposed model is that it can be easily implemented in existing LES codes
with eddy viscosity models. Once the target dissipation is obtained, RSEM is constructed at negligible additional
cost. The only additional step is to compute R by using either (13) or (15). Virtually no additional CPU time was
required for this step in the isotropic turbulence and channel flow problems considered in this study.

3. Results: isotropic turbulence

3.1. A priori tests

Appropriate spectral behavior is essential if SGS models are to properly represent interscale energy
transfer. However, the constraint on total SGS dissipation offers no guarantees on the spectral behavior of
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the proposed model. An a priori test is therefore performed on RSEM to compare the spectral behavior of
predicted SGS stress to that from the dynamic Smagorinsky model, and the true SGS stress.

Consider a synthetic field of isotropic turbulence with random Fourier phases for the velocity field and
Fourier magnitudes chosen to satisfy the von Kármán spectrum
Fig. 1.
theore
EðkÞ ¼ 2:683k4

ð0:417þ k2Þ17=6
: ð17Þ
The spectrum is normalized such that EðkÞ ¼ 1 at k ¼ 1. Fig. 1 shows the power spectrum of SGS force ob-
tained from the dynamic Smagorinsky model, RSEM and analytical bounds [1] at the cut-off wavenumber
kc ¼ 8
SðkÞ ¼ 4pk2 lim
L!1

2p
L

� �3

hF iðkÞF �i ðkÞik:
Here, F iðkÞ ¼ iknP imðkÞŝmnðkÞ is the SGS force combined with pressure term, P imðkÞ ¼ dim � kikm=klkl is the
projection tensor, L is the domain size and h/ik is the spherical shell average at k ¼ jkj. The SGS force for
the dynamic Smagorinsky model and RSEM are computed numerically as described in Ref. [24]. Fig. 1 shows
that the power spectrum from RSEM-S is within theoretical bounds, and is similar to that from the dynamic
Smagorinsky model. RSEM-S therefore has appropriate spectral behavior in the sense that the SGS force is
maximum at the cut-off wavenumber and negligible at small wavenumbers [13,11,12]. This behavior is due to
the nonlinear term N i ¼ �ujLij being parametrized in terms of velocity derivatives, which are weighted towards
higher wavenumber regions. Note that the power spectrum of RSEM-D deviates more from the dynamic Sma-
gorinsky model, suggesting that the SGS stress for this model can be quite different, in spite of the constraint
on SGS dissipation. Results from RSEM-D may therefore show large variation from the dynamic Smagorin-
sky model.

3.2. A posteriori tests

The proposed model is applied to the decaying isotropic turbulence experiments of Comte-Bellot and Corr-
sin [25]. The Taylor micro-scale Reynolds number Rek ¼ urmsk=m decays from 71.6 to 60.6 in the experiments.
LES is performed using a dealiased spectral method at 323 and 643 resolutions, and semi-implicit time integra-
tion (see [26] for numerical details). Since the proposed models are neither purely eddy viscosity models nor
unconstrained estimation models, their performance is compared to both the dynamic Smagorinsky model
and a subgrid scale estimation model by Domaradzki and Loh [18].
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Power spectral densities of SGS force for isotropic turbulence with von Karman spectrum. N and ., lower and upper bounds of
tical SGS force [1]; � � �, dynamic Smagorinsky model; —, RSEM-S; - - -, RSEM-D.
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Fig. 2 shows three-dimensional energy spectra at non-dimensional time tU 0=M ¼ 42, 98 and 171. Also
shown is the time evolution of resolved kinetic energy. M ¼ 5:08 cm and U 0 ¼ 10 m=s denote the experimental
grid size and the mean convection velocity, respectively. Note that the resolved kinetic energy is normalized by
its initial value at tU 0=M ¼ 42 at both resolutions. All values except time in the figures of this section are non-

dimensionalized by reference velocity uref ¼
ffiffi
3
2

q
urms and length scale Lref ¼ 11M . It appears that the estimation

model proposed by Domaradzki and Loh [18] lacks dissipation, and yields noticeable pile-up of energy at
high-wavenumbers. This behavior is consistent with previous results for forced isotropic turbulence obtained
with this model [19,10]. Results from the dynamic Smagorinsky model and RSEM show good agreement with
the experimental data. Note that the spectra from RSEM-S are very close to that from the dynamic Smago-
rinsky model. On the other hand, RSEM-D predicts faster decay of the resolved kinetic energy, and under-
predicts the energy spectra. These results demonstrate that (i) estimating the SGS velocity from resolved
projection yields similar spectral distribution of SGS stress to dynamic Smagorinsky model, (ii) the dissipation
constraint method works successfully, and (iii) RSEM-S yields better predictions than RSEM-D. Also note
that the qualitative behavior of the model are insensitive to grid resolution. Therefore, only results from
323 resolution will be shown in the following discussion.
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Fig. 2. Decaying isotropic turbulence from LES with various SGS models: (a) and (c) three-dimensional energy spectra at tU0=M ¼ 42; 98
and 171; (b) and (d) time evolution of resolved kinetic energy. j, Comte-Bellot and Corrsin [25]; -�-�-, subgrid scale estimation model [18];
� � �, dynamic Smagorinsky model; - - -, RSEM-D; —, RSEM-S. (a) and (b) are from LES results at 323 resolution and (c) and (d) are from
results at 643 resolution.
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3.3. Differences between RSEM and dynamic Smagorinsky model

It may be argued that the above results are to be expected since LES of isotropic turbulence is dominated by
SGS dissipation, which is in some sense, ‘prescribed’. We therefore examine the deviation of both forms of
RSEM from the dynamic Smagorinsky model. First, the correlation between subgrid stresses is computed; i.e.,
a

Fig. 3.
(a) nor
qðsDSM
ij ; sRSEM

ij Þ ¼
hsDSM

ij sRSEM
ij i

hsDSM
ij sDSM

ij i1=2hsRSEM
ij sRSEM

ij i1=2
: ð18Þ
This tensor-level correlations reach steady values qðsDSM
ij ; sRSEM�S

ij Þ � 0:57, and qðsDSM
ij ; sRSEM�D

ij Þ � 0:34.
Whereas, scalar-level correlation, or the correlation between the SGS dissipation � ¼ sijSij is similarly computed
and obtained as qð�DSM; �RSEM�SÞ � 0:83, and qð�DSM; �RSEM�DÞ � 0:65. As expected from Figs. 1 and 2, the
RSEM-S model predictions of the SGS dissipation and subgrid stress are better correlated with the dynamic Sma-
gorinsky model. Also note that for both formulations, the correlations in SGS dissipation are higher than that for
the subgrid stress. This behavior is consistent with the SGS dissipation being imposed as a global constraint. The
relatively low correlations in the SGS stress suggests that the model structure of the RSEM is fundamentally dif-
ferent from the dynamic Smagorinsky model. This conjecture is assessed in Fig. 3 by plotting the joint p.d.f. be-
tween both models. Fig. 3 shows joint p.d.f.s of SGS stress and SGS dissipation at tU 0=M ¼ 120. The lower SGS
dissipation correlation of the RSEM-D is due to its relatively large levels of backward dissipation (Fig. 3(b)). On
the other hand, RSEM-S shows small levels of backscatter and is therefore more correlated with the purely dis-
sipative dynamic Smagorinsky model. Fig. 3(a) shows that the stresses predicted by the RSEM-D and dynamic
Smagorinsky models are nearly uncorrelated. The shape of the SGS stress p.d.f. suggests that RSEM-D yields
higher rms values of SGS stress than either RSEM-S or the dynamic Smagorinsky model. This behavior is con-
sistent with the power spectrum of SGS force shown in Fig. 1. Thus, we can conclude that (i) RSEM-S works at
least as well as the dynamic Smagorinsky model, (ii) the SGS stresses predicted by RSEM are quite different from
the dynamic Smagorinsky model, and (iii) the formulation based on the strain-rate results in the dominance of
forward dissipation, and is therefore more correlated with the dynamic Smagorinsky model.

3.4. Interaction between dynamic Smagorinsky model and RSEM

The dynamic constant and target SGS dissipation obtained from the dynamic Smagorinsky model in the
RSEM code, will be different from those obtained from a LES code that only uses the dynamic Smagorinsky
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Joint PDF between dynamic Smagorinsky model and RSEM at tU0=M ¼ 128 for decaying isotropic turbulence at 323 resolution:
mal component of SGS stress; (b) SGS dissipation. � � �, RSEM-D; —, RSEM-S.
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model. This dynamic interaction is examined in terms of the SGS dissipation. Fig. 4 shows the p.d.f. of SGS
dissipation at tU 0=M ¼ 60, along with time evolution of the dynamic Smagorinsky constant, Cs. It is interest-
ing that RSEM-D shows more dissipative behavior in the energy spectra and total kinetic energy, in spite of
showing higher levels of backscatter (Fig. 2). This behavior is a result of the interaction among the resolved
field, dynamic Smagorinsky model predictor, and RSEM. It is seen that Cs increases significantly for RSEM-
D. Thus, it appears that RSEM-D predicts large backscatter across the cut-off, which increases energy at the
smallest resolved scale, which in turn increases Cs. Increased values of Cs increase the target SGS dissipation,
Dt. A stable solution is thus obtained inspite of high backscatter. Although RSEM-D is less accurate than
RSEM-S, the compatibility of large backscatter with solution stability is an encouraging feature of the RSEM
approach.

4. Results: turbulent channel flow

LES of turbulent channel flow at Res ¼ usd=m ¼ 180 and 590 is performed using a dealiased pseudo-spectral
code [27] similar to Kim et al. [28], where the governing equations are written in term of the Laplacian of wall-
normal velocity ðr2vÞ and vorticity ðdu=dz� dw=dxÞ. Here, d denotes the channel half height and us denotes
the friction velocity. Fourier expansion is used in the streamwise (x) and spanwise (z) directions, and the Cheby-
shev-tau method is used in the wall-normal (y) direction. The nonlinear term is written in rotational form, and is
computed using pseudo-spectral method with 3/2-rule dealiasing in x; z directions. Third-order Runge–Kutta
and Crank–Nicolson schemes are used for time integration of the nonlinear terms and viscous terms, respec-
tively. Subgrid terms are treated explicitly as part of nonlinear term. For the test filtering of the dynamic Sma-
gorinsky model, the Fourier cut-off filter is applied parallel to the wall with filter width ratio of 2 in each
direction. No test filter is applied in the wall-normal direction. A constant body force is added to the right-hand
Table 1
Computational parameters for LES of turbulent channel flow

Run Res Domain ðx� y � zÞ Grid ðx� y � zÞ Resolution

Case I 180 2pd� 2d� pd 16� 48� 16 Dxþ ¼ 70; Dzþ ¼ 35
Case II 590 pd� 2d� 0:5pd 24� 96� 32 Dxþ ¼ 77; Dzþ ¼ 29
Case III 590 pd� 2d� 0:5pd 12� 96� 16 Dxþ ¼ 154; Dzþ ¼ 58
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side of the u-momentum equation to drive the flow at fixed mass flow rate. Thus, wall-shear stress and us are not
fixed and even their mean values can be different in each LES due to modeling errors. Since all results shown in
this section are based on wall units from each case, the results also reflect the differences in the wall shear stress.
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The domain size, grid and resolution used in the simulations are summarized in Table 1. Note that Cases I
and II marginally resolve near-wall structures, while Case III corresponds to a wall-unresolved simulation.
Note that the wall-normal resolution is quite good; i.e., we assume that the grid filter is applied only to the
wall-parallel directions. Case III is considered wall-unresolved due to its coarse streamwise and spanwise res-
olutions. Along with LES, DNS were performed at the same Reynolds numbers and with the same domain
sizes to obtain ‘filtered’ DNS data (denoted as fDNS). The filtered data were obtained at LES resolutions
using the Fourier cut-off filter in wall-parallel (x and z) directions. Note that the present DNS and LES use
half the domain sizes as Kim et al. [28] and Moser et al. [29]. Ref. [27] shows that all the statistics considered
in this paper are virtually unaffected by the reduced domain size.

Fig. 5 shows mean velocity and RMS velocity fluctuations from the filtered DNS, LES using the dynamic
Smagorinsky model, RSEM-S, and no SGS model. Only RSEM-S results are shown here for clarity. Results
from the RSEM-D model are presented at the end of this section. Note that in the absence of the SGS model,
the normalized velocities are highly under-estimated, showing the importance of the SGS models to the com-
puted solutions.

The performance of the dynamic Smagorinsky model is good, but still lacking in that it overpredicts the
streamwise velocity fluctuations and mean velocity in the log region. This is especially true for the low Rey-
nolds number case, Res ¼ 180 shown in Fig. 5(a). This trend has long been known, since essentially the same
results were observed by Germano et al. [3], who attributed the overprediction of mean velocity to the under-
estimation of wall skin friction by insufficient resolution. From Fig. 5, it appears that the RSEM model cor-
rects this behavior. LES with the RSEM model yields more accurate mean velocity profiles and RMS
fluctuations for all cases, especially for the well-resolved Cases I and II. For Case III where the near-wall struc-
tures are highly unresolved, both models overpredict urms. However, even for this case, RSEM yields better
predictions for the mean velocity. Computed values of Res and error in the skin friction ðCfÞ from all models
are summarized in Table 2. Note that the RSEM model shows less than 4% error in the skin friction.
Table 2
Computed Res and errors in skin friction

Case I Case II Case III

Res DCf (%) Res DCf (%) Res DCf (%)

fDNS 178 . . . 587 . . . 587 . . .

No model 195 20.0 631 15.6 644 20.4
DSM 172 �6.6 578 �3.0 554 �10.9
RSEM 178 �0.2 591 1.4 576 �3.7

100 101 102
10-3

10-2

10-1

100

100 101 102
10-3

10-2

10-1

100

Euu

Eww

Evv

kx kz

Euu

Eww

Evv

Sp
ec

tr
a

Fig. 6. The effect of SGS model on the (a) streamwise and (b) spanwise velocity spectra at yþ ¼ 30 of turbulent channel flow at Res ¼ 180
(Case I). j, DNS; � � �, dynamic Smagorinsky model; —, RSEM-S.



N. Park, K. Mahesh / Journal of Computational Physics 227 (2008) 4190–4206 4201
4.1. Difference between RSEM and the dynamic Smagorinsky model

The improved prediction of the RSEM model is associated with changes in flow structure. Velocity spectra
at yþ ¼ 30 and instantaneous vortical structures visualized by the positive Q-criteria [30] are computed for
Case I and shown in Figs. 6 and 7, respectively. Note that the spectra and vortical structures predicted by
RSEM show better agreement with filtered DNS than the dynamic Smagorinsky model. The ‘ejection’ or
Fig. 7. Instantaneous vortical structures in turbulent channel flow at Res ¼ 180 (Case I) visualized using positive Q criteria with
Q ¼ 0:2u4

s=m
2. For xy-plane representation (right), all structures in the spanwise direction are superimposed with 50% transparency. For

visual clarity, LES results are interpolated onto a 963 grid.
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the lift-off of near-wall vortical structures appears to be better predicted by RSEM, as shown in Fig. 7. Note
that near-wall structures predicted by the dynamic Smagorinsky model are mostly confined to the near-wall
region. These ‘attached’ vortical structures cause under-prediction of the wall-normal velocity spectra Evv

and over-prediction of the streamwise spectra Euu (Fig. 6). The RSEM model predicts more realistic ejection
motions and therefore more accurate Evv and Euu.

Why does the RSEM model yield better results than the dynamic Smagorinsky model in spite of being con-
strained by the same SGS dissipation? The interaction between the model and solution as in isotropic turbu-
lence is one possibility. Another explanation is specific to inhomogeneous flows; SGS dissipation is not the
only contribution of the SGS model to the resolved scale solution. For example, the resolved kinetic energy
�q2 ¼ 1

2
�ui�ui, is governed by
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Note that the SGS model affects resolved kinetic energy through the last two terms. The RSEM model is only
constrained through SGS dissipation; the SGS diffusion term � o

oxj
ð�uisijÞ is not constrained. Fig. 8 compares a

priori and a posteriori computed SGS dissipation and diffusion terms for Case I between DNS data, LES with
the dynamic Smagorinsky model and RSEM. Since the trace of SGS stress is not modeled but absorbed in the
pressure for the dynamic Smagorinsky model, � o

oxj
ð�uisij þ �p �ujÞ (=SGS diffusion + pressure diffusion) terms

are compared.
The comparison shown in Fig. 8 is interesting for many reasons. Note that the SGS diffusion term is larger

than SGS dissipation in the near-wall region yþ < 20. This implies that the SGS diffusion term plays an impor-
tant role in the redistribution of kinetic energy, and therefore, in the dynamics of near-wall turbulence. Also,
note the difference between predicted values of SGS dissipation from dynamic Smagorinsky model and
RSEM. SGS diffusion from RSEM is closer to DNS data in the viscous sublayer as shown in Fig. 8(b). Note
that even SGS dissipation predicted by a posteriori RSEM shows better agreement with DNS data in this
region. It is also noteworthy that a posteriori results are in better agreement with DNS data while those from
a priori test underpredict both SGS dissipation and diffusion.

4.2. Comparison between RSEM-S and RSEM-D

Estimation using the strain rate is contrasted to estimation using the deformation tensor in Figs. 9–11. For
RSEM-D, two methods for coefficient determination are considered – matching the global dissipation (11),
and the least-squares method (15). From Figs. 9 and 10, note that RSEM-D is highly sensitive to the coeffi-
cient determination method. As is evident from the velocity spectra (Fig. 9(c) and (d)), the results obtained
using global dissipation are overly dissipative, as also observed for isotropic turbulence. The least-squares-
based method shows insufficient dissipation, underpredicts the mean velocity and overpredicts spanwise
and wall normal rms velocity fluctuations (Fig. 9). This sensitivity is not observed in the RSEM-S model;
as shown in Fig. 9(a) and (b), mean velocity and RMS velocity fluctuation from RSEM-S with the least-
squares method are very close to those obtained using global dissipation.

Fig. 11 shows the correlation of the dissipation predicted by RSEM-D with the dynamic Smagorinsky
model (Fig. 11(a)), the p.d.f. of fluctuation SGS dissipation at yþ � 12 (Fig. 11(b)), and mean SGS dissipation
and diffusion (Fig. 11(c)). Note that SGS dissipation from RSEM-D shows very low correlation (<0.4) with
that from the dynamic Smagorinsky model. In contrast, RSEM-S shows a correlation coefficient higher than
0.8 throughout the channel. This behavior is due to large backward dissipation in RSEM-D as shown in
Fig. 11(b). Note that the contribution of mean velocity gradient is subtracted in computing SGS dissipation
as in Ref. [31]. As a consequence, the net transfer at yþ ¼ 12 is backward. The overall predictions of RSEM-D
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Fig. 10. Effects of RSEM formulation on turbulent channel flow at Res ¼ 590 (Case III): (a) mean streamwise velocity; (b) RMS velocity
fluctuations. j, filtered DNS; � � �, RSEM-D and matching the global dissipation; — RSEM-D and the least-square method.
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are not as good as RSEM-S; what is notable however, is (i) guaranteeing backscatter does not ensure better
predictions, and (ii) the proposed modeling approach is stable even with large backscatter. From Fig. 11(c), it
is interesting that RSEM-D yields less accurate prediction, not because it has large backward dissipation and
low-correlation with DSM, but because the model predicts excessive SGS dissipation in the near-wall region
where yþ < 20.

5. Concluding remarks

This paper proposes a simple and effective modeling approach which incorporates the dissipative nature of
existing eddy viscosity models into more physically appealing non-eddy viscosity SGS models. The key idea is
use the SGS dissipation of the eddy viscosity model to constrain the coefficients of the non-eddy viscosity
model. In order to demonstrate the feasibility of this approach, we propose a new, resolved subgrid scale esti-
mation model (RSEM). The model is formulated directly on the LES grid, and SGS dissipation is guaranteed
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by using a target SGS dissipation. The model has no adjustable coefficients, does not require finer grids, and
can be easily applied to unstructured grids. Two versions of the model are considered, that differ in the use of
strain rate (RSEM-S) or deformation tensor (RSEM-D) to estimate the velocity. Of these, the RSEM-S model
is found superior.

The model is applied to decaying isotropic turbulence and turbulent channel flow and shown to yield prom-
ising results. For isotropic turbulence, RSEM predicts some level of backward dissipation, while yielding as
excellent statistics as the dynamic Smagorinsky model. For channel flow, the results from RSEM are better
than the dynamic Smagorinsky model, for both statistics and instantaneous flow structures. The strain-
rate-based model (RSEM-S) results in the dominance of forward dissipation. The deformation-tensor based
model (RSEM-D) has large backward dissipation and its dissipation distribution is more Gaussian. In spite of
the large levels of backward dissipation, stable solutions are obtained.

In principle, the proposed idea of constraining SGS dissipation can be applied to any similarity type model
to determine model coefficients. This is therefore an alternative to the Germano identity for determining model
coefficients. Also, note that SGS dissipation is not necessarily the only constraint that can be imposed,
although it is possibly the most important. SGS kinetic energy can be considered as another constraint,
because having the SGS kinetic energy enables direct comparison of LES results to unfiltered experimental
data. In this regard, note that the proposed RSEM model underestimates the normal components of SGS
stress, and thus the SGS kinetic energy. Therefore, the comparison with unfiltered DNS data is not satisfac-
tory for both isotropic turbulence, and channel flow. This behavior is most likely a limitation of only using
SGS-dissipation as a constraint; no constraint on SGS kinetic energy can be imposed since
sijSij ¼ ðsij � 1

3
skkdijÞSij. Extensions of the present formulation using the transport equation for �u0i or SGS

kinetic energy, appear to be a promising direction for future development.
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