
Journal of Computational Physics 341 (2017) 377–385
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Short note

A note on a conservative finite volume approach to address 

numerical stiffness in polar meshes

Rajapandiyan Asaithambi, Krishnan Mahesh ∗

Aerospace Engineering and Mechanics, University of Minnesota, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 January 2017
Received in revised form 24 March 2017
Accepted 7 April 2017
Available online 12 April 2017

Keywords:
Conservative
Finite-volume
Stiffness
Polar meshes
DNS
LES

A polar coordinate system introduces a singularity at the pole, r = 0, where terms with 
a factor 1/r can be ill-defined. While there are several approaches to eliminate this pole 
singularity in finite difference methods, finite volume methods largely bypass this issue by 
not storing or computing data at the pole. However, all methods face a very restrictive time 
step when using an explicit time advancement scheme in the azimuthal direction, where 
cell sizes are of the order O (�r(r�θ)). We use a conservative finite volume approach of 
merging cells on a structured O-mesh to remove this time step limit imposed by the CFL 
condition. The cell-merging procedure is implemented as a corrector step and incurs no 
changes to the underlying data structure for a structured grid. This short note describes 
the procedure and presents the validation and application of the algorithm to various 
problems. The algorithm is shown to be inexpensive and scalable. In addition, the cell-
merging procedure is easily coupled with a line implicit scheme in the radial direction.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A large number of canonical problems are naturally defined in polar or cylindrical coordinates such as flows in pipes, 
round jets, vortices, axisymmetric wakes and shear layers. The applications range from transport of fluids, mixing, combus-
tion, aeroacoustics, and external aerodynamics of axisymmetric objects and their boundary layers. Jets form a large subset of 
these canonical problems owing to their ubiquity in industrial applications. The need to study jets in the real world, ranging 
from cooling micro-jets to jet engines necessitates us to develop algorithms that can handle round turbulent jets. Specifi-
cally, our interests lie in studying auto-igniting fuel jets in vitiated co-flow conditions [6] where controlling autoignition can 
lead to the design of efficient internal combustion engines.

While Cartesian meshes can be used to study round jets [2,5], they can be inefficient when it comes to the number of 
grid cells required. In general, structured meshes have an inherent advantage over unstructured meshes in computational 
cost due to the regular data structure. Some of the largest direct numerical simulations have been performed with Cartesian 
meshes [16,15]. For round jets however, most of the grid cells are needed in the vicinity of the jet’s shear layer. A cylin-
drical mesh is appropriate in this case as it allows clustering of cells in the shear layer. We estimate that to simulate the 
auto-igniting fuel jet [6], a Cartesian mesh would need about 10 times more cells than a cylindrical mesh at a jet Reynolds 
number (Re) of 10, 000. At Re = 24, 000, this ratio increases to a 100, making a cylindrical mesh highly economical. The 
same effect can also be achieved by a spherical mesh, as shown by Boersma et al. [4], who used it for a jet simulation 

* Corresponding author.
E-mail address: kmahesh@umn.edu (K. Mahesh).
http://dx.doi.org/10.1016/j.jcp.2017.04.025
0021-9991/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2017.04.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:kmahesh@umn.edu
http://dx.doi.org/10.1016/j.jcp.2017.04.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2017.04.025&domain=pdf


378 R. Asaithambi, K. Mahesh / Journal of Computational Physics 341 (2017) 377–385
with the pole placed along the streamwise direction. Since both cylindrical and spherical meshes are three dimensional 
extensions to a polar mesh, the issues discussed here are equally applicable to both meshes.

A cylindrical mesh, when appropriate for the problem, still has two numerical difficulties to overcome: (a) a grid singu-
larity at the pole r = 0 and (b) the severe time-step limitation from the small azimuthal edges of size O (�r(r�θ)) as we 
get closer to the pole. These problems are addressed in various ways depending on the method used to solve the governing 
equations.

Finite difference methods and pseudo-spectral methods need to explicitly address the grid singularity at r = 0 when the 
Navier–Stokes equations are solved in polar coordinates. Methods used to alleviate this problem range from directly treating 
singular terms to shifting the grid nodes away from the center altogether. The following set of methods directly address the 
singularity at r = 0. Griffin et al. [10] apply L’Hospital’s rule to all the terms with a 1/r component. One-sided differencing 
was applied at the center and second-order accuracy was necessary to prevent spurious pressure oscillations. Freund et al. 
[9] solve for the center point in Cartesian coordinates to avoid the singularity. This procedure transforms variables back 
and forth from polar coordinates to Cartesian coordinates at the centerline. Constantinescu and Lele [7] derive a new set of 
equations at the pole using series expansions for the variables and find that the method produces better results than using 
Cartesian equations at the pole.

Another set of methods avoid the singularity by not placing a grid point at r = 0. Mohseni and Colonius [13] note 
that most methods use pole conditions at the centerline which acts as a boundary condition and reduces the accuracy of 
the solution. Hence, Mohseni and Colonius transform the grid from (0, R) to (−R, R) and avoid placing points at r = 0
which are instead placed at r = −�r/2 and r = �r/2. To remove the time-step limitation in the azimuthal direction the 
solution was filtered with a sharp spectral filter with a cutoff wavelength which is a function of the radial location. This 
grid transformation also has the benefit of applying higher order schemes to evaluate terms close to the centerline [7,11].

Formulated in what might be considered the most natural way, finite volume methods on the other hand avoid most 
of the complexities of the pole singularity problem. At the pole, grid metrics such as face normals can be undefined, 
and multivalued variables have to be correctly addressed. These are however, easily resolved by setting fluxes from the 
degenerate faces at the centerline to zero. The issue of restrictive time-steps, however, still needs to be addressed. Eggels 
et al. [8] treat all azimuthal derivatives implicitly to avoid the explicit time-step limit. All radial and axial terms, however, 
were explicitly integrated in time. Akselvoll and Moin [1] developed a method in which the cylindrical domain was split 
into two regions. Near the centerline, the azimuthal terms were treated implicitly and for cells close to the radial boundary, 
the radial terms were implicit. This allowed clustering in the radial direction along the wall without its associated time-step 
limitations. At the interface between the two regions, conditions were derived to maintain overall accuracy and avoided 
coupling the implicit terms in two axes.

In this note, we solve the finite volume equations on a cylindrical O-mesh but in Cartesian coordinates. We propose 
a finite volume strategy to address the time-step limitation in the azimuthal direction which can easily be coupled to an 
implicit method in the radial direction. We note that a jet or pipe flow does not require the excessive azimuthal resolution 
at the centerline and since this is the source of the time-step restriction, we solve this problem by merging these thin cells 
into larger cells in the azimuthal direction. This procedure is conservative, computationally inexpensive and can be easily 
implemented in an existing finite volume code. This note is organized as follows: Section 2 describes the numerical method 
and Section 3 gives the formulation of the cell-merging procedure. Section 4 shows the validation of the algorithm for a 
periodic laminar pipe, a Lamb–Oseen vortex, and a turbulent jet. Section 5 concludes the note.

2. Numerical details

2.1. Governing equations

The governing equations employed are the compressible Navier–Stokes equations. In Cartesian coordinates, the equations 
for non-dimensionalized density (ρ), momentum (ρui ) and total energy (Et ) are written as follows:

∂ρ

∂t
+ ∂ρu j

∂x j
= 0, (1)
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∂x j
= − ∂ p
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where the viscous stress (τi j ) is:
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Fig. 1. Cell merging schematic.

The total energy Et can be written as a sum of sensible energy et and kinetic energy. The sensible energy can be approxi-
mated to cv T for a cold jet with no temperature gradients.

Et = et + uiui

2
= cv T + uiui

2
. (5)

The non-dimensional equation of state is ρT = γr M2
r pW where the pressure is non-dimensionalized using the compressible 

scaling p = pd/ρru2
r . γr is the reference heat capacity ratio and W is the molecular weight. The medium is assumed to be 

a thermally and calorically perfect ideal gas with constant heat capacity.

2.2. Numerical method

The governing equations are discretized using a finite volume algorithm which is second order accurate in space and 
time. The data is co-located and stored at the cell centers. Note that we solve in Cartesian coordinates and compute the 
Cartesian velocities u, v and w . The discretized form of the equations – density, momentum, and energy, are as follows:

∂ρ

∂t
= − 1

V f

∑
f aces

ρ f vn A f , (6)

∂ρui

∂t
= − 1

V f

∑
f aces

[
ρ f ui , f vn + p f ni − 1

Re
τik, f nk

]
A f , (7)

∂ρEt

∂t
= − 1

V f

∑
f aces

[
(ρEt + p) vn − 1

Re
τik, f ui , f nk − Q k, f nk

]
A f . (8)

While the above equations are general and are applicable to any finite volume grid, we focus on a structured grid with 
a cylindrical mesh topology. The cells are hexahedral with flat surfaces, except for the cells adjacent to the pole, which 
are prisms. The flux terms in the equations are split into fluxes aligned with the radial direction and non-radial directions 
(azimuthal and longitudinal). Radial inviscid fluxes are integrated in time with an implicit Crank–Nicholson scheme and 
solved with a direct block-tridiagonal line solver. Only density, momentum and energy equations are coupled together 
and the Jacobian is derived for the inviscid terms. The viscous terms are treated explicitly. This method was chosen to 
eliminate stiffness due to the acoustic time-scale which was the limiting factor in the current simulations. Linearization of 
energy was performed assuming constant heat capacity ratio, γ . The non-radial fluxes use the fully explicit second order 
Adams–Bashforth scheme.

3. Cell merging

Stiffness in the azimuthal direction arises from the very thin cells of size O (�r(r�θ)) as we approach the pole at r = 0. 
The smallest cell is a triangle of area (�r)2 sin(�θ)/4. By merging cells together in the azimuthal direction, we construct 
larger cells that do not impose a time step restriction as severe as the thinnest cells. When enough cells are merged to 
make the azimuthal spacing similar to the radial spacing, i.e. n(r�θ) ≈ �r, we effectively relax the time step restriction to 
depend on the radial spacing alone. In the process of merging cells, we have to ensure that fluxes from the merging process 
are still conservative. We describe the process using the schematic in Fig. 1. The schematic shows 4 cells with cells labeled 
‘1’ and ‘2’ being merged.

All terms on the right-hand side of the governing equations (6)–(8) are expressed as fluxes and can be represented by 
the following equation 9. In two dimensions (r, θ), the fluxes from the four faces are identified by directions North, South, 
East and West in the subscript. North is aligned with increasing r.

∂φ

∂t
= − 1

V

∑
φ f vn A f = 1

V
[F N + F S + F E + F W ]. (9)
f aces
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The finite volume equations for the unmerged cells C1 and C2 and merged cell C12 as shown in the schematic can be 
written as follows:

∂φ1

∂t
= 1

V 1
[F1N + F1S + F1E + F1W ] = R H S1,

∂φ2

∂t
= 1

V 2
[F2N + F2S + F2E + F2W ] = R H S2,

∂φ12

∂t
= 1

V 12
[(F1N + F2N) + (F1S + F2S) + F2E + F1W ].

Since F1E = −F2W by construction, i.e. they are fluxes of the same face from opposite directions, we observe that the 
right-hand side (RHS) of the merged cell can be exactly written in terms of the RHS of the constituent cells as a simple 
volume weighted average.

∂φ12

∂t
= (R H S1)V 1 + (R H S2)V 2

V 1 + V 2
=

∑
n(R H Sn)Vn∑

n Vn
. (10)

Having expressed the discretized equation for a merged cell, we extend the process to include the explicit time-integration 
in non-radial terms and implicit radial terms. A purely explicit method with cell-merging would be written as:

δφt = h

∑
f n F t

f∑
n Vn

+ Rt . (11)

The same procedure applied to a fully implicit Crank–Nicholson time-integration gives us:
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]
= Rt . (12)

We can now write the semi-implicit form: Crank–Nicholson in the radial direction and Adams–Bashforth in azimuthal and 
longitudinal directions for the unmerged cells and merged cell:
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In a regular polar grid, assuming V 1 = V 2 = V in the azimuthal direction, we can write for n merged cells:
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Linearizing the fluxes for a coupled implicit line solve in the N-S direction:
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2
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t
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In a more compact and general form, this can be written as:
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2
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t
f = C(R H St
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2
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where C(x) is the coarsening operator defined as:

C(x) ≡
∑

n(x)Vn∑
n Vn

. (14)



R. Asaithambi, K. Mahesh / Journal of Computational Physics 341 (2017) 377–385 381
Fig. 2. Maximum time step size vs grid size. Simulations with cell merging are shown in circles and squares without. The solid line is drawn at a slope of 
−2.

3.0.1. Numerical implementation
The finite volume grid is structured and three-dimensional arrays are used to store all the variables for a simulation. 

A cell-centered data storage is used with face-centered quantities computed on the fly. In the current implementation, a 
regular cylindrical grid is assumed. The grid is non-uniform in the radial direction to cluster cells near walls or shear layers. 
The grid is uniform in the azimuthal and longitudinal directions. Cell merging is performed in the azimuthal direction based 
on the edge length r�θ . If this edge is smaller than the local radial edge of length �r, n cells in the azimuthal direction 
are merged until the condition nr�θ > �r is met. This condition used also ensures that the aspect ratio of the merged cell 
is least skewed.

The process of cell merging starts with fluxes that are computed based on the cell-centered values stored on the fine 
grid. The Jacobians for the implicit formulation, right hand side terms and source terms are computed for all the cells. Once 
this is done, the coarsening operator is applied on these terms as per equation (13). This step takes the values stored in 
the arrays and replaces them with the coarsened value for all cells that are being merged. These coarsened values are then 
used to compute the change in variable over time step δφ12

t . Since the coarsening operator is linear, δφt can be computed 
for each fine grid cell and the resulting δφ1

t and δφ2
t can be coarsened to achieve the same result. This cell merging 

implementation operates on structured data and does not need unstructured representation. We also avoid resorting to 
complex block-structured meshes. The underlying structured data representation brings the benefit of a regular memory 
access, extensions to higher order flux reconstruction and as discussed in the next section: simpler parallelization with 
balanced loads.

3.0.2. Time step limit
We estimate the maximum time step that can be taken with and without the coarsening operation with the periodic pipe 

problem (section 4.1). When the limiting grid size changes from r�θ to �r the maximum time-step that can be taken should 
increase proportionately. Note that without cell merging, the smallest cell spacing is �r�θ/2 in the azimuthal direction 
whereas with cell merging, it is �r. The viscous time limit for an explicit method in one-dimension is ν�t/�x2 ≤ 1/2. 
We observe this behavior in Fig. 2 where merging (line with circles) increases the maximum time step size by orders of 
magnitude compared to the case without merging (line with squares). In addition, the time step decrease is proportionate 
to the square of grid spacing, consistent with the viscous time limit. Without merging, the time step drops faster as the 
smallest grid spacing depends on both �r and �θ .

Cell merging thus removes the severe time-step restriction without having to use a fully implicit scheme. This further 
boosts the parallel performance of the code.

3.0.3. Cost of cell-merging
The cost of cell merging is estimated by running the simulation with and without cell merging for the periodic pipe 

problem discussed in section 4.1. Table 1 shows the cost of the simulation in seconds per hundred time steps. This test was 
performed on small meshes on a single desktop processor. The time taken by merging is less than 7% of the total simulation 
time. Cell merging therefore adds little to the cost of the simulation while allowing us to take much larger time steps.

3.0.4. Discrete conservation of cell-merging
The cell merging step effectively add fluxes together for the supercell from its constituent cells and therefore ensures 

discrete conservation of cell-centered quantities. This property is demonstrated in Fig. 3 where the difference in total mass 
flux after the coarsening operation is shown as a function of simulation time for the Lamb–Oseen vortex problem, which 
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Table 1
Cost of simulations in seconds per hundred iterations, with and without the coarsening operation.

Grid Run-time (s) w/ C() Run-time (s) w/o C()

8 × 8 0.79 0.77
16 × 16 1.42 1.37
32 × 32 3.92 3.72
64 × 64 13.4 12.6

Fig. 3. Conservation error: Total mass flux in shown in blue and the error due to merging as a function of time for the Lamb–Oseen vortex simulation is 
shown in red.

is discussed in section (4.2). The comparison is made with the total mass flux in the domain which shows that the cell 
merging operation conserves to machine zero accuracy.

3.1. Parallel algorithm for merging

Large simulations on parallel computers can result in coarsened cells that span multiple processors. A parallel algorithm 
for coarsening is described in this section for 2n cells in the azimuthal direction. If the azimuthal domain is split into 2p

processors and the cells are merged into 2k coarse cells, a single coarse cell will span 2p/2k processors. Thus the coarsening 
operator has to be split across processors and this is achieved by successively applying the operator within a processor and 
then across processors:

Cn/k(x) =
∑

2n/2k (x)

2n/2k
=

∑
2p/2k (

∑
2n/2p (x))

2p/2k × 2n/2p
= C p/k(Cn/p(x))

Programmatically, this is accomplished in a Message Passing program by computing the local coarsening and storing it in 
an array with 2p elements where each element would correspond to a processor. The inter-processor coarsening operator is 
applied next after gathering all elements using an MPI_ Allreduce call. The final value can now be stored in each grid cell.

Scaling tests were performed on Argonne National Laboratory’s super-computing facility and the results are shown in 
Fig. 4. The two plots correspond to strong scaling and weak scaling respectively. Strong scaling measures how much faster 
the program is executed upon increasing the number of processors for a given simulation. The strong scaling test shown 
in Fig. 4(a) measures the parallelizability in the azimuthal direction and shows good results. Weak scaling measures the 
time taken to execute the program with a constant number of grid elements per processor. The program is fully parallel 
in the longitudinal direction as well and has been run efficiently on hundreds of thousands of processors. Accounting for 
parallelization in all three axes, the algorithm can potentially scale up to a million or more processors. Weak scaling in the 
longitudinal axis in addition to the azimuthal axis scales well up to a hundred thousand processors as shown in Fig. 4(b). 
The largest grid tested had 1.34 Billion cells.

4. Validation and results

Validation is performed for three problems: (a) a periodic laminar pipe, (b) a Lamb–Oseen vortex and, (c) a turbulent 
cold jet. The periodic pipe has a steady solution with an axisymmetric axial velocity field. The velocity field in the r − θ

plane is zero. The Lamb–Oseen vortex has a non-zero azimuthal velocity field and a decaying solution. Both these problems 
have analytical solutions. The turbulent cold jet is included to demonstrate applicability to highly unsteady flows while 
retaining robustness and accuracy.
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Fig. 4. Scaling results for the parallel cell merging algorithm are shown: (a) plot of normalized speed versus number of processors showing Strong scaling 
using a grid with 590,000 cells, (b) plot of normalized time versus number of processors showing Weak scaling with 10,200 cells per processor.

Fig. 5. (a) Streamwise velocity profile vs radial distance for different grid resolutions. (b) Log plot of L2 error norm versus grid cells in the radial direction. 
The solid line indicates a slope of −2.

4.1. Periodic laminar pipe

A fully developed laminar pipe flow (Hagen–Poisueille Flow) is simulated for validation of the scheme and to confirm 
second order accuracy. The analytical solution for pipe flow is:

u(r) = Re

4
Fb(1 − r2), (15)

where u(r) is the streamwise velocity, Re is the Reynolds number, Fb is the body force and r the radial distance. The 
diameter of the pipe is denoted by D and the bulk velocity Ub . The body force is set to Fb = 4/Re and Re = 1 for all 
cases tested. The grid size is varied from 8 × 8 to 64 × 64 in the radial and azimuthal directions respectively. All cases are 
simulated up to three flow-through time-units, 3D/Ub , which was found to provide a converged solution. Fig. 5 shows the 
velocity profile from different grid resolutions and demonstrates second order spatial accuracy.

4.2. Lamb–Oseen vortex

The Lamb–Oseen vortex is another axisymmetric fluid flow problem with an analytical solution to the incompressible 
Navier–Stokes equations. While the radial velocity field is axisymmetric, the Cartesian velocities are not and since we solve 
for Cartesian velocities, this problem is a good validation test on a cylindrical mesh. The analytical solution for the Lamb–
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Fig. 6. Velocity vs radial distance at times t = 0.01 and t = 0.1. The circles are the numerical simulation compared with the solid lines from the analytical 
solution.

Oseen vortex can be written for the vorticity field, as ω = �0
4πνt e−r2/4νt . The azimuthal velocity field corresponding to the 

vorticity solution expressed as a function of radial distance and time can be written as follows:

vθ (r, t) = �0

2πr

(
1 − e−r2/4νt

)
, (16)

where vθ is the azimuthal velocity field, �0 is the initial circulation, r is the radial distance, t is time and ν is kinematic 
viscosity.

The comparison between the analytical velocity profile and simulation result as a function of radial distance from the 
vortex center is shown in Fig. 6. The parameters used for the simulation are �0 = 0.001, ν = 0.01 and the initial radius at 
time t = 0 was set to r0 = 0.1. The (r, θ) grid was (64, 64) for this simulation. The figure shows the solution obtained at two 
instants, t = 0.01 and t = 0.1 from the initialization. Since the solution is a decaying velocity field in time, the comparison 
is made at different time instants. The numerical solution captures the decay in time and the spatial changes in the field. 
The numerical solution shown by circles are compared with the analytical solution plotted as solid lines. We observe good 
agreement with the theoretical solution.

4.3. Turbulent cold jet

The merging algorithm was developed to perform very large scale Direct Numerical Simulations (DNS) of reacting round 
jets. A cold jet simulation is carried out on a fairly coarse grid to demonstrate the robustness of the numerical method. The 
jet is simulated at a Reynolds number of 2, 400 on a domain of 20D × 2π × 45D where D is the jet diameter. The grid had 
(80, 64, 450) cells in (r, θ, z) directions with a total of 2.3M elements. The inflow was specified using a hyperbolic tangent 
function, which closely approximates a top-hat profile but has smooth edges and was initially perturbed with random 
velocities of magnitude 0.1%. The cells in the radial directions were clustered near the center and in the axial direction the 
cell density was gradually decreased downstream. The Mach number of the jet was set to 0.2 to minimize compressibility 
effects.

The results obtained are shown in Fig. 7. U denotes jet velocity in the streamwise direction, Uo is the velocity at the inlet 
and Uc is the centerline velocity. The centerline velocity Uc follows a 1/x scaling as seen in Fig. 7(a) where the normalized 
inverse centerline velocity Uo/Uc increases linearly with the slope of dashed red line. Fig. 7(b) shows the self-similarity of 
the jet where the axial velocity cross-section profiles are taken from 18D to 30D downstream of the inlet. The velocity ratio 
U/Uc is plotted against the self-similar variable η = r/(z − z0) for all the profiles taken and can be seen to collapse onto 
each other. We obtain a velocity decay constant of Bu = 5.6 and a spreading rate of S = 0.99 which compares well with 
experimental observation of Hussein et al. [12] and Panchapakesan & Lumley [14]. The potential core was also observed to 
close 11D downstream of the inlet which matches well with the simulation results of Babu & Mahesh [3] and Boersma et 
al. [4]. This simulation shows that the cell merging algorithm can handle a turbulent flow-field and produce results that 
compare well with existing data while offering an increased time-step and lower grid cell count compared to a Cartesian 
mesh.

5. Conclusion

A conservative finite volume formulation to prevent the restrictive time-step limitation from a polar grid has been 
presented. Extremely thin grid cells close to the centerline are merged together in the azimuthal direction to form thicker 
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Fig. 7. (a) Inverse centerline velocity vs axial distance. (b) Self-similarity of axial velocity cross-section with profiles taken between 18D and 30D down-
stream.

cells with an aspect ratio close to one. The cell width is thus effectively increased which removes the excessive time-step 
limitation due to the CFL limit. Cell merging in the azimuthal direction allows implicit time integration in the radial direction 
without coupling the azimuthal terms. This allows for better parallel scalability and usage on large clusters for DNS studies 
of jets.
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