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We revisit the Germano-identity error in the dynamic modeling procedure in the sense that the
current modeling procedure to obtain the dynamic coefficient may not truly minimize the error in the
mean and global sense. A “corrector step” to the conventional dynamic Smagorinsky model is
proposed to obtain a corrected eddy viscosity which further reduces the error. The change in
resolved velocity due to the coefficient variation as well as nonlocal nature of the filter and flow
unsteadiness is accounted for by a simplified suboptimal control formalism without resorting to the
adjoint equations. The objective function chosen is the Germano-identity error integrated over the
entire computational volume and pathline. In order to determine corrected eddy viscosity, the
Fréchet derivative of the objective function is directly evaluated by a finite-differencing formula in
an efficient predictor-corrector-type framework. The proposed model is applied to decaying
isotropic turbulence and turbulent channel flow at various Reynolds numbers and resolutions to
obtain noticeable reduction in the Germano-identity error and significantly improved flow statistics.
From channel flow large-eddy simulation, it is shown that conventional dynamic model
underestimates subgrid scale eddy viscosity when the resolution gets coarse, and this
underestimation is responsible for increased anisotropy of predicted Reynolds stress. The proposed
model raises both the overall and near-wall subgrid scale eddy viscosity to reduce exaggerated
Reynolds stress anisotropy and yield significantly improved flow statistics. © 2009 American

Institute of Physics. [DOI: 10.1063/1.3140033]

I. INTRODUCTION

Large-eddy simulation (LES) is an under-resolved turbu-
lence simulation using a model for subgrid scale (SGS) stress
Tij=uu;—i;i; to account for the interscale interaction be-
tween the resolved and discarded scales (the overbar denotes
resolved scale). The main task of the SGS model is to pro-
vide mean dissipation that corresponds to the resolved scale
energy that would be transferred to the discarded scales if
they were resolved. This equivalence of transfer and dissipa-
tion (“equilibrium hypothesis”) may be traced back to Kol-
mogorov. The widely used Smagorinsky model,’

7 - 3708, =-2(C,A)S]S;;, (1)

)

represents a strong version of the equilibrium hypothesis ap-
plied locally in physical space. Here, C, is the Smagorinsky
coefficient, §; is the strain rate tensor, and |S|=25;5;;. The
main drawback of the original model was that C; was as-
sumed to be a global constant. The dynamic Smagorinsky
model” (DSM) removes this limitation by allowing C to
depend on the flow, location, time, and resolution. The DSM
invokes the Germano identity2

L.=T.—1 (2)
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where L,j—(u i))S u u is the grid filter subgrid stress, 7;;
—(u ;) —ITIS _;S is the test filter subgrid stress, and the super-
script S denotes the test filter scale. In the DSM, C; is chosen

such that it minimizes the Germano-identity error,
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where the superscript @ denotes the traceless part, and

ﬂ—%?ﬁ@jz—Z(CsAs)zﬁsﬁg is the model for subtest scale
stress. Here, A and A are grid and test filter widths. C; is
then determined using “dynamic procedures,” which are re-

viewed below.

A. Review of current dynamic procedures

The term dynamic procedure refers to a method to obtain
C, that minimizes the Germano-identity error [Eq. (3)].
However, finding such a procedure is not straightforward
since Eq. (3) is a tensor-level equation for single unknown
C,, and C, in the second term of Eq. (4) is inside the test
filtering operation.

The original DSM proposed by Germano et al’ com-

putes C, that satisfies eijg ;=0 under the assumption that C
varies slowly in space and therefore can be taken out of the
test filter. A subsequent modification by Lilly3 is most widely
used; here C; is defined to minimize €;;€;; in the least-square
sense,

<MULU>;

A 2 _
(C ) <M Ml]>h

(5)

Here, M;;=2[|5]S,15-2(AS/A)> |S$|S$ (-);, denotes averag-
ing over homogeneous direction(s), and Y =0.5(()+|<H)D
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denotes positive clipping. Initially, the fact that M;;L;; can be
negative was regarded as a desirable feature of the DSM
since it represents backscatter from small to large scales.
However, numerical simulations showed that negative eddy
viscosities remained negative for long periods of time, caus-
ing the solution to become unstable* unless clipping and av-
eraging were used. In what follows, we will refer this plane-
averaged and clipped version as the standard DSM.

Ghosal er al.* proposed a more elaborate “localized” ver-
sion to overcome mathematical inconsistencies in the stan-
dard DSM. Since the test filtering operation is nonlocal, they
considered the volume integrated error

\7=f fij(x)fij(x)dx (6)

and determined C,(x) from the variational formulation of J
to obtain a Fredholm integral equation of the form

Ci(x) = {f(X)+ f /C(X,y)C.Y(y)dY} , (7
+
where + denotes the positive part [see Ref. 4 for f(x) and
K(x,y)]. Equation (7) can be solved iteratively to obtain a
solution that is free from the mathematical inconsistency of
taking C, out of test filter. Also, the clipping may be reinter-
preted as constrained minimization.

An alternative approach to minimize the time-averaged
Germano-identity error was proposed by Ref. 5. Their La-
grangian version of the dynamic model considered the path-
line accumulation of the local error squared,

t

TI= e€lzt).t']elz(t"),0' IW(t - 1")dt’, (8)

—00

where z is the trajectory of a fluid particle for earlier times
t'"<t and W is a weighting function to control the relative
importance of events near time ¢ with those at earlier times.
The introduction of Lagrangian averaging is both physically
and numerically appealing, considering the Lagrangian na-
ture of the turbulence cascade®’ and practical applicability to
unsteady flows without any homogeneous directions. Also,
time integration of Eq. (8) using W(t—1')=T"'e~=")'T yiclds
a transport equation to yield

T
(C,A)2=—1
ZMM
DILM 1
Dt = }(LijMij ~Zim)s )

1
Dr - ;,(MijMij ~Zyum)»
where T=60A(Z;,Ty)"8 is the time scale and 6 is an ad-
justable parameter. The Lagrangian model eliminates the
need for ad hoc averaging and clipping. Nevertheless, the
model is local and is not free from the mathematical incon-
sistency involved in taking C; out of the test filter.

In addition to these models, we mention two variants of
the DSM that use the Germano identity in different ways.
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Morinishi and Vasilyev8 proposed a model that uses a vector-
level Germano identity based on the fact that SGS force
rather than SGS stress is required to close the filtered mo-
mentum equation. Also, Porté-Agel et al’ proposed a scale-
dependent dynamic model, which uses different Smagorinsly
coefficients at filter and test scales. In this paper, we focus on
eliminating mathematical inconsistencies in the tensor-level
Germano identity using the scale invariance assumption.

B. Toward a further reduction in the error

The Germano identity is an attractive approach to incor-
porating the scale—invariance conceptlo and exact SGS-
related term (L;;) into an eddy viscosity model. Also, since
€;;=0 for the exact SGS model, the pursuit of small error is
at least a necessary condition for a good SGS model. How-
ever, as shown in Ref. 11, the absolute value of the
Germano-identity error (3) for DSM can be very large even
for isotropic turbulence. This behavior may be attributed to
the very low correlation coefficients (typically around 0.2)
between true SGS stress and DSM (see, e.g., Ref. 10 and
references therein) in a priori tests. However, another pos-
sible cause for the large Germano-identity error, which has
not been explored so far, is the assumption of “frozen” ve-
locity with respect to change in C,. In other words, the cur-
rent DSM including localized and Lagrangian versions con-
sider only the first term in the following expression for the
gradient of the objective function:

DJ 94T 4T ou,
e (10)
DC, C, i, IC,

where the second term on the right-hand side represents the
contribution of the resolved velocity change due to changes
in C; on the objective function J=1/V[e;€;dx (V is the
volume of computational domain ()). From control theory,
the current DSM corresponds to the “incomplete sensitivity
method.”"? The second term could be significant, in which
case, further reduction in the objective function is possible
by considering the complete gradient. This is especially true
if the main concern is the mean, rather than instantaneous
objective function

1 (7
j(Cs) = %—fo fQ eijeijdth’ (1 1)
where 7 is an arbitrary time large enough to allow statistical
convergence.

Now, searching for C,(x,7) that minimizes [ iS no
longer simple algebra, but is a formal optimal control prob-
lem. However, the use of the optimal control in the context
of SGS model for LES is impractical for large 7 due to its
computational cost and memory requirements.13 Suboptimal
control for a short-time period has been used to obtain wall
stress conditions in LES."*"> However, suboptimal control
based on the adjoint equation is still expensive for practical
use."* A more efficient technique to compute the minimizer
C, of the objective function is therefore needed.

The main objectives of this paper are to (i) further mini-
mize the Germano-identity error by allowing the filtered ve-
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locity in the cost function to vary with C,, (ii) see if the real
minimizer C; improves LES predictability, and (iii) how
much the coefficient deviates from the standard DSM. By
doing so, we explore the optimality of the current dynamic
procedure. Secondary contributions of the paper are to (i)
propose an efficient technique based on the predictor—
corrector method to obtain the minimizer C, of an arbitrary
objective function J(C;) and (ii) propose a Lagrangian DSM
that is an improvement over the current Lagrangian ap-
proach.

The paper is organized as follows. Section II describes
an efficient predictor-corrector based scheme which is used
to obtain a parameter that minimizes a chosen objective
function. This scheme is then applied to the DSM to obtain
the eddy viscosity correction that minimizes volume- and
pathline-averaged Germano-identity error. In Secs. III and
IV, the proposed correction is applied to decaying isotropic
turbulence and turbulent channel flow at various Reynolds
numbers and resolutions. The performance of the proposed
correction is evaluated in terms of both reduction in the
Germano-identity error and improvement of flow statistics.
The channel flow LES is used to perform detailed analysis of
the optimality of the standard DSM and effect of chosen
objective function on the solution. Section V summarizes the

paper.

Il. PROPOSED CORRECTION

In this section, we propose an efficient predictor-
corrector based scheme that minimizes the averaged
Germano-identity error. The proposed approach is an alter-
native to the conventional adjoint approach.

A. Predictor-corrector scheme

Consider the filtered, incompressible Navier—Stokes
equation split into the following two set of equations:

9 _ _ o) —@w—ﬁ" —%, (12)

ot (9xj (3’x,- (7xj(9x] (QXI

o __dory )

Jat Ix;
where v is the molecular viscosity and p is the pressure
divided by density. The above equations are integrated se-
quentially, 7” is the SGS model at predictor step, and 87;; is
the model correctlon such that 67;; and the corresponding
final solution &; minimize (or maximize) a given target func-
tion J(67;). This is the key idea behind the proposed
method.

Next, consider a more detailed discretized formulation.
The predictor step uses semi-implicit time integration with
the Adams—Bashforth and the Crank—Nicolson schemes,
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—k —
u; —u;

i i —n i qon

1 —n—1 J n—1gn-1
_E{M(u )+(9_xj(2VT Si; )}

F L)+ L), (14)

where N; and £; denote explicit and implicit operators re-
spectively, 2=(CPA)?|S| is the eddy viscosity given either
by Eq. (5) or Eq. (9), and the superscript n denotes nth time
step. Note that SGS terms are treated explicitly. As will be
shown later, the effect of the predictor step on the LES so-
lution is small, but choice of the predictor step affects the
efficiency of the iterative corrector step.

The corrector step simply incorporates an SGS correc-
tion term, yielding

l

3 9 _
Wt =i+ = At—(26v,ST), (15)
2 (9)(] J
o'/ gx;=0. Here, Ovy
=(6C,A)?|S| is the “eddy viscosity correction” such that vari-

ables at (n+1)th time step (V}=12+ v, and ir'*') minimize
the objective function

T
J:—f f EjfijdXdl+%_f f (Sv7lS|"")dxdr,  (16)
0Ja

=—2(C"AS)? |SS|SS”“+2[(C”A) |SISEIS = Lt (17)

followed by the constraint

where C;=C%+ 6C,. Note also that the test filter is applied to

the entire SGS stress 7);“=-2(C, A)2|S|S"+1 and thus the
main objective of the localized model® can be also achieved
by minimizing J. The second term in Eq. (16) is a price
term; it has a free parameter « and is proportional to the
amplitude of incremental SGS contribution due to the eddy
viscosity correction. The price term is necessary to prevent
unbounded growth (or decay) of eddy viscosity which may
adversely influence the stability of the simulation. It is
known'® that the performance of suboptimal control is de-
pendent upon « and there is an optimal « that minimizes the
objective function. In this study, we set a=1 and observe
that the price term is less than 1% of the total objective
function for all cases of decaying isotropic turbulence and
turbulent channel flow considered.

B. The objective function and control algorithm

The use of time averages in the unsteady simulation
[Egs. (16) and (17)] introduces some numerical complexity.
In order to address this issue, we adopt the idea of pathline
average5 as explained in Sec. I A. Pathline averages are also
more beneficial than simple time averages for statistically
nonstationary flows like decaying isotropic turbulence. Con-
sider
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J ! f Jid
== X
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1

=—f Jl €,(z(t'),1") € (z(t"), 1" )W(t—1")dr |dz, (18)
\% Q —oo X

where 6;=€ij+(0(/3)51/1~|§|5,-j, W(t—1")=T"'e )T s the
weight function, and 7 is a time scale associated with the
Germano-identity error which will be defined in Sec. II C.
Then, the local objective function, or the term in the bracket
obeys

DJ, dJL g, 1 ., .
_E—+ﬁ.—=—ef€f.— , 19
Dt a7 ox 7€ =) (19)
which can be discretized as

+1,k Lk

L _*72 _ —n+1,k’9jnL L( #n+ .k *,n+1,k_jn+1,k)
At - ax; T €ii €ij L ’

(20)

Here, the superscript k£ denotes subiteration level, and the
convection term is discretized with first-order upwind
scheme. Unlike Meneveau ef al.’ who discretized Eq. (9) in
Lagrangian fashion, we discretize Eq. (19) in Eulerian fash-
ion since computation of the convection term is more effi-
cient than searching and interpolating, especially on unstruc-
tured grids. Thus, we search for Sv; that minimizes g
=1/ijz+1dx, and we assume that the same Jov; will also
minimize the objective function (16). The assumption will be
verified a posteriori by numerical experiments in Sec. IV.

The objective function minimizer Sv(x) can be com-
puted by a gradient-based iteration. The derivative of the
objective function in general requires the solution to the ad-
joint equation (see, e.g., Ref. 13), whose computational cost
is comparable to the Navier—Stokes solver at each iteration.
Thus, total CPU time taken could be 10-20 times of the
uncontrolled simulation.'* We therefore use a more efficient
approach and directly evaluate the local Fréchet derivatives
of the objective function by a method similar to that used in
Ref. 14: Given dv; and velocity field u” and u*, choose a
small € to perturb dv; at one point by € and obtain Svy
+eg, where ¢ is a delta function at the location of the per-
turbation. Now advance the velocity field one “corrector”
time step using Eq. (15),
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FIG. 1. Effect of € on the finite-differencing approximation of the Frétchet
derivatives D.J/ D vy for turbulent channel flow at Re,=2000 (case D2kc).

. 3 9 o
Wt (Svr+ €d) =i, + ~At—{2(5vy+ €d)S}, (21)
2 C?.x] 4

and insert this together with Svy+ € to Egs. (16) and (17),
and get J(Svp+€@). The approximate Fréchet derivative at
the location of perturbation is then

DT - J(dvr+ed) - T(ovp)
D5VT¢~ €

. (22)

The accuracy of the above approximation depends on the
parameter €. Figure 1 shows the effect of € on the above
finite-differencing approximation of the Fréchet derivatives
for turbulent channel flow at Re,=2000 (case D2kc in Table
I.) As shown, the Fréchet derivative is independent of € for
€<107%; €=107° is therefore used for all cases considered in
this paper. We also mention that the present finite-
differencing approximation is at least as accurate as the
adjoint-based method since it is free from other assumptions
commonly used in the adjoint based method; in fact, the
finite-differencing approximation is often used to validate the
adjoint method.'*"’

Next, consider the efficiency of the scheme. If there
were no predictor step solution u*, and we consider a pertur-
bation of the solution at the previous time step u”, the com-
plete evaluation of D.J/Ddv; would require O (number of
grid points) evolutions of the Navier-Stokes solver, which in
general will be much more inefficient than the adjoint
method."* However, this is not the case with the present split-
ting method because the estimated velocity at the (n+1)th

TABLE I. Computational parameters and objective function reduction from the proposed model.

A
Case Re, N XNy XN, y-grid (y) L XL, Ax*, Az Ayt (AY) (%{
D180t 180 32X49X32 Tan" (2.5) 4mdX 21w 70,35,0.6 (26) —30
C180t 180 16 X49 X 16 Tan (2.5) 4mdX2mwo 140,70,0.6 (42) —-19
M590c 590 24 X97X24 Cosine” 2wEX w6 154,77,0.3 (53) —16
M590t 590 24X 65X32 Tan (1.5) 2wéX wo 154,58,5.8 (55) -2
D2ke 2000 48 X 97X 64 Cosine 2wéX wo 261,98,1.1 (102) —4
C2kt 2000 24X 81X32 Tan (2.0) 2wéX w6 524,196,7.7 (173) —10
C2ku 2000 24X 81X32 Uniform 2wdX w6 524,196,50 (173) —46

*y;=tanh[¥(2j/N,—1)]/tanh 7.
byj:cos(v'rj/N}.). J=0.... N Ay =(AxAzAy)'.
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step due to the eddy viscosity variation e can be efficiently
computed by simply adding a source term to the predicted
solution ; as in Eq. (21). Note that the strain rate 51’.;. and its
derivatives can be stored once they are computed and only
the perturbation in the eddy viscosity needs to be updated
during the construction of DJ/Ddvy at all grid points. A
further reduction in computational cost could be readily pos-
sible by localizing J and/or limiting the volume integration
of J; near the points of interests, e.g., near the wall as in
Ref. 15. For the channel flow LES (Sec. IV), some of these
ideas are applied to enhance the efficiency.

Having obtained D7/ D vy at all points, Sy is obtained
iteratively using the Pletcher—Reeves conjugate gradient
method,]8

S (x) = Sv(x) - Mgh(x), (23)
(530 D
o DF \Dsv Dov)
g (X)_D(SVT— (Djk_l ,Djk_l)g (X), (24)
Dévy ' Dévy

where g'=D7°/Dév; and (- 1)) = P(x)(x)dx is the in-
ner product between two vectors. At each time step, subit-
eration (23) starts with v‘fO:O. In past work where the con-
jugate gradient method was used in a control context, the
constant \* is either constant,”’15 or chosen to minimize the
objective function by the line-minimization algorithm.13
However, numerical tests with turbulent channel flow
showed that neither method was satisfactory, since constant
N often causes the subiterations to diverge, unless it is very
small in which case it requires large number of subiteration.
The line-minimization algorithm was found to require too
many evaluations of the objective function (18), which is the
most time-consuming procedure for the current correction
method. Therefore, a simple compromise is adopted here to
make \f be close to the largest possible value that allows
decay of the objective function. We perform another level (1)
of subiteration )\"”J’l:%)\k" until JONRH) < 7 with a suffi-
ciently large value of \*°. Finally, the converged solution of
Svy is inserted to Eq. (15) to complete the time integration.

C. Lagrangian time scale of the Germano-identity
error

For time integration of Eq. (20), the Lagrangian time
scale T which controls the memory length of the Lagrangian
averaging is required. Figure 2 shows the Lagrangian and
Eulerian autocorrelations of the Germano-identity error very
near the wall and channel centerline. The Lagrangian corre-
lation is obtained by tracing particles using

dX(1;%x,)

i V(#:x), (25)

where X is particle position. The particle velocity V at loca-
tion X is given by trilinear interpolation of the Eulerian ve-
locity. As expected, the Lagrangian time correlations of the
Germano-identity error are longer than the Eulerian correla-
tions. Also note that the time scales in the vicinity of the wall
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FIG. 2. Eulerian and Lagrangian autocorrelations of the Germano-identity
error at (a) y*=3 and (b) y*=590 obtained from LES of turbulent channel
flow at Re.=590 (case M590c) with DSM: Here, &t is the separation time.

and the channel center are not very different, which suggests
that parametrizing them in terms of the strain rate may not be
very accurate.

A simple dimensional closure” is first considered as the
model for the time scale. As mentioned earlier, Meneveau et
al’ proposed the following time scale for their Lagrangian
dynamic model (LDSM):

T= AT Tp) ™", (26)

where Z;,, and 7, are Lagrangian averaged tensor products
LM and M;;M;, and are integrated numerically by Eq. (9).
6 is an adjustable parameter §=1.5 was chosen by Meneveau
et al.’ based on time correlations of L;iM;; and M;;M;; from
DNS data of isotropic turbulence. In what follows, this time
scale will be denoted as T} pgy-

The main concern when using 77 psy, 1S the existence of
a free parameter 6, and the strong dependence on the strain
rate through 7;,, and Z,;,, terms. As an alternative, we pro-
pose a dynamic time scale, which we call ‘“‘surrogate-
correlation based time scale” Tgc. Suppose we know the lo-
cal and instantaneous Germano-identity error squared at five
consecutive events along the pathline, £=&(x,r), &'
=E&(x*+uAr,t+ A1), and £E2=E(x*+2uAr,t+2A7). Then,
at each location, one can define the following surrogate La-
grangian correlations at three separation times:

2-1

— ; k _ oV(cktl _ o
C(IAf) = G50 Ez (E =) (EH =€)

where £= %Eiz_zé’k is the average value. If there are homo-
geneous directions in the domain, the number of samples can
be significantly increased by averaging over the homoge-
neous directions. After computing the correlations, they are
normalized with zero-separation correlation C(0) to obtain
p(0)=1, p(Ar)=C(Ar)/C(0), p(2Ar)=C(2A1)/C(0). As illus-
trated in Fig. 3, a polynomial constructed by these three
values:

p(8) =1+ C, 8t + Co (1) (28)

(1=0,1,2), (27)

is considered for separation time Jf as a formal approxima-
tion of the correlation function, which is usually best ap-
proximated by an exponential function, as in Fig. 3. Coeffi-
cients C; and C, are readily calculated by two measured
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FIG. 3. The illustrative model for the surrogate correlation: Here, solid line
denotes assumed true Lagrangian autocorrelation and the dotted line denotes
the parabola model based on three computed values. ot is the separation
time and 7 is the time required for the true autocorrelation to reach 1/e
~0.37.

correlations p(Ar) and p(2Ar) at St=Ar and 2Af, respec-
tively. Then, we define the time scale based on the surrogate
correlation Tgc as the time when p=0, and is given as the
positive solution

- C,-\C*-4cC,
1
TSC= T (29)

Note that C, is always negative and, thus, Tgc is a positive
real value, as far as the condition 1> p(Ar)> p(2Ar) is sat-
isfied. However, if there are insufficient samples, this may be
violated and C, can be positive. In that case, Tsc is obtained
by considering C,=0; i.e., p(&t)=1+C,(5)* and discarding
either p(Ar) or p(2Ar) to get a unique and negative C,. For
all cases considered in this study, no problem was encoun-
tered in determining T using Eq. (29). Tsc corresponds to
the time 7' at which the exponential model correlation py,
=exp[—(6t/T)?] sharing two values p(Af) and p(2Ar) with
the parabolic model, reaches e~!~0.37, as shown in Fig. 3.

In this model, five events £°,E1, 72 along the pathline
are required, and we approximate them by using

DE 9 9

—=—vu—. 30
Dt ot u’axj (30)

E'=E(x+uAt,t+Ar), for example, is given by a simple first
order finite-differencing approximation of Eq. (30),

E(x+ulrt+An) - E(x,1)  E(x,1) - E(x,t—Ar) "
~ +u;—
At At I ox

IE"
EX+ult,t+Ar) =28 -+ ﬁ;’At—& , (32)
x,

J

where the superscript n denotes values at (x,f), or &"
=&(x,1). The convection term is computed by second order
finite-difference schemes. Other events are computed simi-
larly with the same approximation of d€/ ¢ to yield
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FIG. 4. Lagrangian time scales of the Germano-identity error for turbulent
channel flow at Re,=590 (case M590c): Here, T\ pgy=1.5AZ 0 Zpn)™ "8
and Tyc is the surrogate correlation-based time scale. See the text for more
details.

oE"
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IE"
E(X+2ulr,t+2A1) =~ 38" =26 + 2Atﬁ’;a—, (33)
T ax.

J

n

E(x—2uAr1-2An) =28 - &' - 24—

Xj

Thus, £~ '=&(x,t—At), the Germano-identity error at previ-
ous time step needs to be stored. Computed values of
£9,+1,£*2 are directly used to compute the surrogate cor-
relation (27) for the time scale (29).

Figure 4 compares the actual and computed Lagrangian
time scales of the Germano-identity error from LES of tur-
bulent channel flow at Re, =590 using the DSM (case
“M590c¢” in Table I). In Fig. 4, the true time scale T, is the
time at which the Lagrangian correlation is e™' ~0.37, and
the Lagrangian correlations are computed using the particle
tracking method mentioned earlier. 7} pgy, time scale from
the LDSM, is obtained using #=1.5 and by integrating the
transport equations of Z;,, and Z,;,. As shown in Fig. 4,
T1 psm shows large discrepancy with T\, and in fact, exhib-
its opposing behavior. It is obvious that this trend cannot be
changed by using different values of 6. On the other hand,
Tsc agrees well with Ty, in spite of the crude approxima-
tions used in Egs. (32) and (33). Figure 5 shows the Lagrang-
ian correlations at various wall-normal locations normalized

1k. 1
=08 =08
g g
3 s
< 0.6 < 0.6
£ g
204 204
e <l
El El
< 0.2 < 0.2

[Ug 0

L L

ST,

sc

FIG. 5. Lagrangian autocorrelation of the Germano-identity error at various
wall-normal locations for turbulent channel flow at Re,=590 (case M590c)
normalized by (a) Typsm=1.5A(Z Zym)~"® and (b) Tsc by surrogate
correlation.

Downloaded 24 Jan 2010 to 128.101.98.21. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



065106-7 Reduction in the Germano-identity error

L] DSM s DSM
Corrected DSM op Corrected DSM
ol \ , ! \ \
750 100 150 50 100 150
tU/M tU/M

FIG. 6. (a) Germano-identity error normalized by resolved kinetic energy
squared and (b) the Smagorinsky coefficients evolution for decaying isotro-
pic turbulence.

by Tipsm and Tgc. As shown, the correlations collapse well
with Tgc, while such collapse is not observed with T} pgu:-

Besides its noticeable accuracy, another advantage of the
surrogate approach is that it does not need any adjustable
coefficient. Ty can be therefore directly used in the LDSM
to remove the ambiguity associated with the free parameter
0. The effect of chosen time scale on the controlled dynamic
model will be discussed in Sec. IV E.

lll. RESULTS: DECAYING ISOTROPIC TURBULENCE

The proposed model is first applied to the decaying iso-
tropic turbulence experiment of Comte-Bellot and Corrsin."”
The Taylor microscale Reynolds number, Re, =u,,\/v var-
ies from 71.6 to 60.6. LES is performed using a dealiased
Fourier spectral method at 32% resolution and semi-implicit
time integration (see Ref. 20 for numerical details). The
simulation is initialized by a random, divergence-free veloc-
ity field that matches the initial experimental spectrum at
tUy/ M =42, where M=5.08 cm and Uy=10 m/s are the ex-
perimental grid size and mean convection velocity, respec-
tively.

For the proposed model, the standard DSM is used as the
predictor step. Figure 6 shows the time evolution of the nor-
malized Germano-identity error and the Smagorinsky coeffi-
cient C, for the DSM and corrected DSM (denoted as CDSM
hereafter). Note that the Germano-identity error is normal-
ized by the square of the instantaneous total resolved kinetic
energy. In Fig. 6(b), C,; for CDSM is the sum of the coeffi-
cients from the predictor and the corrector steps. We see that
CDSM reduces the error, especially in the beginning of the
simulation (tU,/M <60) when C, for DSM evolves from
zero. When started from an unrealistic random field, the
DSM shows a rapid transient in the coefficient, as shown in
Fig. 6(b). However, it appears that the CDSM does not dis-
play this transient behavior. After the initial transient, the
difference in C,; between DSM and CDSM is small, and so is
the reduction in the Germano-identity error. This implies that
the conventional DSM is close to the optimal value, except
during the initial transient. This is because DSM determines
C, from past information while CDSM also uses predicted
unknown information to determine C,. The model coeffi-
cients and therefore the solutions will be very different when
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FIG. 7. Energy spectra for decaying isotropic turbulence from LES with
DSM and CDSM.

C, varies rapidly in time. This is why DSM and CDSM show
large differences during the initial transient and smaller dif-
ferences thereafter.

Figures 7 and 8 show three-dimensional energy spectra
at tU,/M=42, 98, and 171 and time evolution of resolved
kinetic energy, respectively. Here, the wavenumber is nor-
malized by the reference length scale L ;=Lg/2, where
Lz=11M is the size of the computational box. The energy
spectrum is normalized by L. and the velocity scale U
=v3/2u,,. Note that resolved kinetic energy is normalized
by its initial value at tUy/M =42, and the experimental data
are filtered at k.L,.;=16 to compare with LES data. The ef-
fect of initial transient almost disappears at tUy/ M =98 and
thus the spectra from DSM and CDSM show little difference
and the same is true for the spectra at the final stage of
tUy/M=171. Note the pile-up of energy near the cutoff,
which occurs because the Smagorinsky model lacks the
“cusp” behavior for the equivalent spectral eddy viscosity
near the cutoff.’

The main difference between two models is seen only in
the initial kinetic energy decay rate at U,/ M <80, as shown
in Fig. 8. Since experimental data or filtered DNS data in this
range is unavailable, an EDQNM simulation with k. L.t
=256 was performed to obtain reliable filtered kinetic energy
in this range (see Ref. 20 for more details on the EDQNM
simulation). It is shown in Ref. 20 that the EDQNM simula-
tion predicts virtually the same spectra as the experiment.
Figure 8 shows that CDSM yields better agreement with re-
solved kinetic energy from filtered EDQNM data. Therefore,

o EDQNM
[ Comte-Bellot & Corrsin (1971)
I L DSM
0*8f & Corrected DSM
Ngo 0.6
I
041
021
07”‘|H‘|H‘|‘Hn“‘n“‘n“
40 60 80 100 120 140 160

tU,/M

FIG. 8. Temporal evolution of resolved kinetic energy for decaying isotropic
turbulence from LES with DSM and CDSM.
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we conclude that reducing the Germano-identity error en-
hances model predictability for decaying isotropic turbulence
mainly by reducing the transient period caused by the
random-phase initialization.

IV. RESULTS: TURBULENT CHANNEL FLOW
A. Computational details and model implementation

Next, the proposed model is applied to turbulent channel
flow at various Reynolds numbers (Re,=180, 590, and 2000)
and resolutions. Table I lists the Reynolds number, relative
resolution, and wall-normal (y) grid distribution for the vari-
ous runs and uses the following notation. For illustration, the
cases “C2ku/D180t/M590c” denote coarse/dense/medium
resolution, Re.=2000/180/590, and uniform/hypertangent/
cosine grid in the wall-normal grid, respectively. Except for
D180t, all simulations are performed at coarse resolutions,
where near-wall structures are not resolved. Table I also lists
A,,=(AxAzAy)'? as a measure of overall resolution, where
Ay is the mean wall-normal grid size. We have deliberately
chosen the two pairs M590c/M590t and C2kt/C2ku that have
similar overall resolution to evaluate the effect of grid aniso-
tropy.

The numerical method is similar to that used in Ref. 21
except for wall-normal derivatives: The Fourier expansion
with 3/2-rule dealiasing is used in homogeneous (x and z)
directions, and a nonuniform-grid version of the fourth-order
compact difference scheme® is adopted in the wall-normal
(y) direction,

afi_y +f; + Bfj1 = Afj1 + Bfj+ Cf i, (34)

where [’ denotes the first derivative and subscripts
are grid indices. The coefficients a=h12+1/(h )2
B=h3/(hj+h;)?, A==217, (2h;+hj )/ [hj(hi+hj)?],
B=2/h;=2/h;,,, and C=2hj(2hj+1+hj)/[hj+l(hj+hj+1)3],
where h;j=y;—y;_; is the local grid spacing in the wall-
normal direction (see Ref. 22 for boundary closures and the
second derivative). The use of finite differencing in the wall-
normal direction provides flexibility in the grid distribution,
and is necessary to test the effect of grid anisotropy. The
governing equations are written in terms of the resolved
wall-normal vorticity (g= i/ dz—dw/dx) and the Laplacian

of the resolved wall-normal velocity (¢=V?),

(35)

where h,==0,(0,H,+d.H3) +(Jr+ ) Hy, hy=3.H, - d,H,, and
Hiz—ﬂj(ﬁiﬁj)—&jﬁ]”(i: 1,2,3) are the nonlinear and SGS
terms. Plane-averaged streamwise and spanwise velocities,
or wall-parallel velocities at (k,,k.)=(0,0) modes are inte-
grated separately. The flow is driven by a fixed mean pres-
sure gradient, and the governing Eq. (35) is normalized using
u. and 6. h, and h, are treated explicitly by the Adams—
Bashforth scheme and viscous terms are treated implicitly by
the Crank—Nicolson method. For the CDSM, both ¢ and Z in
Eq. (35) are followed by the corrector steps to incorporate
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the SGS eddy viscosity correction. Thus, the semi-implicit
predictor-corrector procedure, Egs. (14) and (15), is realized
in terms of g and ¢. A temporal discretization scheme similar
to Ref. 23 is used for the implicit treatment of viscous terms.
The test filtering operator in the DSM is the sharp cutoff
filter applied to homogeneous directions with AS/A=2.

In order to reduce computational cost, Svy=dSvy(y) is
assumed to be constant in the homogeneous directions so
that only O(N,) operations are needed to obtain DJ/Ddvy,
and the correction steps, Eqs. (15) and (21) are also simpli-
fied. Furthermore, since the perturbation efﬁ to the corrected
eddy viscosity is a local event which occurs only at one grid
point, the impact of this perturbation on the objective func-
tion J should be local. Numerical tests with integration (16)
showed that perturbing values only at five grid points sur-
rounding the perturbation point while keeping the integrand
used for J(Svy) elsewhere, gives a sufficiently accurate
evaluation of J(8v;+ed). The second-order central differ-
ence is used in the wall-normal direction to evaluate J; in
Eq. (18). This approximation significantly reduces the com-
putational cost, and LES with the proposed CDSM takes
approximately 1.5-2 times longer CPU time than LES with
DSM. The cost depends primarily on the number of subitera-
tion (23), which takes three to ten iterations at each time step
to meet the chosen criteria | 7%~ 71|/ J*<1073. Although
the additional computational overhead may seem expensive,
it is still affordable, and is actually a significant improvement
over the adjoint-based approach, which takes 10-20 times
the time of a Navier—Stokes simulation.'*'*

Finally, note that numerical integration of Egs. (9) and
(20) requires special care since these equations have qua-
druple nonlinear terms and no diffusion term; they are vul-
nerable to the build-up of aliasing error and numerical
instability.24 In order to reduce the aliasing error, 3/2-rule
dealiasing is adopted for homogeneous directions for any
products in physical space: No dealiasing is applied to the
wall-normal direction. Numerical tests showed that most
aliasing error is suppressed by homogeneous dealiasing. For
physical space simulations, proper dealiasing may be ob-
tained by interpolating values onto twice as many grid points
before they are multiplied. In addition to dealiasing, the con-
vection terms in Egs. (9) and (20) are discretized with first
order upwind scheme to provide numerical diffusion. Past
work on the Lagrangian model has also adopted similar nu-
merical diffusion through interpolation along the pathline5 or
the addition of an artificial diffusion term.** The use of low-
order upwind scheme was evaluated by numerical tests on
the channel flow at Re,=590 and 12X 96X 12 resolution
with 76X 28X 0.578 domain (Fig. 9). Numerical results
with first order upwind scheme for the convection terms in
Egs. (9) and (20) are almost identical to those from spectral
method with and without artificial diffusion suggested by
Ref. 24.

B. Performance of the proposed model

In Table I, AJ shows the percentage reduction of the
objective function (16) by CDSM compared to that of DSM.
Figure 10 shows the evolution of volume-averaged

Downloaded 24 Jan 2010 to 128.101.98.21. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



065106-9 Reduction in the Germano-identity error

257

o 1st upwind (current)
spectral
,,,,,,,,,,,,,,,,,, spectral + AD

20f

15}
+ [
2 0
10
5f
O : n 1 1 il n (?) n
10° 10", 10 10°
y
4
o o 1st upwind (current)
B, spectral
a- spectral + AD
+ é
>

0 — ‘100‘ — ‘200‘ — ‘300
y+

FIG. 9. Mean statistics of turbulent channel flow at Re =590 from LES with

the CDSM with different convection discretization schemes for Egs. (9) and

(20). A 12(x) X96(y) X 12(z) grid is used for m6X25X0.576 domain.

Here, “spectral+ AD” denotes spectral method with artificial dissipation sug-
gested by Ref. 24.

Germano-identity error for the D180t, M590c, and C2ku
cases. Note that the CDSM successfully reduces the objec-
tive function, or Germano-identity error, but it appears that
the efficiency depends on the resolution and Reynolds num-
ber. The maximum objective function reduction (46%) is
achieved for the C2ku case, which is a very coarse simula-
tion that does not resolve the wall layer. This seems to be
close to the upper limit of the present method in that a fur-
ther increase in Reynolds number resulted in essentially the
same objective function reduction. The lowest reduction in
Germano-identity error (2%) is achieved for the M590t case.
However, as will be shown later, this is due to the spatial
redistribution of the Germano-identity error for the CDSM,
and thus it does not mean that the control is less effective for
this case. It should be stressed that the Germano-identity
error cannot be arbitrarily small unless the flow laminarizes,
mainly due to insurmountable errors associated with the
Smagorinsky model formalism and the scale invariance as-
sumption.

Figures 11-13 show mean velocity and rms velocity
fluctuations for all cases at Re,=180, 590, and 2000, respec-
tively, with standard and CDSM. Comparison is made to
DNS data available?'*>*° at comparable Reynolds numbers.
As shown in Figs. 11-13, typical results from DSM, as com-
pared to DNS data, is the overprediction of the mean velocity
in the log layer and exaggerated anisotropy, or the overpre-
diction of the streamwise fluctuation and underprediction of
wall-normal and spanwise velocity fluctuations. It should be
noted that resolved scale rms fluctuation from LES is directly
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FIG. 11. Mean statistics of LES of turbulent channel flow at Re,=180: (a)
mean streamwise velocity; (b) tyms, (€) Uims and (d) wyne: symbol, DNS
(Ref. 21); dotted line, DSM; solid line, CDSM.
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FIG. 12. Mean statistics of LES of turbulent channel flow at Re,=590: (a)
mean streamwise velocity; (b) U, (€) Upms, and (d) wy,e: symbol, DNS
(Ref. 25); dotted line, DSM; solid line, CDSM.

compared to unfiltered DNS data since filtered DNS data that
exactly match LES resolution were not available.

Although not clearly visible for D180t (possibly due to
good resolution and small SGS contribution) the corrected
model yields better mean velocity and improved rms fluctua-
tions for all other cases. More specifically, the CDSM re-
duces u,,, near the wall and increases v,,, and w,,, and
reduces the overprediction of mean velocity in the log layer.
As a consequence, computed rms fluctuations from the
CDSM show better agreement with DNS data. The improve-
ment in mean velocity is most dramatic at Re,=590 (M590c
and M590t cases); note that the overprediction in the log
layer is almost cured, and shows good agreement with DNS

! !
0 500 1000 1500 2000 0 500 1000 1500 2000
+ +

y

FIG. 13. Mean statistics of LES of turbulent channel flow at Re,=2000: (a)
mean streamwise velocity; (b) s, (€) Upms, and (d) wyy,e: symbol, DNS
(Ref. 26); dotted line, DSM; solid line, CDSM.
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FIG. 14. Effect of chosen model as the predictor step on the (a) mean
streamwise velocity and (b) rms velocity fluctuations of turbulence channel
flow at Re,=2000 (case C2kt).

data. On the other hand, although the change due to the
correction is significant, the overprediction is partially cured
for the C2kt and C2ku cases. From these results, it clearly
appears that reduction of the Germano-identity error yields
better flow prediction.

C. Effect of predictor model

The LDSM is used as the predictor step for all results
with the CDSM shown in Figs. 11-13. As will be shown
later, the corrected results are completely different from LES
with LDSM. Here, we evaluate the effect of predictor step
model on the corrected solution. Since the price term in Eq.
(18) limits unbounded variation of the eddy viscosity correc-
tion from the predictor step, we consider the possibility that
the SGS model in the predictor step may affect the final
solution.

Figure 14 shows mean statistics for the C2kt case with
CDSM using the DSM, LDSM, and no SGS model in the
predictor step. Also shown are results from LES without
SGS model. Note that the statistics are almost unaffected
when either DSM or LDSM are used in the predictor step,
while some differences are observed when no SGS model is
used in the predictor step. However, even with no model
predictor case, the corrected results are close to the other
corrected cases using DSM or LDSM predictor. This result
demonstrates the relative robustness of the proposed correc-
tion method, and the reliability of the results obtained by the
CDSM.
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FIG. 15. Ensemble averaged Germano-identity error from LES of turbulent channel flow: (a) case M590c, (b) case M590t, (c) case D2ke, and (d) case C2ku.

D. On the optimality of the standard dynamic model

The noticeable difference between the DSM and CDSM
in the mean statistics raises questions about the optimality of
the current dynamic procedure. In this section, we further
examine why, and to what extent the standard dynamic pro-
cedure deviates from the corrected model in terms of the
Germano-identity error and SGS eddy viscosity.

Figure 15 shows the ensemble-averaged Germano-
identity error at Re,=590 (cases M590c, M590t) and Re,
=2000 (cases D2kc, C2ku) using the DSM and CDSM. Note
that the Germano-identity error is large: Since the error is
normalized by wall unit (u?), it is readily seen that the error
is comparable to u . Close inspection reveals that the error
is dominated by the resolved stress L;; term, {L;L;;). This is
mainly due to increased anisotropy of the resolved stress
near the wall, which is not represented by the isotropic Sma-
gorinsky model. The peak location of the Germano-identity
error is y*=25, except for C2ku where y* at the first grid
point from the wall is 50. This location coincides with the
peaks of resolved streamwise fluctuation u,,,,, shown in Figs.
11-13. Therefore, reduction in the Germano-identity error
reduces u,, in the near-wall region in all cases considered.
However, this is not the case for resolved wall-normal and
spanwise fluctuations, v, and w,, since their peak loca-
tions occur in the range 50<<y*<150, depending on the
Reynolds number and resolutions (Figs. 11-13). Thus, vy,
and w,,,; near the wall are less influenced by the reduction in
Germano-identity error.

It appears that this selective damping of the streamwise
fluctuations has a favorable effect on the SGS eddy viscosity
(Fig. 16.) The total SGS eddy viscosity ¥4+ Svy is shown for
the CDSM. It is interesting to observe that SGS eddy vis-
cosities from CDSM show a “sharp rise and plateau (or
slight decrease)” near the wall regardless of the Reynolds

number and resolution. Comparison to Figs. 11-13 shows
that the sharp rise corresponds to the reduction in u,,,, and
the plateau leads to the rise of v, and w,,,. It appears that
the relative decrease in the streamwise fluctuation allows
fluid to move more freely in the wall-normal and spanwise
directions. As a consequence of increased v, and w,,, the
local Germano-identity error may increase in the region
40<y* <200, as shown for M590t and D2ke cases (Fig. 15),
and this causes the increase in objective function for these
cases (Table TI).

Comparison of SGS eddy viscosities for the M590c and
M590t cases shows that the DSM is highly sensitive to wall-
normal grid distribution. On the other hand, the CDSM is
less sensitive to the grid anisotropy, and the overall SGS
eddy viscosity is proportional to the resolution. Note also
that the overall SGS eddy viscosity is generally increased by
the CDSM. One may be concerned that the increase in SGS
eddy viscosity may dissipate small resolved scales. Figure 17
shows instantaneous flow structures for M590t using both
DSM and CDSM. Structures are identified using the positive
Q—criteria.27 Note that vortical structures from the CDSM are
more active and stronger, in spite of increased SGS eddy
viscosity. This behavior is readily expected from increased
Urms and w,,¢ from the CDSM, which results in enhanced
streamwise vorticity, (T)X=%((9l7/ dz—ow/dy). Thus, we see
that increased eddy viscosity does not necessarily mean the
suppression of resolved scale flow structure, and the opposite
can be true.

Figure 16 shows that the DSM predicts lower values of
the SGS eddy viscosity as compared to the CDSM. We com-
pare below the predictions from both models to filtered DNS
data and show that the CDSM predictions agree better with
filtered DNS. Figure 18 compares profiles of the ensemble-
averaged SGS eddy viscosity from filtered DNS, LES using
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FIG. 16. Ensemble averaged SGS eddy viscosity from LES of turbulent channel flow: (a) case M590c (A,,=53), (b) case M590t (A,,=55), (c) case D2kc

(A,,=102), and (d) case C2ku (A,,=173).

the DSM, and CDSM for the M590t case with filter size
A},=55. Note that SGS eddy viscosity from DNS is compa-
rable to that from CDSM, while the eddy viscosity from the
DSM is approximately half the values from filtered DNS.
Here, SGS eddy viscosity from DNS is defined as

(s = 45
(S

Figure 18(b) shows the near-wall behavior of SGS eddy vis-
cosity. Note that {v;) exhibits y? behavior instead of y*. This
is mainly due to coarse resolution since the first grid point

from the wall yT=5.8 for this case, and thus viscous sublayer
is not properly resolved. However, it should be noted that

(36)

FIG. 17. (Color online) Instantaneous vortical structures identified by the
positive Q-criteria for case M590t: shown are the isosurfaces of Q&*/ uf
=400.

SGS eddy viscosity from DNS data also shows the same y?
behavior at this filter level. On the other hand, SGS eddy
viscosity from DSM shows y variation. Note also that the
filtered DNS results do not display the near-wall kink ob-
served in CDSM. However, note that SGS eddy viscosity
from CDSM shows excellent agreement with (v)PNS very
near the wall, where y*<<30. The DSM does not show such
agreement.

Figure 19 shows the volume- and time-averaged SGS
eddy viscosity, (vr)y=1/268[ fﬁ(vﬁdy, from all cases consid-
ered. Also shown in Fig. 19 are the averaged SGS eddy
viscosities obtained from a DNS database at Re,=590 at
various filter widths. See Ref. 28 for computational details of
DNS. In filtering DNS data at specified overall filter size, top
hat filters proposed by Ref. 29 are used in the wall-normal
direction for simplicity, while the cutoff filter is used for
homogeneous directions. Note that the averaged SGS eddy
viscosities from CDSM compares well with DNS, while
DSM significantly underestimates the eddy viscosities. From
Fig. 19, (vp)y~ (A})'0 for CDSM, while (v;)y~ (A})%® for
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FIG. 18. Ensemble averaged SGS eddy viscosity for M590t case from DSM
and CDSM compared to that obtained by DNS data at a comparable filter
size: (a) real scale; (b) log scale.
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FIG. 19. Volume- and time-averaged SGS eddy viscosities vs overall reso-
lution A, for turbulent channel flow from all cases considered. Dotted lines
denote their power-law fits.

DSM. For isotropic turbulence with inertial range spectrum
E(k)~k™3, it is readily seen that (vy)y,~ A%|S|)~A%>.
Note that the CDSM exponent is closer to the theoretical
exponent for isotropic turbulence.

The above comparison clearly demonstrates that the
DSM underestimates SGS eddy viscosity, and the underesti-
mation becomes significant at coarse resolutions. This is
rather surprising because it is believed that the standard,
plane-averaged, and clipped dynamic model gives proper
mean dissipation; unsatisfactory results from the DSM are
usually attributed to the fundamental limitations of the Sma-
gorinsky model itself. The present results suggest another
possibility. Poor results from the DSM at coarse resolutions
could also be due to non-negligible deviation of the SGS
eddy viscosity (or C,) from the true minimizer of the
Germano-identity error, caused by “the frozen velocity as-
sumption” and/or local, instantaneous error minimization.

E. Effect of Lagrangian time scale of Germano
identity

The Lagrangian time scale defined in Sec. II C controls
the time scale over which the Germano-identity error is in-
tegrated. It can therefore affect the effectiveness of the con-
trol method significantly because the correction is performed
for values at the present time step, whose relative importance
(the weight) is determined by the time scale.

Figure 20 compares mean statistics from the M590c case
from the CDSM using different Lagrangian time scales
T psm and Tge, as defined in Egs. (26) and (29), respectively.
Also shown are results from the DSM. Note that results with
Tsc show closer agreement with DNS data for both mean
velocity and rms, while results with 7} pgy lie between DSM
and CDSM with Tgc. If we recall that 77 pgy is much larger
than Tg- (Sec. I C), this behavior is expected since the
longer time scale decreases the weight of the most current
values on the cost function, which in turn makes the correc-
tions less effective. These results justify use of the surrogate
correlation-based time scale proposed in this paper.

F. Comparison between model variants

We have seen that the standard DSM is not optimal in
reducing the Germano-identity error at coarse resolutions,

Phys. Fluids 21, 065106 (2009)
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FIG. 20. Effect of the Lagrangian time scale on the mean statistics of
CDSM for turbulent channel flow at Re.=590 (case M590c).

and this behavior might be responsible for errors in its pre-
dictions. In the CDSM, the objective function is the volume-
averaged Germano-identity error integrated up to current
time step following the pathline. This objective function is
different from the conventional Germano-identity error in
two respects—the global formulation and pathline averaging.
Also, the frozen velocity assumption is not applied to the
CDSM. In this section, we investigate the individual effect of
each element on the solution and objective function.

We compare the standard DSM and the CDSM to the
LDSM, and instantaneous version of CDSM (denoted at
CDSM-inst), whose objective function is

a

1 _
T=—| e€jedx+ f (8v7|S|"1)2dx, (37)
Via Via

where a=1 as used for the CDSM. Figures 21 and 22 show
mean statistics from LES using the LDSM and CDSM-inst,
along with results using DSM and CDSM (M590c and C2kt
cases). Note that mean velocities and velocity fluctuations
with LDSM and CDSM-inst are not as good as those with
CDSM for all cases considered. As shown in Fig. 22, it ap-
pears that CDSM-inst suppresses u;,; and LDSM raises v,
(not shown) and w,,,. Results from the CDSM however, are
better than the best results from both LDSM and CDSM-inst.
This means that the good statistics with CDSM are due to the
synergistic effect from both pathline averaging and global
formulations without the frozen velocity assumption. It is
also noteworthy that results from LDSM are almost identical
to those from the standard DSM for the C2kt case, while
results from CDSM-inst are close to those from CDSM. This
implies that the local formalism and/or frozen velocity as-
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FIG. 21. Comparison of mean streamwise velocity from LES of turbulent
channel flow with CDSM and its variants for (a) case M590c and (b) case
C2kt.

sumption is the main source of deviation from the minimizer
of the Germano-identity error.

Figures 23 shows the ensemble-averaged Germano-
identity error for the same cases. It is surprising that pathline
averaging does not contribute to the reduction in the
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FIG. 22. Comparison of rms velocity fluctuations from LES of turbulent

channel flow with CDSM and its variants for (a) case M590c and (b) case
C2kt.

Phys. Fluids 21, 065106 (2009)

300
250F & (a)
I Y
! \
200F 1+
= [ 1o
N NN
o 150F N
=y F N
w [ N ————- DSM
\% ! - — - - - LDSM
-~ CDSM-inst
CDSM
150 200
400
(b)
300
< v
x
W 200
o — ==~ DSM
\ - LDSM
-~ CDSM-inst
100 CDSM
0 400

FIG. 23. Comparison of ensemble-averaged Germano-identity error from
LES of turbulent channel flow with CDSM and its variants for (a) case
M590c and (b) case C2kt.

Germano-identity error, and it even increases error for the
M590c case, as shown in Fig. 23(a). This behavior is due to
increased v, and w.,,, which is associated with “ejection
motions” of near-wall structures that increases Z,;,, along the
flow pathline and suppresses C,, as explained by Ref. 5. Note
also that CDSM-inst predicts smaller Germano-identity error
than the CDSM, but the difference is small.
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FIG. 24. Comparison of ensemble-averaged SGS eddy viscosity from LES
of turbulent channel flow with CDSM and its variants for (a) case M590c
and (b) case C2kt.
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SGS eddy viscosities are shown in Fig. 24. It appears
that SGS eddy viscosity in the near-wall region from CDSM
is similar to that from CDSM-inst. However, the plateau in
eddy viscosity is not clearly seen for CDSM-inst. On the
other hand, the LDSM significantly underestimates SGS
eddy viscosity up to the log layer, possibly due to the in-
creased 7,;,, mentioned above. This implies that pathline
averaging, or the Lagrangian model is not responsible for the
sharp increase in SGS eddy viscosity near the wall.

However, pathline averaging does contribute to the pla-
teau part of the kink. This behavior is readily expected from
the instantaneous Fréchet derivative shown in Fig. 1, de-
creasing the cost function will increase Jv; and therefore
increase vr near the wall. Figure 1 shows that away from the
wall, SGS eddy viscosity correction dvy is almost zero. This
implies that SGS eddy viscosity away from the wall is
mainly determined by the predictor step. This observation
suggests the following scenario for the SGS eddy viscosity
distribution. Very near the wall, eddy viscosity increases to
account for the change in objective function caused by
breaking the frozen velocity assumption. In this region, i
decreases and the Germano-identity error decreases signifi-
cantly. Away from the wall, the Lagrangian pathline averag-
ing then selects increased values of v, and w,, to decrease
the Germano-identity error, which results in the plateau of
SGS eddy viscosity. In this region, SGS eddy viscosity in-
creases due to increased fluctuation levels, v, and w.

V. CONCLUSIONS

In this paper, we study the Germano-identity error of the
DSM from the point of view that the current dynamic pro-
cedure may not truly minimize the error in the mean and
global sense. The current DSM defines a local, instantaneous
Germano-identity error and does not account for the change
of the resolved velocity due to change in model coefficient
when minimizing this error. We explore reduction in an
ensemble-averaged Germano-identity error to investigate (i)
whether the true minimizer of the error improves LES pre-
dictability and (ii) how much the resulting model coefficient
deviates from that of the standard DSM. Toward this end, we
propose an efficient predictor-corrector-type method, which
finds the optimal parameter that minimizes a given objective
function iteratively.

The objective function chosen is the Germano-identity
error integrated over the entire computational volume and
pathline. In order to determine corrected eddy viscosity, the
Fréchet derivative of the objective function is directly evalu-
ated by a finite-differencing formula in an efficient manner
using the predictor-corrector method. In order to perform
pathline averaging, a new surrogate based method for the
Lagrangian time scale of the Germano-identity error is pro-
posed which shows good agreement with true time scale. The
proposed model is applied to decaying isotropic turbulence
and turbulent channel flow at various Reynolds numbers and
resolutions to obtain noticeable reduction in the Germano-
identity error and significantly improved flow statistics.

For decaying isotropic turbulence, the correction rapidly
cures the initial transient when the simulation is initialized

Phys. Fluids 21, 065106 (2009)

by random phases, and yields a better agreement with theo-
retical predictions of the kinetic energy decay. From channel
flow LES, it is shown that the conventional dynamic model
underestimates SGS eddy viscosity when the resolution gets
coarse, and this underestimation is responsible for increased
anisotropy of predicted Reynolds stress. Whereas, the pro-
posed model raises both the overall and near-wall SGS eddy
viscosity, and reduces the exaggerated Reynolds stress aniso-
tropy. For both isotropic turbulence and channel flow, the
proposed correction reduces the most significant sources of
the Germano-identity error, and this reduction improves flow
statistics. Comparison of results between the standard and
proposed model revealed that the standard model is very
different from the proposed model, especially when the grid
resolution is coarse.
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