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Analysis of axisymmetric boundary layers
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Axisymmetric boundary layers are studied using integral analysis of the governing
equations for axial flow over a circular cylinder. The analysis includes the effect
of pressure gradient and focuses on the effect of transverse curvature on boundary
layer parameters such as shape factor (H) and skin-friction coefficient (Cf ), defined
as H = δ∗/θ and Cf = τw/(0.5ρU2

e ) respectively, where δ∗ is displacement thickness,
θ is momentum thickness, τw is the shear stress at the wall, ρ is density and Ue
is the streamwise velocity at the edge of the boundary layer. Relations are obtained
relating the mean wall-normal velocity at the edge of the boundary layer (Ve) and
Cf to the boundary layer and pressure gradient parameters. The analytical relations
reduce to established results for planar boundary layers in the limit of infinite radius
of curvature. The relations are used to obtain Cf which shows good agreement with
the data reported in the literature. The analytical results are used to discuss different
flow regimes of axisymmetric boundary layers in the presence of pressure gradients.

Key words: turbulent boundary layers, turbulent flows

1. Introduction
Turbulent boundary layers (TBLs) are among the most studied canonical fluid

problems but most past studies are devoted to the flat plate (planar) TBL. A recent
review by Smits, McKeon & Marusic (2011) describes the current understanding and
future challenges of wall-bounded flows at high Reynolds number (Re). A variety
of hydrodynamic engineering applications however, involve axisymmetric TBLs,
which involve an additional length scale parameter to account for curvature. Several
engineering applications have axisymmetric TBLs evolving under the influence of
pressure gradients due to their geometrical shapes. For example, figure 1 shows a
generic submarine hull (Groves, Huang & Chang 1989) along with the streamwise
varying pressure gradients experienced by the hull boundary layer.

The radius-based Reynolds number (Rea= aU/ν, where U is free-stream velocity, ν
is kinematic viscosity and a is the radius of cylinder) does not include any effect of
wall shear stress or boundary layer thickness. Therefore, popular non-dimensional
parameters to characterize axisymmetric TBLs are the ratio of boundary layer
thickness to the radius of curvature (δ/a) and the radius of curvature in wall units
(a+). Based on these two parameters, three regimes can be identified (Piquet & Patel
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Flow direction

FIGURE 1. Different pressure gradient conditions experienced by the streamwise (x)
evolving hull boundary layer on a generic submarine hull, AFF8 (Groves et al. 1989).

1999): (i) both δ/a and a+ are large, (ii) large δ/a and small a+ and (iii) small δ/a
and large a+. The first flow regime is observed for axial flow over a long slender
cylinder at high Re, where a large effect of curvature is felt. The second flow regime
is realized for axial flow over slender cylinders at low Re, where axisymmetric TBLs
behave like an axisymmetric wake with an inner layer with strong curvature and low
Re effects. Almost all the experimental studies reported in the literature have focused
on the first two regimes (see Piquet & Patel 1999). The third flow regime is common
in applications where the Reynolds number is high but the boundary layer is thin
compared to the radius of curvature. Usually, this flow regime is treated as a planar
boundary layer where the curvature effects are assumed minimal. Although, there are
significant fundamental differences between a planar TBL and a thin axisymmetric
TBL at high Re, such as increased skin friction and rapid radial decay in turbulence
away from the wall (Lueptow 1990).

One of the earliest analytical investigation of the effect of transverse curvature on
skin friction was conducted by Landweber (1949), who used a 1/7th power law for
the velocity profile and the Blasius skin-friction law (Schlichting 1968) to show that
for a given momentum thickness (θ ) based Reynolds number (Reθ ), axisymmetric
boundary layers have higher skin friction and lower boundary layer thickness in
comparison to planar boundary layers. Seban & Bond (1951) analysed the laminar
boundary layer for axial flow over a circular cylinder from the governing boundary
layer equations and showed that the skin-friction and heat-transfer coefficients for
axisymmetric laminar boundary layers are higher than that obtained from the Blasius
solution. Kelly (1954) introduced an important correction to their solution, known as
the Seban–Bond–Kelly (SBK) solution for zero pressure gradient (ZPG) axisymmetric
boundary layers. The SBK solution was extended to the regime of large curvature
effect as encountered in axial flow over long thin cylinders by Glauert & Lighthill
(1955). Stewartson (1955) provided an asymptotic solution for ZPG laminar axial
flow over long thin cylinders.

Axisymmetric TBLs have not received the same attention as planar TBLs likely
due to the inherent difficulties in keeping the flow perfectly axial and preventing
sagging or elastic deformation of the cylinders. The effect of curvature has been the
focus of most past studies. Richmond (1957) and Yu (1958) conducted the first few
experimental studies for curvature effects on boundary layers, which was followed
by extensive experimental studies (Rao 1967; Cebeci 1970; Chase 1972; Rao &
Keshavan 1972; Patel 1974; Patel, Nakayama & Damian 1974; Willmarth et al. 1976;
Luxton, Bull & Rajagopalan 1984; Lueptow, Leehey & Stellinger 1985; Krane, Grega
& Wei 2010) showing that the transverse curvature indeed has a significant effect on
the overall behaviour of axisymmetric TBLs.

Afzal & Narasimha (1976) analysed thin axisymmetric TBLs at high Re (regime 3
described above) using asymptotic expansions and modified the well-known classical
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Axisymmetric boundary layers 929

law of the wall for planar TBLs to include the effect of curvature. The wall-normal
distance in wall units (y+) was modified as,

y+ = a+ ln(1+ y/a), (1.1)

where, a+= auτ/ν is the radius of curvature in wall units. Using this modified y+, it
was shown that there exists a log layer in the mean velocity profile similar to that
found in a planar TBL, with same slope but the intercept (B) is a weak function of
curvature (B= 5+ 236/a+). It has been shown that U+= a+ ln(1+ y/a) is valid in the
viscous sublayer region, but the use of y+ from (1.1) instead of the planar y+ in the
logarithmic region assumes that transverse curvature affects both the viscous sublayer
and log layer identically.

One of the earliest numerical simulations of axisymmetric boundary layers were
performed by Cebeci (1970), who showed higher skin friction compared to flat
plate prediction in both laminar and turbulent regimes. Similar behaviour of skin
friction was observed in numerous subsequent simulations of axisymmetric TBLs.
Axisymmetric TBLs over long thin cylinders have been extensively studied by Tutty
(2008) using Reynolds-averaged Navier–Stokes (RANS) models and Jordan (2011,
2013, 2014a,b) using direct numerical simulations (DNS) and large eddy simulations
(LES). Jordan used his simulation database to propose simple models for the skin
friction (Jordan 2013) and the flow field (Jordan 2014b).

None of the studies mentioned so far have considered pressure gradient effects.
Experiments by Fernholz & Warnack (1998) and Warnack & Fernholz (1998)
considered axisymmetric TBL under favourable pressure gradient (FPG) in internal
flow.

Boundary layers under adverse pressure gradients (APG) have been studied in the
past using asymptotic expansions (see Afzal (1983, 2008) and references therein).
Recently, Wei & Klewicki (2016) performed an integral analysis of the governing
equations for ZPG boundary layers over flat plates and obtained,

UeVe

u2
τ

=H, (1.2)

where Ue and Ve are the mean streamwise and wall-normal velocities at the edge of
the boundary layer, respectively, H is the shape factor and uτ =

√
τw/ρ is the friction

velocity. The analysis was later extended for planar boundary layers under a pressure
gradient by Wei, Maciel & Klewicki (2017), which modified (1.2) as,

UeVe

u2
τ

=H + (1+ δ/δ∗ +H)βRC, (1.3)

where βRC is the Rotta–Clauser pressure gradient parameter (Rotta 1953; Clauser
1954), δ∗ is the displacement thickness and δ is the boundary layer thickness. βRC is
often used to quantify the strength of the APG in boundary layer flows.

The goal of the present work is to analyse the governing equations of axisymmetric
boundary layers evolving under the influence of a pressure gradient and understand the
effect of transverse curvature on the flow. Integral analysis of the governing equations
is performed in § 2 and the obtained relations are compared to the existing data in
§ 3. Implications of analytical relations are discussed in § 4. Section 5 concludes the
paper.
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930 P. Kumar and K. Mahesh

2. Integral analysis of axisymmetric boundary layer
The boundary layer approximations for the time-averaged Navier–Stokes equations

in cylindrical coordinates yield,

r
∂U
∂x
+
∂(rV)
∂r
= 0, (2.1)

rU
∂U
∂x
+ rV

∂U
∂r
=−

r
ρ

dP
dx
+

∂

(
rν
∂U
∂r

)
∂r

+
∂(−ru′v′)

∂r
, (2.2)

where U and V are mean, and u′ and v′ are fluctuations in axial and radial velocities
respectively. Note that the stress term involving ∂(u′u′ − v′v′)/∂x has been ignored on
the right-hand side of (2.2) for the present analysis. This term however, cannot be
neglected for large magnitude pressure gradients and boundary layers on the verge of
separation. We have not made any assumption on the nature of boundary layer i.e. it
can be laminar, transitional or turbulent. This implies that the present analysis holds
as long as the governing equations (2.1), (2.2) are valid.

For a boundary layer under a pressure gradient, the mean wall-normal velocity
outside the boundary layer (Vo) is not constant. Hence, the boundary layer equations
are integrated in the wall-normal direction from the surface, r = a to a location
outside the boundary layer, r = a+ kδ where a is the radius of curvature (cylinder),
k > 1 is a parameter and δ is the boundary layer thickness. Note that setting k = 1
makes Vo = Ve, which is the mean wall-normal velocity at the edge of the boundary
layer. Integration of (2.1) and (2.2) with the aforementioned limits yield,∫ a+kδ

a
r
∂U
∂x

dr = −
∫ a+kδ

a

∂(rV)
∂r

dr=−(rV)|a+kδ
a

= −(a+ kδ)Vo, (2.3)

∫ a+kδ

a
rU
∂U
∂x

dr+
∫ a+kδ

a
rV
∂U
∂r

dr = −
∫ a+kδ

a

r
ρ

dp
dx

dr+
∫ a+kδ

a

∂

(
rν
∂U
∂r

)
∂r

dr

+

∫ a+kδ

a

∂(−ru′v′)
∂r

dr

= −βRC
u2
τ

2δ∗
r2

∣∣∣∣a+kδ

a

+

(
rν
∂U
∂r

)∣∣∣∣a+kδ

a

− (ru′v′)|a+kδ
a ,

(2.4)

where βRC is defined as,

βRC =
δ∗

u2
τ

1
ρ

dP
dx
=−

δ∗

u2
τ

Ue
dUe

dx
(2.5)

and f |ba = f (b)− f (a). Using the boundary conditions,

U|a = 0, U|a+kδ =Ue, (2.6a,b)

V|a = 0, V|a+kδ = Vo, (2.7a,b)
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Axisymmetric boundary layers 931

∂U
∂r

∣∣∣∣
a

= u2
τ/ν,

∂U
∂r

∣∣∣∣
a+kδ

= 0, (2.8a,b)

(−u′v′)|a = (−u′v′)|a+kδ = 0, (2.9)

the right-hand side of (2.4) can be evaluated. This yields,∫ a+kδ

a
rU
∂U
∂x

dr+
∫ a+kδ

a
rV
∂U
∂r

dr=−βRC
u2
τ

2δ∗
r2

∣∣∣∣a+kδ

a

− au2
τ

H⇒

∫ a+kδ

a
rU
∂U
∂x

dr+ (rVU)|a+kδ
a −

∫ a+kδ

a
U
∂(rV)
∂r

dr=−βRC
u2
τ

2δ∗
r2

∣∣∣∣a+kδ

a

− au2
τ

H⇒

∫ a+kδ

a
rU
∂U
∂x

dr+ (a+ kδ)VoUe +

∫ a+kδ

a
rU
∂U
∂x

dr=−βRC
u2
τ

2δ∗
r2

∣∣∣∣a+kδ

a

− au2
τ

H⇒

∫ a+kδ

a
r
∂U2

∂x
dr=−(a+ kδ)VoUe − βRC

u2
τ

2δ∗
r2

∣∣∣∣a+kδ

a

− au2
τ .


(2.10)

The shape factor, H is defined as,

H =
δ∗

θ
. (2.11)

Differentiating both sides with respect to x,

dH
dx
=

1
θ

dδ∗

dx
−
δ∗

θ 2

dθ
dx

(2.12)

H⇒ θ
dH
dx
=

dδ∗

dx
−H

dθ
dx

(2.13)

H⇒ H =

dδ∗

dx
dθ
dx

− θ

dH
dx
dθ
dx

. (2.14)

Note that no assumption has been made regarding the self-similarity of the boundary
layer as yet. The second term on the right-hand side of (2.14) is small as H varies
very slowly with x as compared to δ∗ and hence, can be neglected. Self-similarity
implies dH/dx= 0, which makes the second term identically zero. Therefore,

H =
(

dδ∗

dx

)/(
dθ
dx

)
. (2.15)

δ∗ and θ for axisymmetric boundary layers are defined (Luxton et al. 1984) such
that,

(δ∗ + a)2 − a2
= 2

∫ a+δ

a

(
1−

U
Ue

)
r dr, (2.16)

(θ + a)2 − a2
= 2

∫ a+δ

a

U
Ue

(
1−

U
Ue

)
r dr. (2.17)
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932 P. Kumar and K. Mahesh

Note that U =Ue for r > δ, hence (2.16) and (2.17) can be written as,

(δ∗ + a)2 − a2
= 2

∫ a+kδ

a

(
1−

U
Ue

)
r dr, (2.18)

(θ + a)2 − a2
= 2

∫ a+kδ

a

U
Ue

(
1−

U
Ue

)
r dr, (2.19)

since k > 1.
Differentiating both sides with respect to x and using the Leibniz integral rule on

the right-hand side yield,

2(δ∗ + a)
dδ∗

dx
= −

2
Ue

∫ a+kδ

a

∂(rU)
∂x

dr+
2

Ue

dUe

dx
I, (2.20)

2(θ + a)
dθ
dx
=

2
Ue

∫ a+kδ

a

∂(rU)
∂x

dr−
2

Ue

dUe

dx
I

−
2

U2
e

∫ a+kδ

a

∂(rU2)

∂x
dr+

4
Ue

dUe

dx
J, (2.21)

where,

I =
∫ a+kδ

a

U
Ue

r dr, (2.22)

J =
∫ a+kδ

a

U2

U2
e

r dr. (2.23)

Using (2.3) and (2.10) on the right-hand side of (2.20) and (2.21) yields,

2(δ∗ + a)
dδ∗

dx
= 2

Vo

Ue
(a+ kδ)− 2

βRC

δ∗

u2
τ

U2
e

I, (2.24)

2(θ + a)
dθ
dx
=−2

Vo

Ue
(a+ kδ)+ 2

βRC

δ∗

u2
τ

U2
e

I

+ 2
Vo

Ue
(a+ kδ)+

βRC

δ∗

u2
τ

U2
e

r2

∣∣∣∣a+kδ

a

+ 2a
u2
τ

U2
e

− 4
βRC

δ∗

u2
τ

U2
e

J

H⇒ 2(θ + a)
dθ
dx
= 2a

u2
τ

U2
e

+ 2
βRC

δ∗

u2
τ

U2
e

I +
βRC

δ∗

u2
τ

U2
e

r2

∣∣∣∣a+kδ

a

− 4
βRC

δ∗

u2
τ

U2
e

J. (2.25)

Dividing (2.24) by (2.25) and using (2.15) followed by rearranging of the terms, we
get,

(
δ∗ + a
θ + a

)
H =


2

Vo

Ue
(a+ kδ)− 2

βRC

δ∗

u2
τ

U2
e

I

2a
u2
τ

U2
e

+ 2
βRC

δ∗

u2
τ

U2
e

I +
βRC

δ∗

u2
τ

U2
e

r2

∣∣∣∣a+kδ

a

− 4
βRC

δ∗

u2
τ

U2
e

J

 . (2.26)

Using the definitions of δ∗ (2.18) and θ (2.19), it can be shown that,

I =
r2

2

∣∣∣∣a+kδ

a

−
r2

2

∣∣∣∣a+δ∗
a

, (2.27)
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Axisymmetric boundary layers 933

J =
r2

2

∣∣∣∣a+kδ

a

−
r2

2

∣∣∣∣a+δ∗
a

−
r2

2

∣∣∣∣a+θ
a

. (2.28)

Also, equation (2.24) yields,

(δ∗ + a)
dδ∗

dx
=

Vo

Ue
(a+ kδ)−

βRC

δ∗

u2
τ

U2
e

I

H⇒
Vo

Ue
(a+ kδ)= (δ∗ + a)

dδ∗

dx
+
βRC

2δ∗
u2
τ

U2
e

(r2
|
a+kδ
a − r2

|
a+δ∗
a ). (2.29)

Hence, equation (2.26) can be rearranged to show that,(
δ∗ + a
θ + a

)
H
[

2a
u2
τ

U2
e

+
βRC

δ∗

u2
τ

U2
e

(r2
|
a+kδ
a − r2

|
a+δ∗
a )+

βRC

δ∗

u2
τ

U2
e

r2
|
a+kδ
a

− 2
βRC

δ∗

u2
τ

U2
e

(r2
|
a+kδ
a − r2

|
a+δ∗
a − r2

|
a+θ
a )

]
= 2

Vo

Ue
(a+ kδ)−

βRC

δ∗

u2
τ

U2
e

(r2
|
a+kδ
a − r2

|
a+δ∗
a ) (2.30)

H⇒ 2
VoUe

u2
τ

(a+ kδ)
(
θ + a
δ∗ + a

)
=H

[
2a+

βRC

δ∗
(r2
|
a+δ∗
a + 2r2

|
a+θ
a )

]
+

(
θ + a
δ∗ + a

)
βRC

δ∗
(r2
|
a+kδ
a − r2

|
a+δ∗
a ). (2.31)

Substituting for Vo from (2.29) and rearranging,

(θ + a)
dδ∗

dx
= H

u2
τ

U2
e

[
a+

βRC

2δ∗
(r2
|
a+δ∗
a + 2r2

|
a+θ
a )

]

H⇒
u2
τ

U2
e

=

(θ + a)
dδ∗

dx

H
[

a+
βRC

2δ∗
(r2
|
a+δ∗
a + 2r2

|
a+θ
a )

]

H⇒ Cf =

2
(

1+
θ

a

)
dδ∗

dx

H + βRC

[
2+H

(
1+

δ∗

2a
+
θ 2

aδ∗

)] . (2.32)

Self-similarity of boundary layers implies that δ∗/δ is constant. So Cf can be written
as,

Cf =

2
(

1+
θ

a

)
δ∗

δ

dδ
dx

H + βRC

[
2+H

(
1+

δ∗

2a
+
θ 2

aδ∗

)] . (2.33)

Note that Cf = 2u2
τ/U

2
e is related to βRC by definition (see (2.5)). But that definition

contains external flow parameters. On the other hand, equation (2.33) relates Cf to the
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boundary layer parameters directly. Also, equation (2.31) can be rearranged to show
that,

UeVo

u2
τ

(
1+ θ/a
1+ δ∗/a

)(
1+ k

δ

a

)
= H + βRC

[
2+H

(
1+

δ∗

2a
+
θ 2

aδ∗

)
+

(
1+ θ/a
1+ δ∗/a

)(
k
δ

δ∗
− 1+

k2δ2
− δ∗2

2aδ∗

)]
. (2.34)

At the edge of the boundary layer, k= 1 and Vo = Ve. Therefore,

UeVe

u2
τ

(
1+ θ/a
1+ δ∗/a

)(
1+

δ

a

)
= H + βRC

[
2+H

(
1+

δ∗

2a
+
θ 2

aδ∗

)
+

(
1+ θ/a
1+ δ∗/a

)(
δ

δ∗
− 1+

δ2
− δ∗2

2aδ∗

)]
. (2.35)

At the verge of separation, uτ goes to zero. Using the definition of βRC (2.5),
equation (2.35) yields,

Ve = −δ
∗
dUe

dx

(
1+ θ/a
1+ δ∗/a

)−1 (
1+

δ

a

)−1 [
2+H

(
1+

δ∗

2a
+
θ 2

aδ∗

)
+

(
1+ θ/a
1+ δ∗/a

)(
δ

δ∗
− 1+

δ2
− δ∗2

2aδ∗

)]
. (2.36)

3. Comparison to previous work
3.1. Consistency with planar boundary layer relations

For a planar boundary layer, 1/a approaches 0 as a approaches ∞. Setting 1/a= 0
in (2.33) and (2.34) yields,

Cf =

2
δ∗

δ

dδ
dx

H + βRC(2+H)
, (3.1)

and
UeVo

u2
τ

=H + βRC

(
1+H + k

δ

δ∗

)
. (3.2)

At the verge of separation, uτ = 0; setting k= 1 yields,

Ve =−δ
∗
dUe

dx

(
1+H +

δ

δ∗

)
. (3.3)

These relations are identical to those derived by Wei et al. (2017) (equations (13)
and (14) of their paper) for a planar boundary layer with a pressure gradient. They
compared their analytical relations to the data available in the literature for APG TBLs
and found good agreement (see figures 2–5 of their paper).

Setting βRC = 0 in (3.2) yields,
UeVo

u2
τ

=H. (3.4)

Note that for βRC = 0, regardless of the value of k, Vo is the same i.e. Vo = Ve is
constant outside the boundary layer. Equation (3.4) was derived by Wei & Klewicki
(2016) (equation (11) of their paper) and shown to be valid for laminar, transitional
and turbulent boundary layers.
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FIGURE 2. (Colour online) Skin-friction coefficient (Cf ) as a function of non-dimensional
parameter νx/Ua2 (a), where results for radius based Reynolds number Rea = 500, 1000
and 10 000 are shown along with the solutions of Seban–Bond–Kelly (Seban & Bond
1951; Kelly 1954) (p (red)) and Glauert–Lighthill (Glauert & Lighthill 1955) (@). The
present result (3.5) using δ∗ from SBK (——(red)) and GL (- - -), show identical Cf . Cf as
a function of Rea is compared with the result of Cebeci (1970) (@) for a long thin cylinder
(large x/a), where the boundary layer thickness reaches an asymptotic value (Stewartson
1955) (b). The value obtained from the Blasius solution (- - -) is also shown in (b) for
comparison.

3.2. Axisymmetric ZPG laminar boundary layer
The SBK solution (Seban & Bond 1951; Kelly 1954) for axisymmetric laminar
boundary layer is valid up to νx/Ua2 < 0.04, and was subsequently extended by
Glauert & Lighthill (1955) (GL) to the interval 0.04 < νx/Ua2 < 100. For ZPG
laminar axisymmetric boundary layer, equation (2.33) becomes,

Cf ,axisymmetric = 2
dθ
dx

(
1+

θ

a

)
=Cf ,planar

(
1+

δ∗

aH

)
. (3.5)

δ∗ can be obtained from either SBK or GL solutions and H = 2.59 for a laminar
boundary layer. Thus, Cf can be obtained. Figure 2(a) shows Cf as a function of
νx/Ua2 for three different Rea= 10 000, 1000 and 500, compared with both SBK and
GL solutions. Note that the difference in Cf using δ∗ from either solution (SBK or
GL) is negligible. Our results smoothly transitions from the SBK to the GL solution
as νx/Ua2 increases, as evident in the lower Rea cases. Figure 2(b) compares our
result with the numerical solution of Cebeci (1970), where Rea is varied. δ∗ and H
for this case are estimated from the asymptotic results of Stewartson (1955). The Cf

obtained from the Blasius solution (Cf
√

Rex= 0.664) (Schlichting 1968) is also shown
for comparison. Overall, our results show good agreement with Cebeci (1970) for the
entire range from thin to thick axisymmetric laminar boundary layers. Note that at
large Rea, δ/a approaches zero and hence, the axisymmetric laminar boundary layer
approaches planar behaviour.

3.3. Axisymmetric ZPG turbulent boundary layer
Cebeci (1970) numerically solved incompressible turbulent ZPG axial flow over a
circular slender cylinder of radius, a= 1′′ and Rea = 40 200. The same relation (3.5)
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1000 3000 5000 7000 1500 2000 2500 30009000
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Monte et al. (2011)

(a) (b)

FIGURE 3. (Colour online) (a) Skin-friction coefficient (Cf ) as a function of Reθ is
compared with the result of Cebeci (1970) (@) for a slender cylinder for radius based
Reynolds number Rea= 40 200 and radius a= 1′′. The shape factor of H= 1.4 and Cf ,planar
correlation of Monkewitz et al. (2008) is used in our relation to predict Cf . The boundary
layer growth is assumed identical to that of a flat plate, which need not be true for slender
cylinders at high Reθ . (b) U+e as a function of Reθ is compared with the correlations of
Monte et al. (2011) and Woods (2006). U+e is related to Cf as U+e =

√
2/Cf .

is used to estimate Cf but the Cf ,planar correlation of Monkewitz, Chauhan & Nagib
(2008) is used. The shape factor H is assumed to be 1.4 and the boundary layer
growth dθ/dx is assumed identical in both planar and axisymmetric cases. Figure 3(a)
shows our results compared to that of Cebeci (1970). Note that the range of Reθ on
the cylinder is large (1000<Reθ < 10 000). Hence, the assumption of identical growth
and H = 1.4 may not hold, which is the reason for the difference between our result
and that of Cebeci (1970). In reality, H is a weakly decreasing function of Reθ for
TBLs (Monkewitz et al. 2008). For example, H ≈ 1.45 at Reθ = 1000 (Schlatter &
Örlü 2010), whereas H ≈ 1.36 at Reθ = 9000 (Österlund 1999). The results shown in
figure 3(a) will further improve if the variation of H with Reθ is taken into account.

Kumar & Mahesh (2016) simulated thin axisymmetric TBLs in the range 1400 <
Reθ < 1620. Using their boundary layer δ∗ and θ variation with streamwise distance x,
which is almost linear, their slope dδ∗/dx and dθ/dx can be estimated. This estimated
slope can be used to compute Cf for 1500<Reθ < 3000, as shown in figure 3(b). Our
results are compared with the correlation of Monte, Sagaut & Gomez (2011), which
corrected the correlation of Woods (2006) using their extensive simulation database,
showing good agreement. Note that for a large range of Reθ , the assumption of linear
growth of boundary layer breaks down, hence the differences at large Reθ .

4. Discussion
4.1. Effect of curvature on Cf

If both planar and axisymmetric boundary layers have the same boundary layer
parameters, equations (2.33) and (3.1) yield:

Cf ,axisymmetric

Cf ,planar
=

(
1+

θ

a

)
[H + βRC(2+H)]

H + βRC

[
2+H

(
1+

δ∗

2a
+
θ 2

aδ∗

)]
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H⇒
Cf ,axisymmetric

Cf ,planar
− 1=

θ

a
H + βRC

[
θ

a
+
δ∗

a

(
1−

H
2

)]
H + βRC

[
2+H

(
1+

δ∗

2a
+
θ 2

aδ∗

)] . (4.1)

Thus, if the right-hand side of (4.1) is positive, the presence of curvature increases
Cf and vice versa.

It is easy to see that for ZPG (βRC = 0) boundary layers,

Cf ,axisymmetric

Cf ,planar
= 1+

θ

a
. (4.2)

For boundary layer with APG (βRC > 0), the denominator of the right-hand side of
(4.1) is always positive. Hence, the effect of curvature will depend on the sign of the
numerator η defined as,

η=
θ

a
H + βRC

[
θ

a
+
δ∗

a

(
1−

H
2

)]
. (4.3)

It can be shown that η > 0 if βRC > 0 (see appendix A). Therefore, the presence
of curvature increases Cf if βRC > 0. Note that this is true regardless of the value
of a. It has been assumed that dδ/dx is identical for both planar and axisymmetric
TBLs. This is not always true. In fact, for a thick axisymmetric TBL at zero pressure
gradient (δ/a� 1 and βRC = 0), dδ/dx is smaller than that of the planar TBL value
(Tutty 2008). However, Cf is still higher than planar values because θ/a� 1, which
compensates for the decrease in dδ/dx.

The presence of curvature may or may not increase Cf in FPG axisymmetric TBLs
depending on the sign of the right-hand side of (4.1).

4.2. Thick axisymmetric ZPG turbulent boundary layer
For βRC = 0, the expression for Cf (2.33) reduces to,

Cf = 2
(

1+
θ

a

)
θ

δ

dδ
dx
. (4.4)

Thus, knowing local boundary layer parameters, Cf can be estimated. For example,
Jordan (2014a) compiled numerous experimental results along with his simulation
database for thick axisymmetric TBLs in ZPG and showed that δ/θ ≈ 7.2. The
estimated value is dδ/dx ≈ 2.5 × 10−3 for a range of thick axisymmetric TBLs
(2.1 6 δ/a 6 11, 37 6 a+ 6 388, 586 6 Rea 6 7475). This makes,

Cf = 6.94× 10−4

(
1+

θ

a

)
= 6.94× 10−4

(
1+

Reθ
Rea

)
. (4.5)

4.3. Axisymmetric TBL under large APG
For large APG, βRC� 1. Thus (2.33) yields,

Cf ≈

 2
(

1+
θ

a

)
δ∗

δ

dδ
dx

2+H
(

1+
δ∗

2a
+
θ 2

aδ∗

)
 1
βRC

. (4.6)
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For a self-similar TBL in an APG, δ∗/δ, H and dδ/dx become constant (Maciel,
Rossignol & Lemay 2006). Similar behaviour is expected for an axisymmetric TBL
as well. When δ/a < 1, θ/a and δ∗/a are small as compared to 1. This makes, the
term inside brackets ([ ]) nearly constant. Thus for a thin axisymmetric TBL at large
APG, Cf ∼ 1/βRC. A similar result was obtained by Wei et al. (2017) for a planar
TBL.

4.4. Axisymmetric TBL under FPG
For FPG TBLs, there are two important flow parameters: pressure gradient parameter
(Λ) (Narasimha & Sreenivasan 1973) and acceleration parameter (K) (Launder 1964)
defined as,

Λ=−
δ

u2
τ

1
ρ

dP
dx
, (4.7)

K =
ν

U2
e

dUe

dx
. (4.8)

All the relations derived in § 2 hold for a FPG axisymmetric TBL as well by
replacing βRC with −Λ. It can be shown that,

dCf

dΛ
=Cf

 2+H
(

1+
δ∗

a
+
θ 2

aδ∗

)
H −Λ

[
2+H

(
1+

δ∗

a
+
θ 2

aδ∗

)]
< 0. (4.9)

Thus, increasing the FPG decreases Cf and this effect is expected to be enhanced by
the presence of transverse curvature as the presence of terms with 1/a enhances the
magnitude of dCf /dΛ.

5. Conclusion
In this work, an integral analysis of equations governing axisymmetric boundary

layer flow is presented, including the effect of pressure gradient. Analytical relations
are derived relating Cf to the boundary layer parameters. The relations for planar
TBLs with and without a pressure gradient presented by Wei et al. (2017) and Wei
& Klewicki (2016) respectively can be recovered by setting 1/a = 0 and further
setting βRC = 0. It has been shown that the presence of transverse curvature increases
Cf regardless of the nature of the boundary layer, consistent with the observations
reported in the literature for both ZPG and APG axisymmetric boundary layers.
The derived relations are compared to the existing results in the literature, showing
good agreement. The results presented in this work are expected to be valid for
any boundary layer as long as the governing equations hold, which assumes local
dynamic equilibrium. It is challenging, both experimentally and computationally, to
obtain accurate Cf at high Re. However, it is relatively easier to obtain accurate
mean velocity profiles. In addition to predicting the influence of the pressure gradient
and curvature, the derived expressions are potentially useful to both skin-friction
measurements and wall-modelled large eddy simulation of turbulent boundary layers.
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Appendix A. Maximum value of η

It is known that H > 1 which yields,

H
2
>

1
2
H⇒

H
2
− 1 >−

1
2
, (A 1)

1
H

6 1 H⇒ −
1
H

>−1. (A 2)

Adding (A 1) and (A 2) we get,

H
2
− 1−

1
H

>−
3
2
, H⇒

1
H
2
− 1−

1
H

6−
2
3
. (A 3)

But,

1
H
2
− 1−

1
H

=
H

H
(

H
2
− 1
)
− 1
=

−
θ

a
H

θ

a
+H

θ

a

(
1−

H
2

) = −
θ

a
H

θ

a
+
δ∗

a

(
1−

H
2

) . (A 4)

From (A 3) and (A 4), it follows that,

−
θ

a
H

θ

a
+
δ∗

a

(
1−

H
2

) 6−
2
3
. (A 5)

Now,

η=
θ

a
H + βRC

[
θ

a
+
δ∗

a

(
1−

H
2

)]
> 0

⇐⇒ βRC >
−
θ

a
H

θ

a
+
δ∗

a

(
1−

H
2

) . (A 6)

Using (A 5), it is easy to see that (A 6) always holds for βRC > 0.
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