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Direct numerical simulation is used to study the effect of crossflow on the dynamics,
entrainment and mixing characteristics of vortex rings issuing from a circular nozzle.
Three distinct regimes exist, depending on the velocity ratio (ratio of the average
nozzle exit velocity to free-stream crossflow velocity) and stroke ratio (ratio of stroke
length to nozzle exit diameter). Coherent vortex rings are not obtained at velocity
ratios below approximately 2. At these low velocity ratios, the vorticity in the crossflow
boundary layer inhibits roll-up of the nozzle boundary layer at the leading edge. As
a result, a hairpin vortex forms instead of a vortex ring. For large stroke ratios and
velocity ratio below 2, a series of hairpin vortices is shed downstream. The shedding is
quite periodic for very low Reynolds numbers. For velocity ratios above 2, two regimes
are obtained depending upon the stroke ratio. Lower stroke ratios yield a coherent
asymmetric vortex ring, while higher stroke ratios yield an asymmetric vortex ring
accompanied by a trailing column of vorticity. These two regimes are separated by a
transition stroke ratio whose value decreases with decreasing velocity ratio. For very
high values of the velocity ratio, the transition stroke ratio approaches the ‘formation
number’. In the absence of trailing vorticity, the vortex ring tilts towards the upstream
direction, while the presence of a trailing column causes it to tilt downstream. This
behaviour is explained. In the absence of crossflow, the trailing column is not very
effective at entrainment, and is best avoided for optimal mixing and entrainment.
However, in the presence of crossflow, the trailing column is found to contribute
significantly to the overall mixing and entrainment. The trailing column interacts
with the crossflow to generate a region of high pressure downstream of the nozzle
that drives crossflow fluid towards the vortex ring. There is an optimal length of the
trailing column for maximum downstream entrainment. A classification map which
categorizes the different regimes is developed.

1. Introduction

Jets in crossflow are central to a variety of important applications such as
dilution holes in combustors, fuel injectors, pollutant dispersion from smoke stacks,
thrust vectoring of turbojets, and V/STOL aircraft. There is therefore considerable
incentive to actively control jets in crossflow. This paper is motivated by experimental
observations on the use of pulsing to control the mixing characteristics of jets in
crossflow (e.g. Wu, Vakili & Yu 1988; Chang & Vakili 1995; Eroglu & Briedenthal
2001; Blossey, Narayanan & Bewley 2001; M’Closkey et al. 2002; Karagozian;
Cortelezi & Soldati 2003). It is observed that pulsing the jet results in the formation
of vortex rings whose strength and spacing depend on the frequency and duty cycle
of the jet, for a given jet and crossflow combination (Eroglu & Briedenthal 2001). The
resulting flow appears to improve mixing rate and increase the entrainment. Some
workers (e.g. M’Closkey et al. 2002; Shapiro et al. 2006) relate the optimal pulse width
for maximum penetration of vortical structures, to the ‘formation number’ proposed
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FIGURE 1. (a) Schematic of the problem. (b) Horizontal slice of the mesh.

by Gharib, Rambod & Shariff (1998). Johari (2006) presents scaling arguments,
based on the motion of individual vortex rings in stationary fluid, for the penetration
and mixing of pulsed jets in crossflow. He proposes classification schemes using the
formation number and stroke ratio obtained from the frequency and duty cycle of
the pulsed jet.

Sau & Mahesh (2007) used DNS to study optimal mixing by a single vortex ring
in stationary fluid. They considered two Schmidt numbers and a range of stroke
ratios. The formation number was found to yield the maximum entrainment for both
Schmidt numbers. This behaviour was explained by noting that the entrainment was
a combination of that due to the leading vortex ring, and that due to the trailing
column of vorticity. The entrainment by the trailing column was negligible compared
to that by the vortex ring, as a result of which the relative contribution of the vortex
ring to overall entrainment decreases beyond the formation number.

The above study ignores the effect of crossflow. This paper therefore studies the
effect of crossflow on the dynamics, mixing and entrainment characteristics of vortex
rings. The paper is organized as follows. Section 2 discusses the problem and details
of the simulations. The effect of crossflow on ring dynamics is discussed in §3. The
case of very low velocity ratio is presented in §3.2. Entrainment characteristics of
vortex rings and hairpin vortices are presented in §4. The paper concludes with a
classification map of the different flow regimes in § 5.

2. Simulation details
2.1. Problem statement

Figure 1(a) shows a schematic of the problem, in which a slug of fluid is pushed
through a cylindrical nozzle with 3:1 diameter ratio. The nozzle fluid forms a vortex
ring as it exits the nozzle. The vortex ring interacts with the crossflow which is directed
along the x-direction. The crossflow is modelled as a laminar boundary layer over a
flat plate. Note that the origin of the coordinate system is located at the centre of the
nozzle exit plane, and the nozzle axis points in the y-direction.

In experiments, vortex rings are often generated by a piston pushing a column
of fluid of length L through an orifice of diameter D. In simulations, this process
is modelled by specifying a top-hat velocity profile (U;,) at the nozzle inflow for a
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duration of time t (referred to as piston time duration). The inflow velocity is zero
for time greater than t. The stroke length and non-dimensional time are determined
using the mean nozzle exit velocity, U, which is equivalent to the piston velocity.
The stroke length L is therefore equal to U, 7, and the stroke ratio (L/D) is equal
to U..:t/D. The stroke ratio is varied by changing the piston time duration 7. The
velocity ratio r is defined as the ratio of mean nozzle exit velocity (U ;) to the free-
stream crossflow velocity (u.,). The velocity ratio is varied by changing the crossflow
velocity. DNS of single vortex rings are performed for stroke ratios varying from 1.6
to 8 and crossflow velocity ratios ranging from 1 to 6. The Reynolds number based

on U .;; and nozzle exit diameter (D) is 600 in all cases, except where noted below.

2.2. Numerical details

The governing equations are the incompressible Navier—Stokes and continuity eq-
uations,

Ou;  uu; ap u;  Ou;
= —_— ) =0, 2.1
ot B.Xj 8xi vaxjxj 8xi ( )
and the passive scalar equation
aC  0dCu; 3°C
o N (2.2)
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Here u;, p and v denote the velocities, pressure and kinematic viscosity respectively.
C is the concentration of the scalar. The density of the fluid is assumed constant and
is absorbed into the pressure. The numerical scheme used to solve the Navier—Stokes
equations is described in detail by Mahesh, Constantinescu & Moin (2004). The
algorithm stores the Cartesian velocities and pressure at the centroids of the cells
(control volumes), and stores the face-normal velocities at the centroids of the faces.
The algorithm is a predictor—corrector scheme which emphasizes discrete energy
conservation on unstructured grids. This property makes the algorithm robust at
high Reynolds numbers without numerical dissipation. The predictor velocities at the
control-volume centroids are obtained using the viscous and the nonlinear terms in
equation (2.1); the predictor face-normal velocities are then obtained. The predictor
face-normal velocity is then projected so that continuity is discretely satisfied. This
yields a Poisson equation for pressure which is solved iteratively using a multigrid
approach. The pressure field is used to update the Cartesian control volume-velocities.
Implicit time-stepping is performed using a Crank—Nicholson scheme. The algorithm
has been validated for a variety of problems over a range of Reynolds numbers
(Mabhesh et al. 2004).

The passive scalar is computed using a predictor—corrector method (Muppidi 2006).
The scalar field is first advanced using a second-order central difference scheme.
The predicted scalar field is corrected in regions of scalar overshoot using a first-
order upwind scheme. This corrector step ensures that locally, the passive scalar
concentration is bounded (i.e. C € [0, 1]). The scalar is advanced in time explicitly
using the second-order Adams—Bashforth scheme in an inner loop. The fluid emerging
from the nozzle exit has C = 1.0 and the ambient fluid has C =0.

2.3. Computational domain and boundary conditions

The computational domain spans 21D x 20D x 16D above the nozzle exit in the x-, y-
and z-directions respectively, and includes a 10D length of nozzle. The computational
mesh consists of unstructured hexahedral elements. A grid refinement study was
performed on grids containing approximately 2.7 x 10°, 3.6 x 10° and 7 x 10° elements.
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FIGURE 2. (a) v-velocity profiles at the nozzle exit in the symmetry plane at t* = U it/ D = 1.0:
, without crossflow (r =00); — = — r=6; -+ - r=3; —+— r=2.0; — — —,
r=15; ———, r=1.0. (b) Corresponding spanwise vorticity, §2,/D profiles: , Without
crossflow (r =o0); — =+ —, r=6; — - —, r=2.0; — — —, r=1.0.

The profiles of nozzle-exit velocity and vorticity for the three grids were examined.
The maximum v velocity obtained for the 3.6 x 10° grid differs by 0.6 % from the
2.7 x 10 grid. The 7 x 10° grid deviates less than 0.1% from the 3.6 x 10® grid. The
vorticity obtained from the 3.6 x 10° grid deviates less than 0.5% from the 7 x 10%
grid. Results from the 7 x 10° grid are presented in the paper. Figure 1(b) shows the
horizontal cross-section of the mesh (with 3.6 x 10° elements for clarity). Very fine
mesh elements are used near the nozzle exit and along the direction of the crossflow.
The crossflow is simulated as a laminar flow over a flat plate. The velocity field
from the self-similar Blasius boundary layer solution is specified at the inflow plane
of the crossflow, 6D upstream of the nozzle exit. The velocity field is such that in
the absence of nozzle fluid, the crossflow has prescribed §so0, at the centre of the
nozzle exit. On the spanwise boundaries (z/D = £38), the velocity field corresponding
to laminar crossflow over a flat plate is prescribed. Free-stream velocity boundary
conditions are specified on the top boundary at y/D =20. At the nozzle inflow plane
(y/D =—10), a top-hat velocity profile is specified:

U, ifr<rt
v(x, z, y/D=—10, t) = viyow = {0 ift> .

A zero-gradient boundary condition is used at the outflow (x/D = 24).

3. Effect of crossflow on ring dynamics

When the ambient fluid is stationary, the shear layer that emerges from the nozzle
rolls up into an axisymmetric vortex ring. It propagates away from the nozzle and
entrains the ambient fluid radially inwards as it does so. The formation number
(Gharib et al. 1998) marks the transition between two possible flow structures: vortex
ring and vortex ring with trailing column of vorticity. A single vortex ring is produced
for stroke ratios less than the formation number, while a vortex ring with trailing
column is produced for larger stroke ratios.

Both the formation and propagation of vortex rings are affected by presence of
crossflow. The crossflow also breaks the axisymmetry of the ring. Figure 2(a) shows
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the nozzle exit velocity (v) profiles at the symmetry plane for different velocity ratios
at the same instant of time (¢* = 1.0). The exit velocity in the absence of the crossflow
is also shown. The crossflow momentum decelerates the nozzle fluid on the upstream
side (x/D =15.5). As a result of mass conservation, the fluid near the downstream side
(x/D =6.5) accelerates as shown in the figure. The peak velocity on the downstream
side increases with increasing crossflow velocity. For r = 1.0, there is a very small
amount of reverse flow at the upstream side of the nozzle. This is because the adverse
pressure gradient outside the nozzle exit overcomes the favourable pressure gradient
created by the nozzle throat. Profiles of spanwise vorticity at the nozzle exit in the
symmetry plane are shown in figure 2(b). Note that vorticity increases significantly on
the downstream side due to acceleration of the nozzle fluid. In contrast, the vorticity
on the upstream side decreases. Also, the location of peak vorticity on the upstream
side shifts to the nozzle right with increasing crossflow velocity. For very low velocity
ratios (r <2), the nozzle shear layer at the upstream side does not roll up and a
complete vortex ring does not form. The low-velocity-ratio case is discussed in detail
in later sections. The following section examines the effect of crossflow on a complete
vortex ring. Here, the velocity ratio is greater than 2.

3.1. Velocity ratio > 2

For velocity ratio greater than 2, the simulations show that the vortex ring tilts in the
presence of crossflow. Tilting is defined in terms of the angle between the plane of
the vortex ring and the exit plane of the nozzle. The ring tilts towards the upstream
direction for low stroke ratio and tilts towards the downstream for high stroke ratio.
This behaviour is discussed in more detail below.

3.1.1. Low stroke ratio: upstream tilting

Figure 3 shows contours of §2, vorticity in the symmetry plane (x, y) for stroke
ratio 2 and velocity ratio 6 at different instants of time. Note that the vortex ring
tilts towards the upstream direction as it penetrates into the crossflow. The induced
velocity of the vortex ring opposes the crossflow velocity which helps the ring to
penetrate deeper into the crossflow. This behaviour is consistent with the experiments
of Chang & Vakili (1995), who observed the upstream tilting of vortex rings in
low-frequency pulsed jets in crossflow.

The fluid in the vortex ring initially does not have mean horizontal momentum.
The relative horizontal velocity between the crossflow and the centroids of the vortex
ring combines with ring circulation to produce Kutta—Joukowski lift. It is readily seen
that the upstream portion of the ring experiences a downward lift force relative to
the downstream portion as shown in figure 4(a). As a result, the ring tilts upstream.
Note that this reasoning is two-dimensional at every cross-section of the ring. Two-
dimensional simulations of a vortex pair in crossflow were therefore performed to
test this hypothesis. The vortex pair was found to tilt upstream as observed here.
A quantitative discussion of Kutta—Joukowski lift on vortex cores is provided by
Ting & Tung (1965) who consider a vortex core of uniform vorticity embedded
in a two-dimensional non-uniform stream. They match the near-field and far-field
solutions, and use the Kutta—Joukowski theorem to obtain the resulting force on the
vortex. Figures 4(b) and 4(c) show vortex rings of stroke ratio 2 in velocity ratios
of 6 and 3. Note that the tilting increases with increase in the crossflow magnitude.
This behaviour is consistent with the Kutta—Joukowski lift being responsible for the
tilting.
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FiGure 3. Vorticity contours for L/D =2 and r =6 at different time instants. The solid and
dashed lines denote positive and negative values respectively.
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FIGURE 4. (a) Schematic of vortex ring tilting. (b, ¢) Vorticity contours for L/D =2 at two
different crossflow velocities: (b) u,, =0.5; (¢) u, =1.0. Note that the tilting increases with
increase in the crossflow velocity.

The vortex ring also deforms in the presence of crossflow. The thickness of the ring
becomes non-uniform as it propagates into the crossflow. Figure 5(a) shows the /1,
surface of the vortex ring. Note that the downstream side of the ring is thicker than
the upstream side. This deformation can be attributed to the strain field experienced
by the ring in crossflow. Figure 5(b) plots the in-plane velocity magnitude along a
curve which encompasses the circumference of the ring from upstream to downstream
side on the plane of the ring. The velocity field around the ring suggests that a positive
velocity gradient is set up along the ring on the upstream side and a negative velocity
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FIGURE 5. (a) /Zp-surface of the vortex ring at a distance of around 4D from the nozzle exit
for L/D of 2 at r =3. (b) In-plane velocity magnitude on the circumference of the ring from
the upstream to downstream side. (c) Schematic to illustrate the velocity gradients along the
ring.

gradient is set up along the ring on the downstream side. The corresponding velocity
gradients experienced by the ring and the resulting deformation is shown in figure 5(c).
The upstream side of the ring experiences a positive velocity gradient and stretches
as a result. The vortex tube becomes thinner due to stretching. The downstream side
exhibits the opposite behaviour.

3.1.2. High stroke ratio: downstream tilting

For large stroke ratios, vortex rings along with a trailing column of vorticity are
generated. Figure 6 shows the time evolution of £2, contours in the symmetry plane
for stroke ratio of 6 and velocity ratio of 6. Note that a vortex ring followed by a
trailing column is produced. Also, the leading vortex ring tilts towards the downstream
direction, unlike its behaviour at lower stroke ratios. One other significant difference
is that the ring diameter expands as it propagates downstream (figure 6b). This
behaviour is due to the enhanced downstream entrainment of crossflow fluid, which
is explained later. The ring’s induced velocity has a component along the direction of
the crossflow which favours downstream movement. The trailing column acts as an
obstacle to the crossflow and as a result, the Kutta—Joukowski lift is not produced.
Instead, the crossflow bends the leading vortex ring and the trailing column along the
direction of the crossflow; finally the leading vortex ring pinches off from the trailing
column.

For a fixed velocity ratio, the stroke ratio determines whether the ring tilts upstream
or downstream. This suggests that there is a transition stroke ratio which separates
these two regimes. So, the transition stroke ratio for r =6 is sought and the effect of
crossflow velocity ratio on the transition stroke ratio is examined.
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FIGURE 6. Vorticity contours in the symmetry plane for L/D =6 and r =6 at different time
instants.

3.1.3. Transition stroke ratio

For a fixed crossflow velocity ratio, the transition stroke ratio is obtained from
simulations at different stroke ratios. The transition stroke ratio for r =6 is found
to be L/D=3.3. The vortex ring tilts in the upstream direction for stroke ratios
below 3.3. For stroke ratios larger than 3.3, the vortex ring tilts downstream and the
ring diameter expands. The ring dynamics at the transition stroke ratio for r =6 are
shown in figure 7. Initially the leading vortex ring tilts in the downstream direction,
but eventually it pinches off and tilts in the upstream direction slightly.

The effect of velocity ratio on the transition stroke ratio is examined in figure 8.
For r =3, the transition stroke ratio is found to be 2.3; the transition stroke ratio
decreases as the velocity ratio decreases. We estimate a ‘transition curve’ which
defines the transition stroke ratio as a function of velocity ratio. Figure 8 shows the
three transition stroke ratios obtained at r =3, 4.6 and 6 respectively. The ambient
fluid approximates stationary fluid when the velocity ratio is increased to very high
values. Recall that in stationary fluid, the ‘formation number’ (L/D = 3.6) defines the
transition between single vortex ring and a vortex ring with trailing column. So, the
transition curve has an asymptote: L/D =3.6. An exponential curve is fitted which
passes through the three data points and has an asymptote at L/D = 3.6. This yields
the transition stroke ratio (L/D),. as a function of velocity ratio r:

(L/D);, = Fy — Ay exp (—Aar)

where Fy= 3.6 denotes the formation number in stationary fluid, and A; and A, are
constants which are obtained as 5.6 and 0.5 respectively. The transition curve is only



Dynamics and mixing of vortex rings in crossflow 397

o
57 @
1 4
6] ]
5 ]
6 49 §
] ] 14
7 1 e 01
6 4_: 24 %4 ]
5 34 1

=150

Sie

FiGure 7. Time evolution of vorticity contours at transition stroke ratio (L/D = 3.33) for
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FiGURe 8. The transition curve in the (r, L/D)-plane separates two regimes of flow in the
presence of crossflow. The dotted line represents the transition line in stationary flow.

plotted for r >2 as shown in figure 8. It will be shown later that complete vortex
rings do not form for r <2.

The transition curve has important practical consequences. For a particular velocity
ratio, stroke ratios on the left of the curve shown in figure 8 will generate vortex rings
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FIGURE 9. Effect of Reynolds number for L/D =6 at r =6: (a) Re =600, (b) Re =900,
(¢) Re=1300.

which tilt upstream and penetrate into the crossflow. The stroke ratios to the right
of this curve will generate rings which tilt downstream and have a trailing column.
It will be shown later that the trailing column significantly improves entrainment
in crossflow. In terms of penetration of the rings into the crossflow, stroke ratios
around the transition curve will provide maximum opposition to the crossflow. For
stroke ratios higher than the transition stroke ratio, the ring-tilting will produce a
component of the induced momentum along the crossflow and favour downstream
movement of the ring. Shapiro et al. (2006) performed experiments on a pulsed jet in
crossflow and reported maximum penetration at two stroke ratios, one in the range
of formation number (3.5-4.7) and the other lying in the range 1.8-2.2. Their jet was
acoustically pulsed and r was equal to 2.58. From our results, it can be inferred that
the maximum penetration of the pulsed jet is due to the formation of vortex rings
which tilt upstream and penetrate deeper into the crossflow. Note that for a velocity
ratio r = 2.58, the stroke ratio from the transition curve is approximately 2.0 which is
in agreement with the experimental observation of Shapiro et al. (2006).

The above behaviour is not significantly affected by the Reynolds number, at
least in the Reynolds number regime where the rings are stable. Figure 9 shows the
vorticity field in the symmetry plane for the vortex ring with L/D =6 and r =6 at
three different Reynolds numbers. Note that the Reynolds number has almost no
effect on the tilting of the vortex rings. As the Reynolds number increases, the vorticity
gradients increase and the instabilities in the trailing jet become more pronounced.

3.2. Velocity ratio < 2

The increase in crossflow (i.e. decrease in velocity ratio) causes the vorticity in the
crossflow boundary layer to increase. Thus, for very low velocity ratios, the vorticity in
the crossflow boundary layer starts interacting with the vorticity of the nozzle bound-
ary layer. The interaction is most significant on the upstream side of the nozzle exit.
Figure 10 shows results for three low velocity ratios: 2, 1.5 and 1. Crossflow boundary
layer profiles and vorticity contours in the symmetry plane are shown at t*=1.0 for
each case. Note that roll-up of the nozzle boundary layer is inhibited on the upstream
side. The vorticity in the emerging boundary layer is cancelled by the opposing
vorticity from the crossflow boundary layer. The vorticity cancellation becomes more
pronounced as the velocity ratio decreases. For r = 1.0, the vorticity in the emerging
nozzle boundary layer is almost annihilated by the crossflow boundary layer as shown
in figure 10(c). So, a complete vortex ring structure does not form. Instead, a hairpin
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FiGure 10. Low velocity ratio cases: (a) r =2.0, (b) r =1.5 and (c) r = 1.0. Crossflow boundary
layer profiles (left) and the vorticity contours in the symmetry plane (right) are shown at t* =1.0
for each case. Note that the vorticity from the nozzle boundary layers is cancelled by opposing
vorticity in the crossflow boundary layer at the upstream side of the nozzle exit.

.

FIGURE 11. Hairpin structures are shed for L/D =5 at r =1. The figures correspond to
t*=5.0.

structure is formed due to the roll-up on the downstream side alone. This formation
of hairpin vortices is similar to that observed in the experiments of Acarlar & Smith
(1987) at velocity ratios much smaller than those used in our simulation.

3.2.1. Large L/D: hairpin vortex shedding

For low velocity ratios and large stroke ratios, a series of hairpin vortices is shed
downstream. Figure 11 shows an iso-surface of pressure for L/D =5 and r=1.0.
Note that once a hairpin vortex is discharged, then the next hairpin starts to form.
This shedding of hairpin vortices is Reynolds-number dependent. Figure 12 shows
vorticity contours in the symmetry plane at different Reynolds numbers: 600, 300 and
150. The stroke ratio L/D =100 so that the periodic shedding of the hairpins can
be observed. Instantaneous contours of vorticity are shown at ¢* =20 for each of the
cases. Note that for Re =600, the vortices are unstable. For lower Reynolds number,
periodic shedding of coherent hairpins is observed as shown. Also, the shedding
frequency depends upon the Reynolds number.
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FIGURE 12. Vorticity contours in the symmetry plane at * =20 for r =1.0 and L/D =100.
(a) Re=0600, (b) Re =300, (c) Re=150. Note that shedding of the hairpin vortices is unstable
at Re =600. The shedding is very periodic for lower Reynolds number.

The evolution of hairpin vortices may be explained as follows. Figure 13 shows a
hairpin structure and its image in the presence of the wall. Schematics of the hairpin
cross-sections in spanwise and symmetry planes are also shown. The symmetry plane
cuts the ‘head’ off the hairpin structure. The spanwise plane consists of its counter-
rotating legs. The presence of the wall can be modelled by the image vortices as
shown in the schematic. In the spanwise plane, the counter-rotating ‘legs’ follow the
path shown as a thick-dotted line in figure 13. The legs approach each other and also
move upwards due to their mutual induction and interaction with the image vortices.
On the other hand, the crossflow exerts an upward Kutta—Joukowski lift force on the
head of the hairpin and the image vortex induces a negative u-velocity. As a result, the
head portion of the hairpin tilts as it propagates downstream and becomes normal to
the crossflow direction as shown in figure 11. The hairpin structure detaches from the
emerging shear layer due to the particular motion of the hairpin legs in the presence
of the wall. While the hairpin detaches from the shear layer and is shed downstream,
the next hairpin is formed.

These results suggests that for very low velocity ratio and low Reynolds number,
a steady jet in the presence of a crossflow results in a series of hairpin structures.
And if the Reynolds number is very low then the horseshoe-like vortices are shed in
a periodic manner. This suggests that at very low velocity ratios, the structure of jets
in crossflow is quite unlike the classical structure where the counter-rotating vortex
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FIGURE 13. Evolution of a hairpin vortex structure in the presence of a wall. The dotted
curves in the spanwise plane show the trajectory of the legs due to the wall.

pair (CVP), a stationary horseshoe vortex, wake vortices and Kelvin—Helmholtz
instability vortices characterize the flow (Fric & Roshko 1994). This observation
is also consistent with the experiments of Gopalan, Abraham & Katz (2004) on
a turbulent jet in crossflow at r <2. They report that a semi-cylindrical vortical
layer forms behind the jet and suggest that this vorticity starts from the jet shear
layer.

4. Mixing and entrainment characteristics

The mixing of nozzle fluid with the crossflow fluid is studied by the transport of
a passive scalar. The Schmidt number Sc of the scalar is 1.0. Fluid exiting from the
nozzle has scalar concentration of 1. The crossflow fluid which initially had scalar
concentration of zero, mixes with the nozzle fluid to give intermediate scalar values
between zero and one. When the ambient fluid is stationary, an axisymmetric vortex
ring entrains the ambient fluid radially inward into the core when it forms. The
entrained ambient fluid mixes with the nozzle fluid inside the core. In contrast, the
trailing column is surrounded by quiescent ambient fluid and does not entrain the
ambient flow. The trailing column is much less effective than a single vortex ring in
entraining the ambient fluid and mixing by vortex rings in stationary fluid is optimal
at a stroke ratio equal to the formation number (Sau & Mahesh 2007). The presence
of crossflow changes the mixing and entrainment characteristics completely. As shown
above, three different flow regimes exist depending on the velocity ratio and stroke
ratio. The different entrainment mechanisms of these three flow regimes are studied
below.
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FIGURE 14. Instantaneous scalar contours on the symmetry plane for a vortex ring in crossflow
with r =6 and L/D of (a) 2 and (b) 6. Note the asymmetry in the scalar concentration in the
case of small stroke ratio, and the enhanced downstream mixing for the case of large stroke
ratio.

4.1. Velocity ratio > 2

Figures 14(a) and 14(b) show scalar contours in crossflow of r =6 for vortex rings
with stroke ratio 2 and 6 respectively. Distinctly different mixing and entrainment
behaviour can be observed. For the single vortex ring shown in figure 14(a), the
scalar mixing is similar to that in the absence of crossflow. The vortex ring entrains
the ambient fluid during its formation. The entrained fluid is mixed with the nozzle
fluid inside the core and some of the fluid from the boundary of the vortex ring
is deposited behind the ring as the ring propagates. The crossflow introduces an
asymmetry between the cores of the ring. Figure 14(a) suggests that the core on the
upstream side is more mixed than on the downstream side of the ring. This asymmetry
in scalar mixing can be attributed to the deformation of the ring as explained in §3.1.1.

For large stroke ratios, scalar contours in figure 14(b) clearly show that the mixing
on the downstream side is enhanced significantly. This behaviour is similar to that
observed in jets in crossflow. As suggested by Muppidi & Mahesh (2008), when a jet
encounters a crossflow, the jet bends and the cross-section of the jet deforms. This
creates a high pressure gradient directed towards the jet on the downstream side. This
pressure gradient drives the flow toward the jet and causes the jet to entrain more
fluid on the downstream side rather than the upstream side. Similar flow features
are observed in the present case. Figure 15 shows an iso-surface of vorticity along
with three-dimensional streamlines for L/D =6 and »=6. The iso-surface shows
the structure of the ring along with the trailing column. It is interesting to observe
the streamlines and the deformation of the trailing column cross-section on the
downstream side. The streamlines clearly show that crossflow fluid goes around the
trailing column and is entrained from the downstream side into the trailing column
and ring. This downstream entrainment is further enhanced by the low pressure in
the core of the vortex ring. This behaviour is in contrast to that in the absence
of crossflow where the trailing column does not significantly contribute to overall
mixing.

Is there an optimal length of trailing column? For low stroke ratios (no trailing
column or a very small one), enhancement due to downstream entrainment is absent.
On the other hand, for very large stroke ratios, the leading ring would be far away
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FIGURE 15. Iso-surface of vorticity along with some three-dimensional streamlines for
L/D =6 and r =6. The streamlines show the downstream entrainment of the crossflow fluid.

®)

FIGURE 16. Contours of pressure gradient magnitude (|Vp|) at different times: (a) t* =3.7,
(b) t*=5.0, (c) t* =7.0. Note that the pressure gradient magnitude around the downstream of
the trailing column is maximum around ¢* =5.0.

from the high-pressure region downstream of the trailing column and would not
contribute to enhance the downstream pressure gradient.

4.1.1. Optimal downstream pressure gradient

In order to obtain the optimal length of trailing column, the variation of pressure
gradient magnitude with the length of the trailing column is computed for velocity
ratio 3. Figure 16 plots the contours of pressure gradient magnitude (|Vp]|) in the
symmetry plane at different time instants. The figure shows that a high pressure
gradient magnitude (denoted by |Vp|,.) is created on the downstream side of the
trailing column. Note that |V p|,, increases till approximately " = 5.0, following which
it decreases. So, for optimal downstream entrainment, the length of the trailing column
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FIGURE 18. Instantaneous scalar contours on the symmetry plane for r=1 and L/D of
(a) 3 and (b) 5.

should be at stroke ratio equal to 5. The effect of the leading ring on the downstream
pressure gradient is shown in figure 17. The downstream side of the trailing column is
enlarged to show the pressure gradient vectors at two different time instants, chosen

when |Vp| is increasing. Note that the pressure gradient vectors rotate towards the
right, in the direction of the leading vortex ring.

4.2. Velocity ratio < 2

Recall that for very low velocity ratio, a hairpin structure forms instead of a vortex
ring, and that a series of hairpins is shed downstream for large stroke ratios.
Figures 18(c) and 18(d) show the scalar contours in the symmetry plane for hairpin
structures at r =1 for stroke ratios of 3 and 5 respectively. It is immediately apparent
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(b)

Streamline

FIGURE 19. Entrainment by hairpin vortex legs. (a) Scalar contour lines on a spanwise
cross-section of the hairpin legs at x =1.9. (b) The corresponding scalar contours on the
spanwise plane along with some in-plane streamlines. (¢) Spanwise velocity (w/D) and scalar
concentration (C/Cy) profiles along a line passing through one of the cores of the hairpin legs
on the spanwise plane.

that the mixing behaviour is quite different from that observed at high velocity ratios.
These differences are discussed in detail below.

4.2.1. Entrainment by hairpin legs

Figure 19(a) shows the hairpin structures for L/D =5 at r =1 along with scalar
contour lines on a spanwise plane at x/D =1.9. A streamline emanating from near
the nozzle exit is also shown. Figure 19(b) shows scalar contours in the spanwise
plane (x/D =1.9) which cuts the counter-rotating legs of the hairpin, and some
instantaneous streamlines around one of the hairpin-leg cores. A very low-pressure
region is created at the core. The resulting pressure gradient causes the crossflow
fluid around the legs to be entrained. This entrainment could also be explained as
Biot-Savart induction by the vortex cores in the hairpin legs. The streamlines in figure
19(b) show this entrainment of crossflow fluid by the hairpin legs. To further illustrate
this behaviour, w-velocity and scalar concentration profiles are plotted in figure 19(c)
along a line passing through one of the cores of the hairpin legs on the spanwise
plane at x/D =1.9. The figure shows large levels of w-velocity near the vortex core
close to the wall. The scalar concentration of the fluid with strong w-velocity is close
to zero, indicating crossflow fluid. An interesting point to note here is that the scalar
contours due to the counter-rotating hairpin legs in the spanwise plane appear similar
to those of the counter-rotating vortex pair (CVP), observed in a jet in crossflow,
although in the present case, a CVP does not exist.
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FIGURE 20. (a) Variation of volume of scalar-carrying fluid with time for different stroke
ratios and r=3: —— —, L/D=2.0; — -« —, L/D=3.6; , L/D=15.0. (b) The rate of
change of scalar volume after formation against the stroke ratio for r =3 (A). The results for
the vortex rings in the absence of crossflow are also shown (o). The vertical line denotes the
formation number. The dot-dashed line shows the linear dependence for stroke ratios less than
the formation number in the absence of crossflow. (¢) Percentage increase in the rates due to
crossflow are plotted against the stroke ratio. Note that the percentage increment is maximum
around L/D =5.

4.3. Rate of Mixing

The mixing is quantified by computing the rate of change of total volume of scalar
after formation. The procedure is similar to that followed by Sau & Mahesh (2007)
for vortex rings without crossflow. Figure 20(a) shows the total volume of scalar-
carrying fluid (V,.) plotted against non-dimensional time (¢*) for different stroke
ratios and a velocity ratio of 3. V,. is computed as the sum of all volume elements
which have scalar concentrations above a threshold value (set to 0.01) in the domain
above the nozzle exit plane (y/D > 0). The slopes of these volume curves after the
formation of the ring yield the rate of change of total volume of scalar-carrying
fluid. The rates are shown in Figure 20(b) along with the results for rings without
crossflow. The figure suggests that the crossflow enhances the mixing in each of the
cases, but the enhancement is much higher for larger stroke ratios. This is due to the
enhanced downstream entrainment by the trailing column. The percentage increase
in entrainment rate for each stroke ratio is shown in figure 20(c). For a stroke ratio
of 2, the rate of volume change increases only about 20%. The increase is about 40%
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andr=1:—,L/D=30;———,L/D=40; —-—, L/D=5.0;-----+-- ,L/D=6.0; ———,
L/D=17.0; — - —, L/D =28.0. Note that the slope of the volume curve after formation is
almost the same for all stroke ratios.

for stroke ratio of 3 and about 70% for stroke ratio 4.5. The percentage increase in
rate appears optimal around a stroke ratio of 4.5, which is consistent with optimal
downstream pressure gradient.

The behaviour for low velocity ratios is different. Figure 21 shows the total volume
of scalar-carrying fluid for different stroke ratios and » = 1. Note that the slopes of
the curves after formation are nearly equal. The rate of change of V. in this case is
therefore nearly the same at all stroke ratios. This behaviour is due to the formation
of hairpin structures at low velocity ratios. As shown earlier, periodic hairpin vortices
are generated at all stroke ratios. Therefore this regime does not have an optimal
stroke ratio which maximizes entrainment of crossflow fluid.

5. Summary: a global classification map

Vortex rings in crossflow can be classified into three different regimes with
differing flow structures, mixing and entrainment characteristics. Figure 22 shows
these different regimes in the space of stroke ratio (L/D) and velocity ratio (r).
This ‘global classification map’ includes the transition curve for r > 2. The transition
curve defines the transition from a discrete vortex ring (upstream tilting) to a vortex
ring with a trailing column (downstream tilting). As the velocity ratio approaches
very high values, the flow field approaches a vortex ring in stationary fluid, and
consequently, the transition stroke ratio approaches the ‘formation number’. Again,
as the stroke ratio increases toward very large values, the flow field approaches a jet in
crossflow. The regime to the right of the transition curve is characterized by enhanced
downstream entrainment due to the trailing column structure, and, for a particular
velocity ratio, there is an optimal length of the trailing column. For velocity ratio
less than approximately 2, complete vortex ring structures do not form. This regime
is characterized by the formation of hairpin-like vortex structures.

The global classification map has important implications. It categorizes the complete
space of velocity ratio and stroke ratio into three different regimes. A desired flow
feature can be attained by choosing the corresponding parameter from the map.
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Consider pulsation of the jet as a means to control jets in crossflow. A pulsed jet
generates a series of vortex rings. The equivalent stroke ratio of each vortex ring
can be easily derived from the pulsing parameters (e.g. Strouhal number, duty cycle,
waveform). For example, the equivalent stroke ratio is the inverse of Strouhal number
for a fully modulated pulsed jet with 50% duty cycle and square waveform. Thus, for
a fixed crossflow, the pulsing parameters can be chosen from the map according to
the desired flow structure and entrainment characteristics.
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