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The dynamic Lagrangian averaging approach for the dynamic Smagorinsky model

for large eddy simulation is extended to an unstructured grid framework and ap-

plied to complex flows. The Lagrangian time scale is dynamically computed from

the solution and does not need any adjustable parameter. The time scale used in

the standard Lagrangian model contains an adjustable parameter θ . The dynamic

time scale is computed based on a “surrogate-correlation” of the Germano-identity

error (GIE). Also, a simple material derivative relation is used to approximate GIE

at different events along a pathline instead of Lagrangian tracking or multi-linear

interpolation. Previously, the time scale for homogeneous flows was computed by

averaging along directions of homogeneity. The present work proposes modifications

for inhomogeneous flows. This development allows the Lagrangian averaged dynamic

model to be applied to inhomogeneous flows without any adjustable parameter. The

proposed model is applied to LES of turbulent channel flow on unstructured zonal

grids at various Reynolds numbers. Improvement is observed when compared to

other averaging procedures for the dynamic Smagorinsky model, especially at coarse

resolutions. The model is also applied to flow over a cylinder at two Reynolds num-

bers and good agreement with previous computations and experiments is obtained.

Noticeable improvement is obtained using the proposed model over the standard La-

grangian model. The improvement is attributed to a physically consistent Lagrangian

time scale. The model also shows good performance when applied to flow past a

marine propeller in an off-design condition; it regularizes the eddy viscosity and

adjusts locally to the dominant flow features. C© 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4737656]

I. BACKGROUND

High Reynolds number flows of practical importance exhibit such a large range of length and

time scales that direct numerical simulations (DNS) are rendered impossible for the foreseeable

future. Large eddy simulation (LES) is a viable analysis and design tool for complex flows due

to advances in massive parallel computers and numerical techniques. LES is essentially an under-

resolved turbulence simulation using a model for the subgrid-scale (SGS) stress to account for the

inter-scale interaction between the resolved and the unresolved scales. The success of LES is due

to the dominance of the large, geometry dependent, resolved scales in determining important flow

dynamics and statistics.

In LES, the large scales are directly accounted for by the spatially, temporally, or spatio-

temporally filtered Navier-Stokes equations and the small scales are modeled. The spatially filtered

incompressible Navier-Stokes equations are
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where xi denotes the spatial coordinates, ui is the velocity field, p is the pressure, ν is the kinematic

viscosity, () denotes the spatial filter at scale �, and τi j = ui u j − ui u j is the SGS stress.

It is generally assumed that small scales are more universal and isotropic than large scales; eddy

viscosity type SGS models are therefore widely used in LES. The original Smagorinsky model1 is

a simple model for the SGS stress in terms of the local resolved flow,

τi j −
1

3
τkkδi j = −2(Cs�)2|S|Si j = −2νt Si j , (2)

where Cs is a model coefficient, � is the filter width, Si j is the strain rate tensor, |S| = (2Si j Si j )
1/2,

and νt = (Cs�)2|S| is the eddy-viscosity.

In the original Smagorinsky model, Cs is assumed to be a global adjustable parameter. The

dynamic Smagorinsky model (DSM)2 removes this limitation by dynamically computing the model

coefficient from the resolved flow and allowing it to vary in space and time. DSM is based on the

Germano identity,

L i j = Ti j − τ̂i j , (3)

where

L i j = ûi u j − ûi û j , Ti j = ûi u j − ûi û j , and τ̂i j = ûi u j − ûi u j . (4)

Here, (̂) denotes test filtering at scale �̂ and is usually taken to be �̂ = 2�. Tij is analogous to τ ij

and is the corresponding SGS stress at the test filter scale. Lij is the stress due to scales intermediate

between � and 2� and can be computed directly from the resolved field. The deviatoric parts

(denoted by ()d) of τ ij and Tij are modeled by using the Smagorinsky model at scales � and �̂ as

τi j −
1

3
τkkδi j = −2(Cs�)2|S|Si j and Ti j −

1

3
Tkkδi j = −2(Cs�̂)2 |̂S |̂Si j . (5)

The dynamic procedure to obtain the SGS model coefficient Cs attempts to minimize the Germano-

identity error (GIE),

ǫi j = T d
i j − τ̂ d

i j − Ld
i j

= 2(Cs�)2

[
|̂S|Si j −

(�̂

�

)2 |̂S |̂Si j

]
− Ld

i j

= (Cs�)2 Mi j − Ld
i j ,

(6)

where Mi j = 2
[
|̂S|Si j −

(
�̂
�

)2 |̂S |̂Si j

]
.

Since ǫij(Cs) = 0 is a tensor equation, Cs is over determined. The original DSM due to Germano

et al.2 satisfies ǫijSij = 0 to obtain Cs. Lilly3 found the equations to be better behaved when

minimizing ǫij in a least-square sense, yielding

(Cs�)2 =
〈L i j Mi j 〉
〈Mi j Mi j 〉

, (7)

where 〈 · 〉 denotes averaging over homogeneous direction(s).

Without any kind of averaging, the local dynamic model is known to predict a highly variable

eddy viscosity field. More so, the eddy viscosity can be negative, which causes solutions to become

unstable. It was found that Cs has a large auto-correlation time which caused negative eddy viscosity

to persist for a long time, thereby causing a divergence of the total energy.4 Hence averaging

and/or clipping Cs (setting negative values of Cs to 0) was found to be necessary to stabilize

the model. Positive Cs from Eq. (7) provides dissipation thereby ensuring the transfer of energy
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from the resolved to the subgrid scales. Also, clipping is almost never required when averaging

over homogenous directions. Ghosal et al.5 showed this averaging and/or clipping operation to be

essentially a constrained minimization of Eq. (6).

However, the requirement of averaging over at least one homogeneous direction is impractical

for complex inhomogeneous flows. To circumvent the problems of lack of homogeneous direction(s)

and undesirable clipping, Ghosal et al.5 proposed a “dynamic localization model (k-equation)” to

allow for backscatter by including an equation for subgrid scale kinetic energy budget. Ghosal’s

formulation entails further computational expense as well as additional model coefficients. To

enable averaging in inhomogeneous flows, Meneveau et al.6 developed a Lagrangian version of

DSM (LDSM) where Cs is averaged along fluid trajectories. Lagrangian averaging is physically

appealing considering the Lagrangian nature of the turbulence energy cascade.7, 8

In essence, the Lagrangian DSM attempts to minimize the pathline average of the local GIE

squared. The objective function to be minimized is given by

E =
∫

pathline

ǫi j (z)ǫi j (z)dz =
∫ t

−∞
ǫi j (z(t ′), t ′)ǫi j (z(t ′), t ′)W (t − t ′)dt ′, (8)

where z is the trajectory of a fluid particle for earlier times t′ < t and W is a weighting function to

control the relative importance of events near time t, with those at earlier times.

Choosing the time weighting function of the form W (t − t ′) = T −1e−(t−t ′)/T yields two transport

equations for the Lagrangian average of the tensor products LijMij and MijMij as IL M and IM M ,

respectively:

DIL M

Dt
≡

∂IL M

∂t
+ ui

∂IL M

∂xi

=
1

T

(
L i j Mi j − IL M

)
and

DIM M

Dt
≡

∂IM M

∂t
+ ui

∂IM M

∂xi

=
1

T

(
Mi j Mi j − IM M

)
,

(9)

whose solutions yield

(Cs�)2 =
IL M

IM M

. (10)

Here T is a time scale which represents the “memory” of the Lagrangian averaging. Meneveau et al.6

proposed the following time scale:

T = θ�(IL MIM M )(−1/8); θ = 1.5. (11)

This procedure for Lagrangian averaging has also been extended to the scale-similar model by

Anderson and Meneveau9 and Sarghini et al.10 and the scale-dependent dynamic model by Stoll and

Porté-Agel.11

Note that the time scale for Lagrangian averaging in Eq. (11) contains an adjustable parameter

which is typically chosen to be θ = 1.5. The need for a “dynamic” Lagrangian time scale is motivated

in Sec. II. Park and Mahesh12 introduced a procedure for computing a dynamic Lagrangian time

scale. However, the Park and Mahesh12 formulation was in the context of a spectral structured

solver, and considered their dynamic Lagrangian time scale model along with their proposed control-

based corrected DSM. They proposed a correction step to compute the eddy viscosity using Fréchet

derivatives, leading to further reduction of the Germano-identity error. Computing Fréchet derivatives

of the objective function (in this case, the GIE) can involve significant computational overhead in

an unstructured solver. The present work considers the dynamic Lagrangian time scale model in

the absence of control-based corrections. Also, Park and Mahesh12 computed their time scale for

isotropic turbulence and turbulent channel flow by averaging along directions of homogeneity. The

present work considers the time scale model in the absence of any spatial averaging.

The extension of the Lagrangian averaged DSM with a dynamic time scale to an unstructured

grid framework requires modifications to the model proposed by Park and Mahesh12 and is described

in Sec. II A. The Lagrangian DSM with this dynamic time scale TSC is applied to three problems—

turbulent channel flow (Sec. IV A), flow past a cylinder (Sec. IV B), and flow past a marine propeller in

an off-design condition (Sec. IV C), on unstructured grids at different Reynolds numbers. It is shown
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that the procedure works well on unstructured grids and shows improvement over existing averaged

DSM methods. Sections IV A 2 to IV A 4 discuss the variation of TSC with grid resolution, Reynolds

numbers, and the practical advantages of this procedure in ensuring positive eddy viscosities and

negligible computational overhead. Differences in the performance of the dynamic time scale and

the original time scale due to Meneveau et al.6 for the cylinder flow are analyzed in Sec. IV B 5. In

Sec. IV C, the model is applied to a challenging complex flow and it is shown that TSC is a physically

consistent time scale whose use yields good results.

II. DYNAMIC LAGRANGIAN TIME SCALE

The time scale for Lagrangian averaging proposed by Meneveau et al. (henceforth, TLDSM)

contains an adjustable parameter which is typically chosen to be θ = 1.5. This value was chosen

based on the autocorrelation of LijMij and MijMij from DNS of forced isotropic turbulence. This

arbitrariness is acknowledged to be undesirable by the authors and infact they document results

of turbulent channel flow at Reτ = 650 to be marginally sensitive to the value of θ , with θ = 1.5

appearing to yield the best results. You et al.13 tested three different values of the relaxation factor θ

and concluded TLDSM was “reasonably robust” to the choice of θ for a Reτ = 180 channel flow. Over

the years, choosing a value for θ has demanded significant consideration by many practitioners who

have found the results to be sensitive to θ , especially in complex flows.14

The extension of the Lagrangian averaging procedure to other models has also presented the same

dilemma. In simulations of turbulent channel flow at Reτ = 1050 using a two-coefficient Lagrangian

mixed model,9 Sarghini et al.10 note that a different parameter in TLDSM might be required for

averaging the scale similar terms. Vasilyev et al.15 proposed extensions to the Lagrangian dynamic

model for a wavelet based approach and used θ = 0.75 for incompressible isotropic turbulence.

Park and Mahesh12 note that TLDSM has a high dependence on the strain rate through the Lij and

Mij terms. They however show that the time scale of the GIE near the wall and the channel centerline

are similar. Thereby they argue that strain rate may not be the most appropriate quantity for defining

a time scale for Lagrangian averaging of the GIE. It seems only natural that the averaging time scale

should be the time scale of the quantity being averaged which in this case is the GIE. Park and

Mahesh,12 therefore, proposed a dynamic time scale TSC called “surrogate-correlation based time

scale” TSC.

A. Surrogate-correlation based time scale

Assuming knowledge of the local and instantaneous values of the GIE squared (E = ǫi jǫi j ) at

five consecutive events along a pathline as shown in Fig. 1, where

E0 = E(x, t), E±1 = E(x ± u�t, t ± �t), E±2 = E(x ± 2u�t, t ± 2�t). (12)

At each location, the following surrogate Lagrangian correlations for three separation times (0, �t,

2�t) can be defined:

C(l�t) =
1

5 − l

2−l∑

k=−2

(Ek − E)(Ek+l − E); (l = 0, 1, 2),

where E =
1

5

2∑

k=−2

Ek is the average value.

(13)

To increase the number of samples, Park and Mahesh12 averaged C(l�t) and E along directions

of homogeneity. This is not practical for extension to inhomogenous flows on unstructured grids.

No further averaging of E is a straightforward option; however, this approach results in a negative

value for C(2�t) and constant value for TSC (not shown), which is unacceptable. To alleviate this, a
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FIG. 1. ǫijǫij at five events along a pathline.

running time average of the above terms up to the current time tn is computed:

C(l�t) =
tn∑

t=0

(
1

5 − l

2−l∑

k=−2

(Ek,t − E
t
)(Ek+l,t − E

t
)

)
; (l = 0, 1, 2),

where E
t =

tn∑

τ=0

(
1

5

2∑

k=−2

Ek,τ

)
is the average value.

(14)

This leads to converged correlations after sufficiently long times and is a consistent and general

method to compute the surrogate Lagrangian correlations. These correlations are then normalized

by the zero-separation correlation C(0) to obtain

ρ(0) = 1, ρ(�t) =
C(�t)

C(0)
, ρ(2�t) =

C(2�t)

C(0)
. (15)

An osculating parabola can be constructed passing through these three points and it can be described

by

ρ(δt) = a(δt)2 + b(δt) + 1, (16)

where a, b can be written in terms of ρ(0) = 1, ρ(�t), ρ(2�t), and �t. Note that ρ(δt) is an

approximate correlation function (of separation time δt) for the true Lagrangian correlation. Thus

the time scale based on the surrogate correlation TSC is defined as the time when ρ(δt) = 0, i.e., the

positive solution

TSC =
−b −

√
b2 − 4a

2a
. (17)

If the surrogate Lagrangian correlations C have enough samples, 1 > ρ(�t) > ρ(2�t) is satisfied

which leads to a < 0. As a result, TSC is always positive. In the initial stages of a simulation, there

are not enough time samples. 1 > ρ(�t) > ρ(2�t) may not be satisfied and a could be positive. In

such cases, TSC is obtained by constructing the osculating parabola to be of the form 1 + a(δt)2 and

passing through either of the two points ρ(�t), ρ(2�t):

TSC = min(
dt

√
1 − ρ(�t)

,
2dt

√
1 − ρ(2�t)

). (18)

The minimum of the time scales is chosen so that the solution has lesser dependence on past values

and can evolve faster from the initial transient stage. Note that the true Lagrangian correlation can

be modeled by an exponential function f (δt) = e(−δt/T )2

. Assuming �t ≪ T and that f(δt) passes

through ρ(0) = 1, ρ(�t), ρ(2�t), then TSC = δt = T is also the time when the modeled exponential

correlation becomes e−1.

B. Lagrangian approximation

The proposed dynamic time scale requires the values of the GIE squared E at five events along

a pathline. Rovelstad et al.16 and Choi et al.8 suggest the use of Hermite interpolation for computing

turbulent Lagrangian statistics. However, Hermite interpolation requires third order derivatives in

every direction of the tracked quantity, rendering it prohibitively expensive. Meneveau et al.6 use
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FIG. 2. Lagrangian time scales of the GIE for turbulent channel flow at Reτ = 590. Reproduced with permission from N.

Park and K. Mahesh, Phys. Fluids 21, 065106 (2009). Copyright C© 2009 American Institute of Physics.

multilinear interpolation to obtain the values of IL M and IM M at a Lagrangian location. Even

multilinear interpolation gets expensive in an unstructured grid setting. The use of an expensive

interpolation method just to compute the time scale for Lagrangian averaging may be unnecessary.

As a result, a simple material derivative relation as proposed by Park and Mahesh12 is used to

approximate Lagrangian quantities in an Eulerian framework,

DE

Dt
=

∂E

∂t
+ ui

∂E

∂xi

. (19)

A simple first order in time and central second order in space, finite-volume approximation for the

convective term is used to approximate values of E in Eq. (12) in terms of the local E(x, t) = E0,n

and E(x, t − �t) = E0,n−1. The Green-Gauss theorem is used to express the convective term in

conservative form and evaluate it as a sum over the faces of a computational volume.

Park and Mahesh12 show that the dynamic time scale TSC agrees well with the true Lagrangian

correlation time scale, whereas TLDSM exhibits opposite behavior near the wall (Fig. 2). They also

show that the Lagrangian correlations at different wall normal locations collapse when normalized

with TSC while such collapse is not observed with TLDSM.

III. NUMERICAL METHOD

Equation (1) is solved by a numerical method developed by Mahesh et al.17 for incompressible

flows on unstructured grids. The algorithm is derived to be robust without numerical dissipation.

It is a finite volume method where the Cartesian velocities and pressure are stored at the centroids

of the cells and the face normal velocities are stored independently at the centroids of the faces. A

predictor-corrector approach is used. The predicted velocities at the control volume centroids are

first obtained and then interpolated to obtain the face normal velocities. The predicted face normal

velocity is projected so that the continuity equation in Eq. (1) is discretely satisfied. This yields a

Poisson equation for pressure which is solved iteratively using a multigrid approach. The pressure

field is used to update the Cartesian control volume velocities using a least-square formulation.

Time advancement is performed using an implicit Crank-Nicolson scheme. The algorithm has been

validated for a variety of problems over a range of Reynolds numbers.17 To improve results on skewed

grids, the viscous terms and the pressure Poisson equation are treated differently. The generalized

improved deferred correction method by Jang18 is used to calculate the viscous derivatives and the

right-hand side of the pressure Poisson equation.

IV. RESULTS

The Lagrangian DSM with dynamic time scale TSC is applied to three problems: turbulent

channel flow (Sec. IV A), flow past a cylinder (Sec. IV B), and flow past a marine propeller in an

off-design condition called crashback (Sec. IV C).
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TABLE I. Grid parameters for turbulent channel flow.

LES

Case Reτ Nx × Ny × Nz Lx/δ × Lz/δ �x+ �z+ �y+
min �ycen/δ

590f 590 160 × 150 × 200 2π × π 23.2 9.3 1.8 0.03

590tl 160 × 84 × (200, 100) 23.2 9.3,18.5 1.8 0.04

590c 64 × 64 × 64 58 29 1.6 0.08

1ktl 1000 160 × 84 × (200, 100) 39.3 15.8,31.4 3.1 0.04

2ktl 2000 320 × 120 × (400, 200, 100) 39.3 15.7,31.4,62.8 2.0 0.04

DNS

Reference 19 587 384 × 257 × 384 2π × π 9.7 4.8 . . . 0.012

Reference 20 934 384 × 385 × 384 8π × 3π 11 5.7 . . . . . .

Reference 21 2003 384 × 633 × 384 8π × 3π 12 6.1 . . . . . .

A. Turbulent channel flow

Results are shown for a turbulent channel flow at three Reynolds numbers; Reτ = 590, 1000,

2000, and different grid resolutions. Here Reτ = uτ δ/ν where uτ , δ, and ν denote the friction

velocity, channel half-width, and viscosity, respectively. Table I lists the Reτ and grid distribution

for the various simulations. All LES have uniform spacing in x. The cases with “tl” indicate that

a 4:2 transition layer has been used in z along y as shown in Fig. 3. As shown, a transition layer

allows transition between two fixed edge ratio computational elements. It allows a finer wall spacing

to coarsen to a fixed ratio coarser outer region spacing. All other cases have a uniform spacing in

z. The LES results are compared to the DNS of Moser et al.19 for Reτ = 590, Alamo et al.20 for

Reτ = 1000, and Hoyas and Jimenez21 for Reτ = 2000 whose grid parameters are also included in

the table for comparison. Note that the LES have employed noticeably coarse resolutions and hence

contribution from the SGS model is expected to be significant. Consequently, the performance and

dependence of TSC is discussed in Secs. IV A 1–IV A 4.

1. Validation at Reτ = 590

Figure 4(a) shows good agreement for the mean velocity which indicates that the wall stress

is well predicted. The velocity fluctuations in Fig. 4(b) are in reasonable agreement with unfiltered

DNS as is to be expected at coarse resolutions. The Lagrangian DSM is active at this resolution and

ν t/ν peaks at 0.21 around y+ ∼ 76 (not shown). Figure 4(c) compares the dynamic Lagrangian time

scale TSC to TLDSM which is calculated a posteriori. Note that TSC is much higher near the wall than

TLDSM. Since TSC is calculated from ρ(δt), this behavior is consistent with the high correlation of

y

z

FIG. 3. Transition layer.
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FIG. 4. Turbulent channel flow. Case 590f: (a) mean velocity, (b) rms velocity fluctuations, (c) time scales, and (d) normalized

surrogate Lagrangian correlations.

GIE near the wall observed from Fig. 4(d). For such relatively coarse near-wall resolution, GIE is

expected to be high near the wall and in addition, remain correlated longer because of the near-wall

streaks. Figures 5(a) and 5(b) show that GIE is high near the wall in the form of near-wall streaks.

Such behavior is consistent with the physical nature of the flow; the DNS of Choi et al.8 shows

higher streamwise Lagrangian time scale near the wall due to streaks and streamwise vortices.

Next, an unstructured zonal grid is used, which has a transition layer in Z along Y (case 590tl).

Figures 6(a) and 6(b) show that the results are in good agreement, similar to case 590f. The statistics

(Fig. 6(b)) have a small kink around y+ ∼ 140 where the grid transitions. This kink in the statistics

is an artifact of numerical discretization and grid skewness, and is present even when no SGS model

(a) (b)

FIG. 5. Turbulent channel flow. Case 590f: instantaneous contours of Germano-identity error g = (GIE/u2
τ )2, (a) yz plane,

contours vary as 0 ≤ g ≤ 3, (b) xz plane at y+ = 12, contours vary as 0 ≤ g ≤ 40.
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FIG. 6. Turbulent channel flow. Case 590tl : (a) mean velocity and (b) rms velocity fluctuations.

is used. Overall, the results indicate that the Lagrangian DSM with TSC works well on a grid where

non-orthogonal elements are present and plane averaging is not straightforward.

2. Variation with grid resolution at Reτ = 590

Figures 7(a) and 7(b) provide an interesting insight into the variation of TSC and ν t with grid

resolution. The coarsest grid (590c) has the highest GIE (not shown) and consequently, highest TSC.

The SGS model compensates for the coarse grid by increasing ν t. Cases 590f and 590tl have almost

the same near-wall grid resolution. As a result, TSC and ν t are similar for the two cases until y+ ∼ 50.

The y-distribution then begins to change slightly but the biggest change is in �z which doubles due

to the transition layer in case 590tl. The GIE also increases in the coarse region which subsequently

increases the GIE correlations, resulting in higher TSC.

3. Variation of TSC with Reynolds numbers

The Lagrangian DSM with dynamic time scale TSC (Eq. (17)) is applied to turbulent channel

flow at higher Reynolds numbers of Reτ = 1000 and Reτ = 2000. The grid used for case 1ktl is

the same as used for case 590tl and hence the resolution in wall units is almost twice as coarse,

as shown in Table I. Figure 8(a) shows good agreement for the mean velocity which indicates that

the wall stress is well predicted. The velocity fluctuations in Fig. 8(b) are in reasonable agreement

with unfiltered DNS. The grid used for case 2ktl is based on similar scaling principles as case 590tl,

T
u

2 τ
/ν
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0 200 400
0

5

10

15

20

25

30(a)
case 590c

case 590tl

◦ case 590f

ν t
/ν

y+

0 200 400
0

0.2

0.4

0.6

0.8

1(b)
case 590c

case 590tl
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FIG. 7. Turbulent channel flow. Comparison of (a) Lagrangian time scales TSC and (b) eddy viscosity.
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FIG. 8. Turbulent channel flow. Case 1ktl: (a) mean velocity, (b) rms velocity fluctuations; Case 2ktl: (c) mean velocity, (d)

rms velocity fluctuations.

which is to enable a wall-resolved LES. Hence, it has two transition layers to coarsen from a fine

near-wall �z to a coarser outer region �z as listed in Table I. Figure 8 also shows good agreement

for the mean velocity and rms velocity fluctuations with unfiltered DNS. These examples show that

the Lagrangian DSM with TSC also works well for high Reynolds numbers on unstructured grids.

Figure 9 compares the computed Lagrangian time scales, plotted in inner and outer scaling, for

the three cases—590tl, 1ktl, and 2ktl which correspond to Re = 590, 1000, and 2000, respectively.

Note that the grid away from the wall is similar in all the cases. As Reynolds number increases,

the normalized surrogate correlations of the GIE increase, which results in increasing T +
SC (Fig.

9(a)). This trend of increasing Lagrangian time scale is also consistent with the observations of Choi

et al.8 who noticed an increase in the time scale of Lagrangian streamwise velocity correlations with

Reynolds number in their DNS of turbulent channel flow. The jumps correspond to the locations

where the grid transitions (y/δ ∼ 0.3).

4. Comparison between different averaging methods

For a given problem, as the grid becomes finer, the results obtained using different averaging

schemes for DSM tend to become indistinguishable from one another.22 On a finer grid such as case

590f, the effect of averaging and Lagrangian averaging time scale is small. Hence, in what follows,

results are shown for case 590c which is a very coarse grid but which shows difference between

the different averaging schemes. For all the averaging runs considered, statistics are collected

over 96δ/uτ . Figure 10(a) shows that the mean velocity shows increasingly improving agreement

with DNS as the averaging scheme changes from averaging along homogeneous directions (plane)

to Lagrangian averaging using TLDSM and finally TSC. Figure 10(b) shows that the rms velocity
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fluctuations are in a slightly better agreement with unfiltered DNS using TSC over TLDSM. u′u′ is not

plotted here as it is not much different for the two time scales. The fact that Lagrangian averaging

performs better than plane averaging has been demonstrated by Meneveau et al.6 and Stoll and

Porté-Agel.22 The present results show that using TSC as the time scale for Lagrangian averaging

can predict even better results.

Figures 10(c)–10(f) compare the differences between the time scales TSC and TLDSM in more

detail. In general, increasing the extent of averaging by either increasing averaging volume (plane

averaging) or increasing the averaging time scale (Lagrangian) will decrease the variance of the

model coefficient. TLDSM with θ = 3.0 implies a larger averaging time scale than θ = 1.5 and hence

the eddy viscosity with θ = 3.0 has a slightly lower mean and variance (Figs. 10(c) and 10(d)) when

compared to θ = 1.5. The Lagrangian model with TSC has a lower mean compared to TLDSM and this

is consistent with lower dissipation leading to higher resolved turbulence intensities shown earlier in

Fig. 10(b). Figure 10(d) shows that TSC produces an eddy viscosity field that has much less variation

than TLDSM but more than plane averaging.

Stoll and Porté-Agel22 report that the Lagrangian averaged model using TLDSM has approximately

8% negative values for ν t compared to 40% for the locally smoothed (neighbor-averaged) model in

their simulations of a stable atmospheric boundary layer. The percentage of time that negative ν t

values are computed is shown in Fig. 10(e). Plane averaged ν t never became negative and hence is

not plotted. Clearly, ν t averaged using TSC has the least amount of negative values up until y+ ∼ 100

(which contains 50% of the points). Even after y+ ∼ 100, percentage of negative ν t values computed

by TSC is less than TLDSM with θ = 1.5. It is also observed that increasing θ reduced the number

of negative values, as expected intuitively. Therefore, TSC is able to achieve the smoothing effect of

plane averaging while retaining spatial localization.

When the time scales are compared (10(f)), it is found that TSC actually overlaps with TLDSM,

θ = 3.0 for almost half the channel width. For this particular computation, θ = 3.0 is therefore

preferable to θ = 1.5. This makes it entirely reasonable to suppose that other flows might prefer

some other θ than just 1.5. The dynamic procedure proposed in this paper alleviates this problem.

Finally, computing a dynamic TSC for Lagrangian averaging the DSM terms does not incur

a significant computational overhead. For case 590c, the total computational time required for

computing TSC and then using it for Lagrangian averaging of the DSM terms is just 2% more than

that when no averaging of the DSM terms is performed.

B. Flow past a cylinder

The Lagrangian DSM with dynamic time scale TSC (Eq. (17)) is applied to flow past a circular

cylinder. Cylinder flow is chosen as an example of separated and free-shear flow. Also, cylinder flow
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varies significantly with Reynolds number, and is therefore a challenging candidate for validation.

LES is performed at two Reynolds numbers (based on freestream velocity U∞ and cylinder diameter

D); ReD = 300 and ReD = 3900. The flow is transitional at ReD = 300 and turbulent at ReD = 3900.

LES results are validated with available experimental data and results from past computations on

structured and zonal grids at both these Reynolds numbers. An additional simulation is performed

at ReD = 3900 using time scale TLDSM of Meneveau et al.6 Results using TSC are found to be in

better agreement than using TLDSM; the differences between the two time scales are discussed in

Sec. IV B 5.
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FIG. 11. Computational domain with boundary conditions and grid for a cylinder.

1. Grid and boundary conditions

The computational domain and boundary conditions used for the simulations are shown in

Fig. 11. The domain height is 40D, the spanwise width is πD and the streamwise extent is 50D

downstream and 20D upstream of the center of the cylinder. An unstructured grid of quadrilaterals

is first generated in a plane, such that computational volumes are clustered in the boundary layer

and the wake. This two-dimensional grid is then extruded in the spanwise direction to generate the

three-dimensional grid; 80 spanwise planes are used for both the simulations and periodic boundary

conditions are imposed in those directions. Uniform flow is specified at the inflow, and convective

boundary conditions are enforced at the outflow.

2. Validation at ReD = 300

The ReD = 300 computations are performed on a grid where the smallest computational volume

on any spanwise station of the cylinder is of the size 2e−3D × 5.2e−3D and stretches to 8.3e−2D

× 8.3e−2D at a downstream location of 5D. Comparing this to the DNS of Mahesh,17 his control

volumes adjacent to the cylinder were of size 2.2e−3D × 1.0e−2D. As expected at this resolution,

DSM is found to be dormant in the near-field. The wake of the cylinder is also well-resolved such

that ν t/ν ∼ 0.06 even around x/D = 30. It can be safely assumed that SGS contribution from DSM

is not significant in this case.

Integral quantities show good agreement with previous computations and experiment as shown

in Table II. For comparison, the previous computations are the B-spline zonal grid method of

Kravchenko et al.,23 spectral solution of Mittal and Balachandar,24 unstructured solution of Babu

and Mahesh25 and experimental results of Williamson.26 Converged statistics are obtained over a

total time of 360D/U∞. Mean flow and turbulence statistics show excellent agreement with the

spectral computations of Mittal and Balachandar24 as shown in Fig. 12.

3. Validation at ReD = 3900

The same computational domain as Fig. 11 and a similar grid topology is used to simulate

turbulent flow past a cylinder at ReD = 3900. The wake is slightly more refined than the ReD = 300

TABLE II. Flow parameters at ReD = 300. Legend for symbols: mean drag coefficient 〈CD〉, rms of drag and lift coefficient

( σ (CD), σ (CL)), Strouhal number St and base pressure CPb
.

〈CD〉 σ (CD) σ (CL) St −CPb

Current 1.289 0.0304 0.39 0.203 1.02

Kravchenko et al.23 1.28 . . . 0.40 0.203 1.01

Mittal and Balachandar24 1.26 . . . 0.38 0.203 0.99

Babu and Mahesh25 1.26 0.0317 0.41 0.206 . . .

Williamson26 1.22 . . . . . . 0.203 0.96
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FIG. 12. Vertical profiles at streamwise stations downstream of the cylinder at ReD = 300. —— : current solution; • : spectral

solution of Mittal and Balachandar.24

grid. The smallest computational volume on any spanwise station of the cylinder is still of the size

2e−3D × 5.2e−3D but stretches to 3.9e−2D × 2.9e−2D at a downstream location of 5D. To compare

the performance of different Lagrangian averaging based methods, LES is performed using both

the proposed dynamic time scale TSC and time scale TLDSM of Meneveau et al.6 Integral quantities

using TSC show good agreement with the B-spline computation of Kravchenko and Moin27 and the

experiments of Lourenco and Shih (taken from Ref. 17) as shown in Table III. Note that TLDSM also

shows similar agreement for the wall quantities; however, Lrec/D which depends on the near-field

flow, shows discrepancy. This points toward a difference in the values of the time scales away from

the cylinder.

The time averaged statistics for flow over a cylinder have been computed by different authors

using different time periods for averaging. Franke and Frank28 studied this issue in detail and

noted that more than 40 shedding periods are required to obtain converged mean flow statistics in

the neighborhood of the cylinder. In the current work, statistics are obtained over a total time of

404D/U∞ (∼85 shedding periods) and then averaged over the spanwise direction for more samples.

Converged mean flow and turbulence statistics using TSC show good agreement with the B-spline

computations of Kravchenko and Moin27 and the experimental data of Ong and Wallace29 up to x/D

= 10 as shown in Figs. 13 and 14.

Results using TLDSM are also shown for comparison. Difference in the statistics between the

two time scales are seen to be significant in the near-wake up to x/D ∼ 4.0, and decrease further

downstream.

TABLE III. Flow parameters at ReD = 3900. Legend for symbols : mean drag coefficient 〈CD〉, rms of drag and lift coefficient

(σ (CD), σ (CL)), Strouhal number St and base pressure CPb
, separation angle θ◦

sep , and recirculation length Lrec/D.

〈CD〉 σ (CL) St −CPb
θ◦

sep Lrec/D

TSC 1.01 0.139 0.210 1.00 88.0 1.40

TLDSM 0.99 0.135 0.208 1.00 87.0 1.63

Kravchenko and Moin27 1.04 . . . 0.210 0.94 88.0 1.35

Lourenco and Shih (taken from Ref. 17) 0.99 . . . 0.215 . . . 86.0 1.40
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FIG. 13. Vertical profiles at streamwise stations downstream of the cylinder at ReD = 3900. —— : TSC; – – – – : TLDSM; • :

B-spline solution of Kravchenko and Moin;27 × : Experiment of Ong and Wallace.29

The power spectral density (PSD) of streamwise, cross-flow velocity, and pressure at two

downstream locations (x/D, y/D, z/D) ≡ (5, 0, 0), (10, 0, 0) are plotted in Fig. 15. Time history of

u, v, p are obtained over an interval of 456D/U∞ with 304 000 evenly spaced samples. The spectra

are computed by dividing the time history into a finite number of segments with 50% overlap,

applying a Hann window and rescaling to maintain the input signal energy. The frequency is non-

dimensionalized by the Strouhal shedding frequency ωst. The power spectra for u and v show good

agreement with the experimental data of Ong and Wallace.29 Consistent with previous studies,27

the peaks in u are not very well-defined and so the p spectra are shown. The present LES shows

peaks at twice the shedding frequency for the u and p spectra and peaks at the shedding frequency

for v spectra, as expected at centerline locations of the wake. As noted by Kravchenko and Moin,27

the spectra are consistent with the presence of small scales that remain active far from the cylinder

and hence also consistent with the instantaneous flow shown in Fig. 16. They also noticed that the

effect of excessive dissipation leads to a rapid decay of the spectra at the higher wave numbers

and that spectra obtained by LES based on non-dissipative schemes better match the experiments.

The agreement between current LES and experiment for a large spectral range, especially at high

frequencies, confirms this trend while suggesting that the SGS model is not overly dissipative. At

x/D = 5, the highest frequency from the current LES which matches the experiment is almost three

times that of Kravchenko and Moin27 while at x/D = 10, it is almost the same. Note that decay in

the PSD at x/D = 10 is faster than the upstream location, consistent with coarsening streamwise

resolution downstream.
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FIG. 14. Vertical profiles at streamwise stations downstream of the cylinder at ReD = 3900. —— : TSC; – – – – : TLDSM; • :

B-spline solution of Kravchenko and Moin.27

4. Instantaneous flow and GIE

Three-dimensional flow structures of varying scale are observed in Fig. 16. The separating shear

layer transitions to turbulence, breaking up into smaller spanwise structures which then mix in the

primary Karman vortex. An unsteady recirculation region with small scales is trapped between the

shear layers. The figure also shows quasi-periodic longitudinal vortical structures as observed by

previous studies23, 31 that are associated with vortex stretching in the vortex street wake.31 Figure 17

shows that the instantaneous GIE also follows the pattern of the Karman vortex street. The top shear

layer can be seen to roll up (within one diameter) to form the primary vortex. The GIE is highest in

the turbulent shear layers where scales are smaller. As the grid becomes coarser downstream, DSM

plays a more dominant role, providing a higher value of ν t which reduces GIE. Note that GIE follows

the dominant structures in the flow and hence it is reasonable that Lagrangian averaging uses a time

scale based on a correlation of the GIE.

5. Comparison between TSC and TLDSM

The differences between statistics computed using TSC and TLDSM can be attributed to the

contribution of the SGS model. Typically, in the near wake of the cylinder (up to x/D ∼ 2), the

cross-extent of eddy viscosity is within two diameters but the peak value around the centerline is still

significant (Fig. 18). It spreads beyond three diameters after x/D = 5 and has a significant impact

on the computed flow at x/D = 10 and beyond. Figures 18 and 19 also show differences in the

computed eddy viscosity using different Lagrangian time scales. Eddy viscosity computed using

TLDSM (dashed) is consistently higher than using TSC (solid). This explains the underprediction of

the mean u-velocity in the near-field and hence the overprediction of the recirculation region (Lrec/D

in Table III) using TLDSM. Figure 19 shows that the centerline eddy viscosity is significant in the near

wake and keeps increasing almost linearly with downstream distance after x/D = 10. The centerline

eddy viscosity computed using TLDSM is also greater than that using TSC for x/D > 1.5. Hence

increased accuracy of the results using TSC could be attributed to reduced eddy viscosity in the shear

layer. A similar observation was also made by Meneveau et al.6 attributing the improved accuracy

of Lagrangian averaging over the plane averaged dynamic model for channel flow to reduced eddy

viscosity in the buffer layer.
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FIG. 15. Power spectral density at x/D = 5.0 (left), x/D = 10.0 (right); —— : current LES, • : experiment of Ong and

Wallace .29

Differences in the computed eddy viscosity arise due to different time scales for Lagrangian

averaging of the DSM terms. Both TSC and TLDSM are found to increase almost linearly downstream

after x/D > 5 as shown in Fig. 20, though for different reasons. Based on the surrogate correlation

of the GIE, increasing TSC is consistent with the flow structures becoming bigger as they advect

downstream. Whereas, the strong dependence of TLDSM on the strain rate though IL M and IM M gives

it a linear profile both ahead of and behind the cylinder. It can be argued that perhaps a different

value of the relaxation factor θ would be more appropriate for this flow. In fact, Fig. 20 suggests

scaling the value of θ by a factor of two or so (θ ≥ 3.0) will result in TLDSM being close to TSC after

x/D > 5. Recall that for turbulent channel flow (end of Sec. IV A), TSC actually overlaps with TLDSM,

θ = 3.0 for almost half the channel width, therefore suggesting θ = 3.0 to be a preferable alternative
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FIG. 16. Cylinder flow - ReD = 3900 : instantaneous iso-surfaces of Q-criterion30 (Q = 2) colored by u-velocity.

to θ = 1.5. However, it is clear that TLDSM would still not show the appropriate trend ahead of the

cylinder and in the recirculation region. Note that TSC is high just behind the cylinder (x/D ∼ 1) in

the recirculation region and low in the high acceleration region ahead of the cylinder, as is to be

expected on intuitive grounds.

When the variation in the cross-direction is considered (Fig. 21), TSC is relatively high in the

wake centerline which is consistent with the relatively low momentum flow directly behind the

cylinder. TLDSM shows the opposite behavior as it is low in the centerline, consistent with a higher

strain rate. Again, this opposite trend cannot be changed by a different value of θ .

FIG. 17. Cylinder flow. ReD = 3900 : instantaneous contours of Germano-identity error whose contours vary as

0 ≤ (GIE/U 2
∞)2 ≤ 0.001.



085101-19 A. Verma and K. Mahesh Phys. Fluids 24, 085101 (2012)

y
/D

νt/ν

0 0.2
-3

-2

-1

0

1

2

3

0 0.2 0.4 0 0.3 0.6 0 0.2 0.4 0 0.2 0.40 0.2 0.2 0.4 0.6 0.4 0.6 0.8

x/D = 1.06 1.54 2.02 3.0 5.0 7.0 10.0 20.0

FIG. 18. Profiles of the mean eddy viscosity at streamwise stations in the cylinder wake at ReD = 3900. —— : TSC; – – – – :

TLDSM.

ν t
/ν

x/D

-5 0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1

FIG. 19. Downstream evolution of the mean eddy viscosity on the centerline of the cylinder wake at ReD = 3900. ◦ : TSC;

△: TLDSM.

T
U

2 ∞ ν

x/D

-5 0 5 10 15 20 25 30 35 40 45
0

1000

2000

3000

FIG. 20. Downstream evolution of the Lagrangian time scale on the centerline of the cylinder wake at ReD = 3900. ◦ : TSC;

△: TLDSM.

C. Marine propeller in crashback

Propeller crashback is an off-design operating condition where the marine vessel is moving

forward but the propeller rotates in the reverse direction to slow down or reverse the vessel. The

crashback condition is dominated by the interaction of the free stream flow with the strong reverse

flow from reverse propeller rotation; this interaction forms an unsteady vortex ring around the pro-

peller. Crashback is characterized by highly unsteady forces and moments on the blades due to large
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FIG. 21. Profiles of the Lagrangian time scale at streamwise stations in the cylinder wake at ReD = 3900. —— : TSC; – – – –:

TLDSM.

flow separation and hence is a challenging flow for simulation. Vyšohlı́d and Mahesh32, 33 performed

one of the first LES of a marine propeller in crashback. Chang et al.34 coupled the unsteady blade

loads with a structural solver to predict shear stress and bending moment on the propeller blades dur-

ing crashback. Jang and Mahesh35 studied crashback at three advance ratios and proposed a physical

flow mechanism for unsteady loading. Verma et al.36, 37 explained the effect of an upstream hull on

a marine propeller in crashback. These simulations were performed using locally-regularized DSM.

1. Simulation details

In the current work, LES of a marine propeller, attached to an upstream hull, is performed using

the Lagrangian averaged DSM with the proposed dynamic time scale (Eq. (17)). Results are shown

at a Reynolds number of Re = 480 000 and advance ratio of J = −0.7. Here

Re =
U D

ν
and J =

U

nD
,

where U is the free-stream velocity, n is the propeller rotational speed, and D is the diameter of the

propeller disk. The geometry of the propeller and hull are the same as in Bridges et al.38

Simulations are performed in a frame of reference that rotates with the propeller with the absolute

velocity vector in the inertial frame. The computational domain is a cylinder with diameter 7.0D

and length 14.0D as shown in Fig. 22(a). Free-stream velocity boundary conditions are specified

at the inlet and the lateral boundaries. Convective boundary conditions are prescribed at the exit.

Boundary conditions on the rotor part, blades, and hub are specified as u = ω × r, where ω = 2πn

and r is the radial distance from the propeller center. No-slip boundary conditions are imposed on

the hull body. An unstructured grid with 7.3 × 106 cvs is used as shown in Fig. 22(b). The propeller

FIG. 22. (a) Computational domain and boundary conditions on domain boundaries, and (b) XY plane of grid for propeller

with hull.
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TABLE IV. Computed and experimental values of mean and rms of coefficient of thrust KT, torque KQ, side-force magnitude

KS, and rms of side-force KF on propeller blades.

〈KT〉 〈KQ〉 〈KS〉 σ (KS) σ (KF)

LES −0.358 −0.067 0.046 0.024 0.037

Expt.a −0.340 −0.060 0.044−0.048 0.019−0.021 0.035−0.041

aReference 38.

surface is meshed with quadrilateral elements. Four layers of prisms are extruded from the surface

with a minimum wall-normal spacing of 0.0017D and a growth ratio of 1.05. A compact cylindrical

region around the propeller is meshed with tetrahedral volumes while the rest of the domain is filled

with hexahedral volumes.

The forces (axial T, horizontal FH, and vertical FV ) and moments (axial Q) are non-

dimensionalized using propulsive scaling as

KT =
T

ρn2 D4
, K H =

FH

ρn2 D4
, KV =

FV

ρn2 D4
, KS =

√
F2

H + F2
V

ρn2 D4
, K Q =

Q

ρn2 D5
,

where ρ is the density of the fluid. Henceforth, 〈 · 〉 denotes the mean value and σ ( · ) denotes standard

deviation. RMS of the side-force is defined as

σ (KF ) =
1

2

(
σ (K H ) + σ (KV )

)
.

2. Performance of TSC

Time averaged statistics of flow field are computed over 70 propeller rotations. Table IV shows

the predicted mean and rms of the unsteady forces and moments on the blades to be in reasonable

agreement with the experiment of Bridges et al.38 The time averaged flow statistics are further

averaged along planes of constant radius to yield circumferentially averaged statistics in the x − r

plane; these are used in the subsequent discussion.

The idea of Lagrangian averaging for DSM was introduced by Meneveau et al.6 to allow

regularization of the DSM terms without resorting to averaging along homogeneous directions. The

need for regularization becomes apparent in inhomogeneous flows such as the flow past a marine

propeller. Figure 23(a) shows that if no averaging is performed for the DSM terms, large regions

of the flow see negative eddy viscosities (ν t) for more than 50% of the computed time steps. The

negative ν t values are more prevalent in the regions with unsteady flow, such as the ring vortex, wake

of the hull, and the tetrahedral grid volumes in the vicinity of the propeller blades. On the other hand,

Fig. 23(a) shows that regularization is achieved through Lagrangian averaging. The same unsteady

regions of the flow experiencing negative ν t values are greatly reduced.

r/
R

x/R

(a) (−)νt%

r/
R

x/R

(b) (−)νt%

FIG. 23. Propeller in crashback. Percentage of negative values of eddy viscosity with (a) no averaging, and (b) Lagrangian

averaging.



085101-22 A. Verma and K. Mahesh Phys. Fluids 24, 085101 (2012)

r/
R

x/R

(a)
T

U2

∞

ν

r/
R

x/R

(b)
T

U2

∞

ν

FIG. 24. Propeller in crashback. Contours of Lagrangian time scale with streamlines. (a) TSC, and (b) TLDSM.

Figure 24 compares the Lagranigan time scales TSC and TLDSM. Note that the computations are

done using TSC and TLDSM is computed a posteriori. The streamlines reveal a vortex ring, centered

near the blade tip. A small recirculation zone is formed on the hull (x/R ∼ −1.3) due to the interaction

of the wake of the hull with the reverse flow induced into the propeller disk by the reverse rotation

of the propeller. Compared to J = −1.0,37 this recirculation zone is smaller and located slightly

upstream of the blades. This is consistent with a higher rotational rate of the propeller inducing a

higher reverse flow into the propeller disk. The location of this recirculation region is intermediate

to its locations at J = −1.0 and J = −0.5,37 as would be expected.

TSC is seen to be varying locally with the flow features. It is high in the low-momentum wake

behind the propeller where flow structures are expected to be more coherent. It is low in the unsteady

vortex ring region around the propeller blades. The cylindrical region around the blades is where

the grid transitions from tetrahedral to hexahedral volumes. Interestingly, TSC is higher in the small

recirculation region on the hull. Whereas, TLDSM does not show such level of local variation. It varies

smoothly from low values on the hull body and the unsteady region around the propeller blades to

higher values away from the propeller. The recirculation region on the hull and the propeller wake

do not see a time scale much different from their neighborhood. The performance and physical

consistency of TSC for such complex flows is encouraging.

V. CONCLUSION

A dynamic Lagrangian averaging approach is developed for the dynamic Smagorinsky model

for large eddy simulation of complex flows on unstructured grids. The standard Lagrangian dynamic

model of Meneveau et al.6 uses a Lagrangian time scale (TLDSM) which contains an adjustable

parameter θ . We extend to unstructured grids, the dynamic time scale proposed by Park and Mahesh,12

which is based on a “surrogate-correlation” of the GIE. Park and Mahesh12 computed their time

scale for homogeneous flows by averaging along homogeneous planes in a spectral structured

solver. The present work proposes modifications for inhomogeneous flows on unstructured grids.

This development allows the Lagrangian averaged dynamic model to be applied to complex flows

on unstructured grids without any adjustable parameter. It is shown that a “surrogate-correlation”

of GIE based time scale is a more apt choice for Lagrangian averaging and predicts better results

when compared to other averaging procedures for DSM. Such a time scale also removes the strong

dependency on strain rate exhibited by TLDSM. To keep computational costs down in a parallel

unstructured code, a simple material derivative relation is used to approximate GIE at different

events along a pathline instead of multi-linear interpolation.

The model is applied to LES of turbulent channel flow at various Reynolds numbers and relatively

coarse grid resolutions. Good agreement is obtained with unfiltered DNS data. Improvement is

observed when compared to other averaging procedures for the dynamic Smagorinsky model,

especially at coarse resolutions. In the standard Lagrangian dynamic model, the time scale TLDSM is

reduced in the high-shear regions where IM M is large, such as near wall. In contrast, the dynamic time

scale TSC predicts higher time scale near wall due to high correlation of GIE and this is consistent

with the prevalence of near wall streaks. It also reduces the variance of the computed eddy viscosity

and consequently the number of times negative eddy viscosities are computed.
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Flow over a cylinder is simulated at two Reynolds numbers. The proposed model shows good

agreement of turbulence statistics and power spectral density with previous computations and ex-

periments, and is shown to outperform TLDSM. The significance of using an appropriate Lagrangian

time scale for averaging is borne out by significant difference in the computed eddy viscosity which

consequently impact the results. Increased accuracy of the turbulent statistics using the proposed

model can be attributed to reduced eddy viscosity in the shear layer. GIE is shown to follow the

Karman vortex street and the behavior of the resulting time scale also shows consistency with the

unsteady separation bubble, recirculation region, and increasing size of flow structures in the cylin-

der wake. Note that Park and Mahesh12 found that, with their control-based corrected DSM, TSC is

lesser than TLDSM in the center of a channel, which increases the weight of the most recent events,

making their corrections more effective. This behavior of the time scales is opposite from what we

observe from turbulent channel flow (case 590c) and also cylinder flow at ReD = 3900. We observe

that TSC > TLDSM near the channel-wall, center, and in the cylinder wake; a higher time scale leads

to lower mean eddy viscosity, leading to more resolved stress and hence improved results.

When the model is applied to flow past a marine propeller in crashback, TSC provides the

regularization needed for computing eddy viscosity without sacrificing spatial localization. It is also

established that TSC is physically consistent with the dominant flow features and produces results

in good agreement with experiments. Finally, the extra computational overhead incurred by the

proposed Lagrangian averaging is only 2% compared to the cost when no averaging is performed

(for case 590c).
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