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The sources of wall-pressure fluctuations in turbulent channel flow are studied using
a novel framework. The wall-pressure power spectral density (PSD) (φpp(ω)) is
expressed as an integrated contribution from all wall-parallel plane pairs, φpp(ω) =∫
+δ

−δ

∫
+δ

−δ
Γ (r, s, ω) dr ds, using the Green’s function. Here, Γ (r, s, ω) is termed the

net source cross-spectral density (CSD) between two wall-parallel planes, y = r and
y = s and δ is the half-channel height. Direct numerical simulation data at friction
Reynolds numbers of 180 and 400 are used to compute Γ (r, s, ω). Analysis of the
net source CSD, Γ (r, s, ω) reveals that the location of dominant sources responsible
for the premultiplied peak in the power spectra at ω+ ≈ 0.35 (Hu et al., AIAA J.,
vol. 44, 2006, pp. 1541–1549) and the wavenumber spectra at λ+ ≈ 200 (Panton
et al., Phys. Rev. Fluids, vol. 2, 2017, 094604) are in the buffer layer at y+ ≈ 16.5
and 18.4 for Reτ = 180 and 400, respectively. The contribution from a wall-parallel
plane (located at distance y+ from the wall) to wall-pressure PSD is log-normal in y+
for ω+> 0.35. A dominant inner-overlap region interaction of the sources is observed
at low frequencies. Further, the decorrelated features of the wall-pressure fluctuation
sources are analysed using spectral proper orthogonal decomposition (POD). Instead
of the commonly used L2 inner product, we require the modes to be orthogonal in an
inner product with a symmetric positive definite kernel. Spectral POD supports the
case that the net source is composed of two components – active and inactive. The
dominant spectral POD mode that comprises the active part contributes to the entire
wall-pressure PSD. The suboptimal spectral POD modes that constitute the inactive
portion do not contribute to the PSD. Further, the active and inactive parts of the
net source are decorrelated because they stem from different modes. The structure
represented by the dominant POD mode at the premultiplied wall-pressure PSD peak
inclines in the downstream direction. At the low-frequency linear PSD peak, the
dominant mode resembles a large scale vertical pattern. Such patterns have been
observed previously in the instantaneous contours of rapid pressure fluctuations by
Abe et al. (2005, Fourth International Symposium on Turbulence and Shear Flow
Phenomena, Begel House Inc.).
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1. Introduction
In a turbulent flow, wall-pressure fluctuations excite flexible structures. The

fluctuations’ spatio-temporal features determine their relation to the far-field sound
radiation resulting from the structural excitation. Pressure fluctuations in an incom-
pressible flow are governed by the Poisson equation,

−
∂2p
∂xi∂xi

= 2ρ
∂Ui

∂xj

∂u′j
∂xi
+ ρ

∂2

∂xi∂xj

(
u′iu
′

j − u′iu′j
)
, (1.1)

with appropriate boundary conditions. Here, p is the fluctuating pressure, ρ is the
constant fluid density and Ui and u′i are the mean and fluctuating components of the
flow velocities, respectively. The linear and quadratic (in fluctuation) source terms in
the above equations are called the rapid and slow terms, respectively (Pope 2001). The
Poisson equation implies that the pressure fluctuation is a global quantity, meaning
that the velocity at every point in the domain affects p at every point. This makes
it harder to use arguments that are based on local length and velocity scale (that
work reasonably well for local mean and fluctuating velocities) to analyse pressure
fluctuations.

Several experiments (Willmarth & Wooldridge 1962; Corcos 1964; Blake 1970;
Farabee & Casarella 1991; Gravante et al. 1998; Tsuji et al. 2007; Klewicki,
Priyadarshana & Metzger 2008) and numerical simulations (Kim 1989; Choi &
Moin 1990; Kim & Hussain 1993; Chang III, Piomelli & Blake 1999; Abe, Matsuo
& Kawamura 2005; Hu, Morfey & Sandham 2006; Jimenez & Hoyas 2008; Sillero,
Jiménez & Moser 2013; Park & Moin 2016; Panton, Lee & Moser 2017) have
studied the spatio-temporal features of wall-pressure fluctuation in turbulent boundary
layer and channel flows at different Reynolds numbers. Reviews by Willmarth (1975),
Bull (1996) and Blake (2017) summarize the features of wall-pressure fluctuations in
wall-bounded flows.

Farabee & Casarella (1991) measured wall-pressure fluctuations in a boundary
layer at friction Reynolds numbers Reτ = uτδ/ν ranging from 1000–2000, where
uτ =

√
τw/ρ is the friction velocity, δ is the boundary layer thickness, ν is the

kinematic viscosity of the fluid, τw is the wall-shear stress and ρ is the density of the
fluid. Non-dimensionalization of the power spectral density (PSD) based on ρ,Uo and
δ∗, where δ∗ is the displacement thickness of the boundary layer, yielded collapse of
the low-frequency region (ωδ/uτ < 5). The mid-frequency (5 < ωδ/uτ < 100) region
showed collapse with outer flow variables (uτ , δ, τw), but the high-frequency region
(ωδ/uτ > 0.3Reτ ) collapsed with inner flow variables (uτ , ν, τw). An overlap region
(100 < ωδ/uτ < 0.3Reτ ) showed collapse with both outer and inner flow variables.
Based on the wall-normal location associated with the corresponding non-dimensional
variable group, Farabee & Casarella (1991) hypothesized the dominant contribution to
the low-, mid- and high-frequency regions of the wall-pressure PSD to be from the
unsteady potential region (above the boundary layer), outer region and inner region
of the boundary layer, respectively.

Chang III et al. (1999) analysed the contribution of individual source terms to
wall-pressure fluctuation PSD using Green’s function formulation for Reτ = 180
channel flow. The contributions from the viscous sublayer, buffer, logarithmic and
the outer region to wall-pressure fluctuation wavenumber spectra were investigated
by computing partial pressures from sources located in the corresponding regions.
The buffer region contribution was seen to be the most dominant for both slow and
rapid terms over most of the wavenumber range. The logarithmic region was seen to
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Analysis of wall-pressure fluctuation sources from DNS 898 A17-3

contribute to the low wavenumbers through the rapid term. The viscous region was
observed to contribute only to the high wavenumbers through both rapid and slow
terms.

Panton et al. (2017) investigated wall-pressure fluctuations using direct numerical
simulation (DNS) datasets of turbulent channel flow at Reτ ranging from 180–5200.
The premultiplied wall-pressure streamwise wavenumber spectra showed a peak
around λ+1 ≈ 200–300. Here, λ+1 is the non-dimensional streamwise wavelength
based on inner units. Because the peak wavenumber scaled with inner units, Panton
et al. (2017) believed the location of the corresponding velocity sources to be in
the inner region of the channel. Further, with increasing Reynolds number, the low
wavenumber contribution was observed to increase in magnitude and separate from
the high-wavenumber contribution. Since the dominant low wavenumbers did not
scale with inner units, the corresponding velocity sources were believed to be in the
outer region of the channel. Hence, the outer region contribution to wall-pressure
becomes important at very high Reynolds numbers.

We investigate the decorrelated features of wall-pressure fluctuation sources in the
turbulent channel using spectral proper orthogonal decomposition (spectral POD).
Spectral POD was originally introduced by Lumley (2007) and recently analysed by
Towne, Schmidt & Colonius (2018) for its relation to dynamic mode decomposition
and resolvent analysis. It involves the eigendecomposition of the cross-spectral density
of the quantity of interest. The technique has been used previously (Schmidt et al.
2018) as a post-processing tool to infer wavepackets in axisymmetric jets. We use
this technique to obtain the decorrelated contribution from each wall-parallel plane
to wall-pressure fluctuation PSD. To our knowledge, this is the first work that uses
spectral POD to analyse wall-pressure fluctuation sources.

Unlike the methodology of Chang III et al. (1999), the proposed method takes
into account the wall-normal cross-correlation of the source terms and accounts for
the phase relationships between different wall-parallel planes. The contribution of
cross-correlation between sources in any two wall-parallel planes to wall-pressure
PSD is quantified as a function of frequency. Also, the collapse of the frequency
and wavenumber spectrum based on inner and outer flow variables as carried out in
Farabee & Casarella (1991) and Panton et al. (2017) do not yield such information
on the wall-normal distribution, insight into which can be obtained from the proposed
analysis. A ‘net source distribution function’ (also termed as ‘net source’ for brevity)
is defined which yields the integrated effect of all sources in a particular wall-parallel
plane. The cross-spectral density (CSD) of the net source function is computed
from the generated DNS database. The net source CSD when doubly integrated in
the wall-normal direction yields the wall-pressure PSD and, when singly integrated
yields the CSD between wall-pressure fluctuation and the net source. In addition to
the spectral features, spectral POD is used to identify the decorrelated contribution
from each wall-parallel plane. We present a parallel implementation of the analysis
framework that is streaming, thus enabling processing of large datasets.

The paper is organized as follows. We discuss the DNS simulation details in § 2.
The theory and implementation of the proposed analysis framework to investigate wall-
pressure sources is discussed in §§ 3.1 and 3.2, respectively. Finally, in § 4, we discuss
the spectral features of the net source function, the spectral POD results and their
relevance to wall-pressure fluctuation PSD using DNS data at Reτ = 180 and 400.

2. DNS simulation details
The incompressible Navier–Stokes equations are solved using the collocated finite

volume method of Mahesh, Constantinescu & Moin (2004) in a frame of reference
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898 A17-4 S. Anantharamu and K. Mahesh

Reτ Nx ×Ny ×Nz 1x+ 1z+ 1y+w 1y+c U+bref Tuτ/δ

180 720× 176× 330 4.7 3.4 0.27 4.4 15.8 8
400 1388× 288× 660 5.4 3.8 0.37 5.9 17.8 8

TABLE 1. Grid sizes, mesh spacing and velocity of the moving frame of reference used
in the DNS simulation.

moving with the bulk velocity of the fluid as done by Bernardini et al. (2013).
Better prediction of the convection velocities and high-wavenumber component of
the streamwise velocity fluctuations was observed by Bernardini et al. (2013) in
the moving frame of reference. We observed a slightly better prediction of the
high-frequency component of the wall-pressure frequency spectra with the moving
frame of reference formulation. The method is second-order accurate in space. We
use the Crank–Nicolson time integration scheme to ensure second-order accuracy in
time and to allow for larger time steps. The method uses a least-square cell-centred
pressure gradient reconstruction to ensure discrete kinetic energy conservation in
space. This ensures stability at large Reynolds number without adding numerical
dissipation.

We define the subscripts x, y and z to be the streamwise, wall-normal and
spanwise directions. The computational domain is a Cartesian box with side lengths
Lx = 6πδ, Ly = 2δ and Lz = 2πδ. A long streamwise domain was chosen to include
the large scale contribution within the domain. Also, the long domain eliminates
periodicity effects otherwise seen in low-frequency streamwise wavenumber frequency
spectra (not shown). The spurious high levels of the low-wavenumber region observed
in the results of Choi & Moin (1990) at low frequencies is not present in the current
simulation results (not shown). Table 1 shows the grid sizes (Nx,Ny,Nz) for Reτ = 180
and 400. The mesh is uniform in the streamwise and spanwise directions, and a
hyperbolic tangent spacing is used in the wall-normal direction with a stretching
factor of 2.07 for both Reτ . The mesh spacing in viscous units (1x+,1z+,1y+w ,1y+c )
is given in table 1, where 1y+w , 1y+c is the wall-normal mesh spacing at the wall and
at the centreline respectively. A superscript of + indicates non-dimensionalization
with respect to inner layer variables uτ and ν respectively. The resolution is sufficient
enough to resolve the near-wall fine scale features. The velocity of the moving frame
of reference (U+bref ) is chosen to be 15.8 and 17.8 for Reτ = 180 and 400 respectively.
These values are close to the actual bulk velocity in the stationary frame of reference.
A non-dimensional body force ( fxδ/ρu2

τ ) of 1 is applied in the streamwise direction
throughout the domain. A slip velocity equal to the negative of the frame velocity
is applied at the walls. Periodic boundary conditions are used in the streamwise and
spanwise directions. A time step of 5 × 10−4δ/uτ is used for both the simulations.
The flow is initially transient and subsequently reaches a statistically stationary state
when the discharge starts to oscillate around a mean value. The total simulation
time for both Reτ = 180 and 400 cases is 8δ/uτ after the initial transient period. We
sample the data every time step to compute wall-pressure statistics.

3. Analysis framework
3.1. Theory

We first write the solution to (1.1) using the Green’s function formulation. The
streamwise and spanwise extents are taken to be infinite and the frame of reference is
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Analysis of wall-pressure fluctuation sources from DNS 898 A17-5

assumed to be stationary. We use a zero normal derivative of the pressure fluctuation
as the boundary condition at the top and bottom walls. The Stokes component of
pressure arising from the non-zero wall-normal derivative of wall-pressure fluctuation
at the top and bottom wall has been shown to be negligible when compared to the
rapid and slow terms for high Reynolds number flows (Hoyas & Jiménez 2006;
Gerolymos, Sénéchal & Vallet 2013). The wall-normal coordinates of the top and
bottom wall are y=+δ and y=−δ respectively. The Fourier transform is defined as

g(t)=
∫
∞

−∞

ĝ(ω)eiωt dω; ĝ(ω)=
1

2π

∫
∞

−∞

g(t)e−iωt dt, (3.1a,b)

where ĝ(ω) is the Fourier transform of g(t). The pressure fluctuation

p(x, y, z, t)=
∫∫

∞

−∞

p̂(k1, y, k3, t)ei(k1x+k3z) dk1 dk3,

p̂(k1, y, k3, t)=
∫
+δ

−δ

G(y, y′, k1, k3)f̂ (k1, y, k3, t) dy′,

f̂ (k1, y, k3, t)=
1

(2π)2

∫∫
∞

−∞

f (x, y, z, t)e−i(k1x+k3z) dx dz,


(3.2)

where f (x, y, z, t) is the right-hand side source term in the Poisson equation (equation
(1.1)), p̂(k1, y, k3, t) and f̂ (k1, y, k3, t) denote the Fourier transform in the spanwise
and streamwise directions of p(x, y, z, t) and f (x, y, z, t) respectively, and the Fourier
transform p̂(k1, y, k3, t) is defined similar to f̂ (k1, y, k3, t) in the above equation. The
Green’s function G(y, y′, k1, k3) can be shown to be

G(y, y′, k1, k3)=


cosh(k(y′ − δ))cosh(k(y+ δ))

2ksinh(kδ)cosh(kδ)
, y 6 y′,

cosh(k(y′ + δ))cosh(k(y− δ))
2ksinh(kδ)cosh(kδ)

, y> y′,

k=
√

k2
1 + k2

3,

 (3.3)

for all combinations of k1, k3 except when both k1 = 0 and k3 = 0, for which we can
obtain

G(y, y′, k1, k3)=

{
1
2(y− y′), y 6 y′,
1
2(y
′
− y), y> y′.

(3.4)

In order to ensure uniqueness of the Green’s function when k= 0, we have made use
of the condition that the instantaneous average of the top and bottom wall-pressure
fluctuation is zero. The above Green’s function has been previously used by Kim
(1989) to obtain wall-pressure fluctuations from the Kim, Moin & Moser (1987)
simulation.

The wall-pressure fluctuation of a point (x, z) on the bottom wall is

p(x,−δ, z, t) =
∫∫

∞

−∞

p(k1,−δ, k3, t)ei(k1x+k3z) dk1dk3,

=

∫∫
∞

−∞

∫
+δ

−δ

G(−δ, y, k1, k3)f (k1, y, k3, t) dyei(k1x+k3z) dk1 dk3,
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898 A17-6 S. Anantharamu and K. Mahesh

=

∫
+δ

−δ

∫∫
∞

−∞

G(−δ, y, k1, k3)f (k1, y, k3, t)ei(k1x+k3z) dk1 dk3 dy,

=

∫
+δ

−δ

fG(x, y, z, t) dy, (3.5)

where fG(x, y, z, t) is termed the ‘net source’ because it includes contribution from all
sources in a wall-parallel plane and the Green’s function. It includes the contribution
from all streamwise and spanwise wavenumbers. The Green’s function essentially
assigns a weight to each wavenumber (k1, k3) component of the source in the
wall-parallel plane. Note that the function fG(x, y, z, t) is homogeneous in the
streamwise and spanwise directions.

In order to characterize the features of the net source function fG(x, y, z, t), the net
source CSD Γ (r, s, ω) is defined as

Γ (r, s, ω)=
1

2π

∫
∞

−∞

〈 f ∗G(x, r, z, t)fG(x, s, z, t+ τ)〉e−iωτ dτ . (3.6)

It can be related to the five-dimensional CSD ϕff (r, s, k1, k3, ω) of the pressure Poisson
source terms as

Γ (r, s, ω)=
∫∫

+∞

−∞

G∗(0, r, k1, k3)G(0, s, k1, k3)ϕff (r, s, k1, k3, ω) dk1 dk3, (3.7)

where

ϕff (r, s, k1, k3, ω) =
1

(2π)3

∫∫∫
+∞

−∞

〈 f ∗(x, r, z, t)f (x+ ξ1, s, z+ ξ3, t+ τ)〉

× e−i(k1ξ1+k3ξ3+ωτ) dξ1 dξ3 dτ . (3.8)

The PSD of the spatially homogeneous wall-pressure fluctuation φpp(ω) is related
to the net source CSD.

φpp(ω)=

∫
+δ

−δ

∫
+δ

−δ

Γ (r, s, ω) dr ds. (3.9)

In order to analyse the contribution from a particular wall-parallel plane at y= r, we
include its cross-correlation with every other wall-normal location y′= s by integrating
Γ (r, s, ω) along s.

Ψ (r, ω)=
∫
+δ

−δ

Γ (r, s, ω) ds. (3.10)

The resulting function Ψ (r, ω) can be shown to be the CSD of the wall-pressure
fluctuation and the net source at r, i.e.

Ψ (r, ω)=
1

2π

∫
∞

−∞

〈 f ∗G(x, r, z, t)p(x,−1, z, t+ τ)〉e−iωτ dτ . (3.11)

We will call Ψ (r,ω) the wall-pressure fluctuation – net source CSD. The wall-pressure
PSD can be expressed in terms of Ψ (r, ω).

φpp(ω)=

∫
+δ

−δ

Ψ (r, ω) dr. (3.12)
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Analysis of wall-pressure fluctuation sources from DNS 898 A17-7

Next, we identify decorrelated features in the dataset that contribute the most to
the wall-pressure PSD using Γ (r, s, ω). To accomplish this, we use the Poisson inner
product defined in (3.16) to enforce the orthonormality of the eigenfunctions instead
of the commonly used L2 inner product. We decompose Γ (r, s, ω) as

Γ (r, s, ω)=
∞∑

i=1

λi(ω)Φi(r, ω)Φ∗i (s, ω), (3.13)

where {λi(ω),Φi(r, ω)}∞i=1 are the spectral POD eigenvalue and mode pairs. The mode
Φi(r, ω) relates to the eigenfunction Φ̄i(r, ω) of Γ (r, s, ω) through the relation

Φi(r, ω)=
(
−(1− β)

∂2

∂y2
+ β

)
Φ̄i(r, ω), (3.14)

where β is a real number satisfying 0 < β 6 1 and the eigenfunctions are assumed
to satisfy zero Neumann boundary conditions Φ̄i(r, ω) at r = −δ and r = +δ. The
eigenvalue problem for Φ̄i(r, ω) and λi(ω) is∫

+δ

−δ

Γ (r, s, ω)Φ̄i(s, ω) ds= λi(ω)

(
−(1− β)

∂2

∂y2
+ β

)
Φ̄i(r, ω). (3.15)

The spectral POD eigenvalues are arranged in decreasing order. The eigenfunctions
Φ̄i(r, ω) satisfy the orthonormality condition

=

∫
+δ

−δ

Φ̄∗i (r, ω)
(
−(1− β)

∂2

∂y2
+ β

)
Φ̄j(r, ω) dr

= δij,

 (3.16)

where δij is the Kronecker delta. We will call the inner product above ‘the Poisson
inner product’ because the kernel (−(1−β)(∂2/∂y2)+β) can be related to the Poisson
equation. If we choose β = 1, then the Poisson inner product is the standard L2 inner
product.

The contribution of each spectral POD mode to wall-pressure PSD can be obtained
by integrating equation (3.13) in r and s,

φpp(ω)=

∞∑
i=1

γi(ω); γi(ω)= λi(ω)

∣∣∣∣∫ +δ
−δ

Φi(r, ω) dr
∣∣∣∣2 ; i= 1, . . . ,∞. (3.17a,b)

In the above equation, the wall-pressure PSD is expressed as sum of positive
contributions {γi(ω)}

∞

i=1 from each spectral POD mode. We will use the quantities
{γi(ω)}

∞

i=1 to identify the spectral POD modes that are the dominant contributors to
wall-pressure PSD.

The spectral POD modes and eigenvalues depend on the parameter β. For a chosen
value of β, we will have the corresponding set of spectral POD modes {Φi(y, ω)}∞i=1
and eigenvalues {λi(ω)}

∞

i=1. However, irrespective of the chosen β, the component of
the net source Fourier transform (f̂G(x, y, z, ω)) along the spectral POD modes will be
decorrelated, i.e.

fG(x, y, z, t)=
∫
+∞

−∞

f̂G(x, y, z, ω)eiωt dω,

f̂G(x, y, z, ω)=
∞∑

j=1

αj(x, z, ω)Φ∗j (y, ω),

〈αi(x, z, ω)α∗j (x, z, ωo)〉 = λi(ω)δijδ(ω−ωo),


(3.18)
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898 A17-8 S. Anantharamu and K. Mahesh

where {αj(x, z, ω)}∞j=1 are the coefficients, 〈·〉 denotes ensemble average and δ is the
Dirac delta function.

On the other hand, choosing the L2 inner product (β = 1) to enforce the
orthonormality of the modes will also optimally decompose the wall-normal integral
of the PSD Γ (r, r, ω). Substituting s= r in (3.13) and integrating in r, we obtain

Γ (r, r, ω)=
∞∑

j=1

λj(ω)|Φi(r, ω)|2,∫
+δ

−δ

Γ (r, r, ω) dr=
∞∑

j=1

λj(ω).

 (3.19)

However, the dominant spectral POD modes obtained with the L2 inner product do
not necessarily isolate the main contribution to the wall-pressure PSD. i.e. the value of
γi(ω). That is, the wall-pressure PSD can be distributed over a large number of modes
that each individually contribute a small fraction. This makes it difficult to identify the
few dominant decorrelated source patterns. Further, the single dominant wall-pressure
mode (mode with largest γi(ω)) does not necessarily contain any useful information
about the source because it contributes only a small fraction to the wall-pressure PSD.
This was observed at low frequencies (see figure 16).

Our goal is to identify useful decorrelated features of the wall-pressure source,
not to optimally decompose the integrated net source PSD (as done by the L2 inner
product). Therefore, we use the parameter β to our advantage and select a suitable
value for β.

For 0<β < 1, it can be shown that the Poisson inner product optimally decomposes∫ ∫
+δ

−δ
G(s, r, β/(1− β), 0)/(1− β)Γ (r, s, ω) dr ds into the sum of spectral POD

eigenvalues,

∫∫
+δ

−δ

G
(

s, r,
β

1− β
, 0
)

1− β
Γ (r, s, ω) dr ds=

∞∑
j=1

λj(ω), (3.20)

where the Green’s function G is given in (3.3). We can observe that as β approaches
0, the Green’s function G(r, s, β/(1−β), 0) becomes flatter and approaches a function
that is constant in r and s. Thus, the left-hand side in the above equation approaches
the wall-pressure PSD φpp(ω)=

∫∫
+1
−1 Γ (r, s, ω) dr ds (up to a scaling). As we decrease

β, we can therefore expect the dominant spectral POD modes to be the dominant
contributors to wall-pressure PSD. Therefore, the Poisson inner product in (3.16)
identifies the few dominant features of wall-pressure sources that are decorrelated.

The Poisson inner product defined in (3.16) does not fall into the category presented
by Towne et al. (2018). They required the eigenfunctions to be orthonormal in a
weighted L2 inner product. Here, we use the Poisson inner product (3.16) that has
a symmetric positive definite kernel.

The set of spectral POD modes obtained with any β is complete. Therefore, we can
relate the POD modes obtained with two different values of β to each other through
a linear transformation. That is, if {Φ̂i(y, ω)}∞i=1 and {Φ̃i(y, ω)}∞i=1 are the two sets of
spectral POD modes obtained with two different values of β, then

Φ̂i(y, ω)=
∑

j

C∗ij(ω)Φ̃j(y, ω), (3.21)
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Analysis of wall-pressure fluctuation sources from DNS 898 A17-9

where the matrix C(ω) = [Cij(ω)] is the linear transformation. Further, we show
in appendix B that the linear transformation C(ω) is indeed orthogonal with an
appropriate row scaling, i.e.

(Λ̂1/2(ω)C(ω))HΛ̂1/2(ω)C(ω)= Λ̃(ω), (3.22)

where Λ̂(ω) and Λ̃(ω) are the diagonal matrices of eigenvalues of the set of modes
{Φ̂i(y, ω)}∞i=1 and {Φ̃i(y, ω)}∞i=1, respectively.

We can show that∣∣∣∣∫ +δ
−δ

Φi(y, ω) dy
∣∣∣∣= ∫ +δ

−δ

|Φi(y, ω)| cos( 6 Φi(y, ω)− 6 Φn
i (ω)) dy, (3.23)

where 6 Φn
i (ω)= 6 (

∫
+δ

−δ
Φi(y, ω) dy) and 6 denotes the phase of the complex number

that follows it. Using (3.23) in (3.17), we obtain

γi(ω)= λi(ω)

(∫
+δ

−δ

|Φi(r, ω)| cos(6 Φi(r, ω)− 6 Φn
i (ω)) dr

)2

; i= 1, . . . ,∞. (3.24)

From the above equation, we can observe that the eigenvalue, magnitude and
phase of the spectral POD mode, all play a role in determining its contribution
to wall-pressure PSD. Sources contained in wall-normal regions where the phase is
in the range |6 Φi(y, ω) − 6 Φn

i (ω)| < π/2 undergo destructive interference with the
sources contained in the region where π/2 < |6 Φi(y, ω) − 6 Φn

i (ω)| < π. Therefore,
the interference of the sources from different wall-normal regions represented by a
spectral POD mode plays a role in determining the net contribution to wall-pressure
PSD from the mode.

3.2. Implementation
The five-dimensional CSD ϕff (r, s, k1, k3, ω) defined in (3.8) contains all pertinent
information on velocity field sources from cross-correlation of two wall-normal
locations. However, computing the function is extremely memory intensive. For the
Reτ = 400 case, assuming 2000 frequencies, we would need ≈1220 TB to store ϕff .
We use a streaming parallel implementation procedure to compute the net source
CSD Γ (r, s, ω) that makes the computation feasible.

The source term in (1.1) is computed and stored from the DNS. The stored data are
divided into multiple chunks to compute the ensemble average in (3.8). For a given
chunk, the source terms are first converted to stationary frame of reference and then
Fourier transformed in x, z and t. The Fourier transforms are then used to update the
net source CSD. Details of the parallel implementation are provided in appendix A.

A total of 16 000 time steps are used to obtain the net source CSD Γ (r, s, ω) for
both Reτ . We sample the data every time step. The number of time steps in each
chunk is 2000 and 50 % overlap is used in time to increase statistical convergence.
The frequency resolution of the analysis is 1ωδ/uτ = 2π.

4. Results and discussion
First, we discuss the spectral features of the wall-pressure fluctuations obtained

from the finite volume solver. Then, the wall-pressure net source cross-spectral
density (wall-pressure fluctuation – net source CSD) and the dominant decorrelated
net source patterns obtained using spectral POD are discussed. For validation of the
current DNS, we refer the reader to appendix C.
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FIGURE 1. Wall-pressure fluctuation power spectra in (a) inner units and (b) premultiplied
form with inner units on x-axis.
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FIGURE 2. Wall-pressure fluctuation streamwise wavenumber spectra in (a) inner units
and (b) premultiplied form with inner units on x-axis.

4.1. DNS wall-pressure fluctuations
The one-sided PSD of the obtained Reτ = 180 and 400 wall-pressure fluctuations
scaled with inner variables is shown in figure 1(a). The streamwise wavenumber
spectra of the fluctuations at the two Reτ are shown in figure 2(a). Both the PSD and
wavenumber spectra at Reτ = 180 agree well with the results of Choi & Moin (1990).
The high-frequency region with ω+ = ων/u2

τ > 1, shows a small region of −5 decay
for the higher Reynolds number (Reτ = 400). The high-wavenumber region of the
wavenumber spectra plotted in figure 2(a) also shows a small region of −5 decay in
the region k+1 = k1ν/uτ > 0.1, for the Reτ = 400 case. The premultiplied power spectra
plotted in figure 1(b) for both Reτ show a peak at ω+p = 0.35. This peak at the same
frequency has been previously observed by Hu et al. (2006) for Reτ up to 1440.
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FIGURE 3. Diagnostic function to verify region of −5 slope in the Reτ = 400 (a) power
and (b) streamwise wavenumber spectrum. The dashed-dotted horizontal lines in (a) and
(b) indicate constant values of 0.42 and 2.53× 10−5, respectively.

Similar to the power spectra, the premultiplied streamwise wavenumber spectra in
figure 2(b) also show a peak at k+1 = k1ν/uτ at k+p = 0.027. This peak has also been
previously observed by Panton et al. (2017) for Reτ over the range 180–5000. The
wall-pressure fluctuation PSD computed from the net source CSD using (3.9) agrees
with that obtained directly from the solver (figure 1a) for both Reτ (not shown). We
will investigate the distribution of the net sources that give rise to this premultiplied
PSD peak in the next section.

To identify the range of −5 decay in the power and streamwise wavenumber
spectrum, we plot the diagnostic functions (ων/u2

τ )
5φpp(ω)u2

τ/(τ
2
wν) and (k1ν/uτ )5φpp

(k1)uτ/(τ 2
wν) in figures 3(a) and 3(b), respectively. The function is constant in the

range of −5 slope. The diagnostic function does not return a significant range of
frequency and wavenumbers that show −5 decay. We observe a constant value
(indicated by the dashed-dotted horizontal line) for only a very small range of
frequencies and wavenumbers. To observe the decay in a significant range, we
require higher Reynolds numbers.

The wall-pressure wavenumber spectra show a low-wavenumber peak around
k1δ≈ 3 for both Reτ = 180 and 400, respectively, when the y-axis is plotted in linear
coordinates (figure 4a). This corresponds to streamwise wavelengths λ1/δ of ∼2.
Such low-wavenumber peaks in the range kxδ ≈ 2.5–3.4 (λx/δ ≈ 1.8–2.4) have been
previously observed by Abe et al. (2005) and Panton et al. (2017) in a turbulent
channel for friction Reynolds numbers ranging from 180 to 5000. We observe the
corresponding low-frequency peak in the wall-pressure PSD at ωδ/uτ = 37.6 and
50.2 for Reτ = 180 and 400, respectively (shown in figure 4b). Later, we identify the
decorrelated fluid sources responsible for this low-frequency peak in the PSD using
spectral POD and relate this to the observations of Abe et al. (2005).

Figure 4(c) shows the spanwise wavenumber spectrum of the wall-pressure
fluctuations in inner units. The spectrum at Reτ = 180 agrees well with Choi &
Moin (1990). Therefore, the spanwise resolution is sufficient enough to resolve the
fine scale spanwise features of wall-pressure fluctuations.

4.2. Wall-pressure source distribution analysis
The wall-parallel plane that contributes the most to the wall-pressure PSD can be
determined from the real part of the wall-pressure fluctuation – net source CSD
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FIGURE 4. (a) Wall-pressure fluctuation streamwise wavenumber spectrum with linear
y-axis. (b) Wall-pressure fluctuation PSD with linear y-axis. (c) Wall-pressure fluctuation
spanwise wavenumber spectrum in inner units.

Ψ (y+, ω+) (defined in § 3.1). Figure 5(a) shows the wall-pressure fluctuation – net
source CSD in premultiplied form normalized by the root mean square (r.m.s.)
of the wall-pressure fluctuations (y+ω+Re(Ψ +(y+, ω+))/〈p2

〉
+); y+ is the distance

from the wall in viscous units. The coordinates (ω+p , y+p ) of the peak value in the
contours are (0.35, 16.5) and (0.35, 18.4) for Reτ = 180 and 400, respectively. The
frequency coordinate of the peak in the contour levels (ω+ = 0.35) is the same as
the premultiplied power spectrum peak location shown in figure 1(b). Therefore, the
corresponding wall-normal coordinate yields the location of the wall-parallel plane
that contributes the most to the premultiplied power spectrum peak. Specifically,
it is the cross-correlation with this dominant plane that contributes the most. This
coincidence is not surprising since integrating figure 5(a) in the wall-normal direction
yields figure 1(b) (normalized by 〈p2

〉). The wall-normal coordinate of the peak
indicates that it is the correlations with the buffer region that contribute the most to
the wall-pressure PSD at the Reynolds numbers considered.

Even though the peak location differs slightly in inner units for the two Reτ , the
main implication of this result is that the peak lies in the buffer region. Further, we
cannot expect the same location of the peak for both Reτ . This is because the real part
of the peak wall-pressure fluctuation – net source CSD includes the contribution from
the correlations with the rest of the channel (since Ψ (y+p ,ω)=

∫
+δ

−δ
Γ (y+p , y

′,ω) dy′) and
not just the inner layer. Therefore, the peak need not necessarily scale in inner units.
We believe that changing the Reynolds number would not affect this main finding. We
expect the peak value of wall-pressure fluctuation – net source CSD to still occur in
the buffer layer.
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FIGURE 5. (a) Real part of premultiplied wall-pressure fluctuation – net source CSD
(y+ω+Re(Ψ (y+, ω+))/〈p2

〉) for Reτ = 400 (black solid lines with filled contours with
colour map C1) and 180 (line contours with colour map C2). Contour lines are 20
equally spaced values between 4× 10−4 and 2× 10−1. (b) Premultiplied net source PSD
(y+ω+Γ (y+, y+,ω+)/〈Γ 2

〉) for Reτ =400 (black solid lines with filled contours with colour
map C1) and 180 (line contours with colour map C2). Contour lines are 20 equally spaced
values between 4× 10−5 and 5× 10−2.

The phase difference between the wall-pressure and the dominant net source
obtained from the argument of Ψ (y+p , ω

+

p ) is 0.013π and 0.016π for Reτ = 180 and
400 respectively, is very small. Hence, the dominant net sources and the wall-pressure
fluctuation are in phase with each other. The contour levels of the normalized
wall-pressure fluctuation – net source CSD plotted in figure 5(a) almost overlap in
the range ω+> 0.3∼ 10−0.5. This indicates that the high-frequency contribution to the
r.m.s. scales in inner units. However, in the near-wall region (y+< 10), the overlap in
the contours is observed for a much larger frequency range ω+ > 0.16∼ 10−0.8. This
implies that for most of the frequency range, the contribution to wall-pressure PSD
from the near-wall region scales in inner units.

Next, we investigate whether the net source PSD can be used to infer the location
of the dominant source of wall-pressure fluctuation instead of the wall-pressure
fluctuation – net source CSD. Figure 5(b) shows the contours of the premultiplied net
source PSD Γ (y+, y+, ω+) in fractional form for both Reτ . The main contribution to
the net source PSD is seen to be from the region around y+ ≈ 30 and at frequencies
much lower than ω+ ≈ 0.35. There is no signature of the distinct premultiplied
peak observed in figure 5(a). From visual inspection at low frequencies (ω+ < 1),
the shape of the contours in figure 5(b) do not have similar shape to those in
figure 5(a). However, at high frequencies ω+ > 1, we observe from figure 6(a,b)
that the contour shapes near the wall (y+ < 30) are almost identical. Therefore, the
net source PSD Γ (y+, y+, ω+) is a good proxy for wall-pressure fluctuation – net
source CSD Ψ (y+, ω+) at high frequencies to obtain the pattern of the net sources.
The reason for this behaviour can be understood from the near-wall contours of the
real part of the net source CSD shown in figure 7. Figures 7(a) and 7(b) show the
contours at frequencies ω+= 0.35 and ω+= 1, respectively, for Reτ = 180. Clearly, the
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FIGURE 6. (a) Real part of the high-frequency premultiplied wall-pressure fluctuation –
net source CSD (y+ω+Re(Ψ (y+, ω+))/〈p2

〉) for Reτ = 400 (black solid lines with filled
contours with colour map C1) and 180 (line contours with colour map C2). Contour
lines are 20 equally spaced values between 4 × 10−5 and 2 × 10−2. (b) High-frequency
premultiplied fractional net source power spectral density y+ω+Γ (y+, y+, ω+)/〈Γ 2

〉 for
Reτ = 400 (black solid lines with filled contours with colour map C1) and 180 (line
contours with colour map C2). Contour lines are 20 equally spaced values between 4×
10−6 and 2× 10−2.
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FIGURE 7. Real part of Γ (r, s, ω) (normalized by φpp(ω)) at (a) ω+≈0.35 and (b) ω+≈1
for Reτ = 180.

low-frequency (ω+ = 0.35) contours show a large negatively cross-correlated region
around (y+, y′+)= (5, 15) (shown by white boxes). These dominant negative regions
found at low frequencies contribute to the wall-pressure fluctuation – net source
CSD (3.10) leading to different shapes compared to the net source PSD. However,
such negative regions are not present at the higher frequency ω+ = 1. Therefore, the
wall-pressure fluctuation – net source CSD and the net source CSD have similar
shapes near to the wall at high frequencies.

The wall-pressure fluctuation – net source CSD (normalized with wall-pressure
PSD) is plotted in premultiplied form for selected frequencies between ω+ = 0.35
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FIGURE 8. (a) Premultiplied wall-pressure fluctuation – net source CSD
(y+Ψ +(y+, ω+)/φ+pp(ω

+)) at different frequencies for Reτ = 180 (empty markers)
and 400 (filled markers). (b) Comparison of fitted log-normal Gaussians (filled markers)
to the wall-pressure fluctuation – net source for Reτ = 400 (empty markers). (c) Variation
of mean µ(ω+) and (d) standard deviation σ(ω+) of the fitted log-normal profile for
Reτ = 400. 6, f: ω+ ≈ 0.35, C, s: ω+ ≈ 0.5, E, u: ω+ ≈ 0.7, A, q: ω+ ≈ 1, @, p:
ω+ ≈ 2.

and ω+= 2 in figure 8(a). Due to the normalization, each profile has unit area under
it. From the figure, we can observe that the curves for Reτ = 180 and 400 are very
close to each other for the different frequencies plotted. Further, visual inspection
shows that we can model the profiles using log-normal function in y+. Therefore,
normalized log-normal profiles of the form

f (y+, ω+)=
1

σ(ω+)
√

2π
exp

(
−

(
ln(y+)−µ(ω+)
√

2σ(ω+)

)2
)

(4.1)

are fitted to the Reτ = 400 data for different ω+ using a nonlinear least squares fit and
plotted in figure 8(b).

The mean and standard deviation of the fitted log-normal curves characterize the
location and the width of the dominant net source respectively as a function of
frequency. The correlation between the planes contained in this width have a sizeable
contribution to wall-pressure PSD. Figures 8(c) and 8(d) show the mean (µ(ω+))
and standard deviation (σ(ω+)) as a function of frequency respectively. We define
the location of the dominant net source y+p (ω

+) as y+p (ω
+) = exp(µ(ω+)). From

figure 8(c), we observe that the location of the dominant net source moves closer to
the wall with increase in frequency through a power law dependence y+p ∼ (ω

+)m. The
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FIGURE 9. (a) Variation of Cα(ω
+) for Reτ = 400. (b) Partial wall-pressure fluctuation

spectra from sources that extend from the wall to a particular y+ for Reτ = 180 and 400
in near-wall region. The vertical solid, dashed, dash-dotted lines denote y+= 30, y/δ= 0.2
for Reτ = 180 and y/δ = 0.2 for Reτ = 400, respectively. The horizontal dash-dotted line
denotes partial contribution equal to 1.

value of m depends on the frequency range. In the low (−1.5 < ln(ω+) < 0.5), mid
(−0.5< ln(ω+) < 0) and high (ω+> 1) frequency range, the value of the exponent m
is larger than −0.5, equal to −0.5 and smaller than −0.5 respectively.

Figure 8(d) shows that the standard deviation of the log-normal profiles decreases
with increasing frequency. We use the standard deviation profile to show that for ω+>
e−1, the width of the dominant net source is proportional to its location. We define
the wall-normal width of the net source 1y+(ω+; α, σ ) as

1y+(ω+; α, σ )= y+max(ω
+
; α, σ )− y+min(ω

+
; α, σ ), (4.2)

where y+max, y+min and y+p are related as

ln(y+max(ω
+
; α, σ ))− ln(y+min(ω

+
; α, σ ))= 2ασ(ω+),

ln(y+p (ω
+))− ln(y+min(ω

+
; α, σ ))= ασ(ω+).

}
(4.3)

The parameter α is the proportion of the standard deviation used to define the width of
the net source. Using the above expressions, the width 1y+(ω+; α, σ ) can be shown
to be

1y+(ω+; α, σ )=C(ω+; α, σ )y+p (ω
+),

C(ω+; α, σ )= (eασ(ω+) − e−ασ(ω+)).

}
(4.4)

The variation of Cα(ω
+) for α = 1, 2 using Reτ = 400 data is shown in figure 9(a).

The proportionality constant is observed to vary slowly for ω+> ln(−1). Hence, in this
frequency range, the width of the dominant net source is proportional to its location.

The contribution of the interaction between the net sources in the inner and overlap/
outer region to wall-pressure PSD can be investigated using the wall-pressure
fluctuation – net source CSD. Figure 9(b) shows the partial contribution (normalized
by the wall-pressure PSD)

∫ y+

0

∫ y+

0 Γ (r+, s+, ω+)/φpp(ω
+)dr+ds+ from the net sources

contained between the wall and a given y+ for two selected frequencies. At the
low-frequency wall-pressure linear PSD peak (which is ωδ/uτ =37.6 and ωδ/uτ =50.2
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Analysis of wall-pressure fluctuation sources from DNS 898 A17-17

for Reτ = 180 and 400, respectively), we observe that the partial contribution first
increases and then decreases. However, a monotonically increasing behaviour is
observed for the high frequency. In order to investigate the implication of the
non-monotonic low-frequency behaviour, we split the domain 0 < y/δ < 1 into an
inner region 0< y+ < 30, an outer/overlap region 30< y+ < Reτ . The contribution to
wall-pressure PSD from sources within y/δ = 1 can then be accordingly split as∫ Reτ

0

∫ Reτ

0

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+

=

∫ 30

0

∫ 30

0

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+ +
∫ Reτ

30

∫ Reτ

30

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+

+ 2Re
(∫ 30

0

∫ Reτ

30

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+
)
. (4.5)

From figure 9(b), we observe that at the lower frequency, this contribution from
sources within y/δ = 1 is smaller than the inner region contribution

∫ 30
0

∫ 30
0

(Γ (r+, s+, ω+)/φpp(ω
+)) dr+ ds+. Therefore,∫ Reτ

30

∫ Reτ

30

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+ 6−2Re
(∫ 30

0

∫ Reτ

30

Γ +(r+, s+, ω+)
φpp(ω+)

dr+ ds+
)
.

(4.6)
Note the left-hand side of the above inequality is a positive real number. This
indicates that (i) the contribution from the cross-correlations between the inner and
the overlap/outer region dominates the contribution from the outer/overlap region
alone, (ii) the phase difference between the net sources in these two regions is
predominantly in the range π/2 to π or −π to −π/2. In other words, a positive (or
negative) low-frequency event in the near-wall region is predominantly correlated with
a negative (or positive) low-frequency event in the overlap/outer region. Therefore, the
observed non-monotonic behaviour at low frequencies implies a dominant interaction
between the net sources in the inner and outer regions of the channel at such
frequencies. Such inner–outer interaction at long streamwise wavelengths has been
previously observed for the streamwise velocity fluctuations by Del Álamo & Jiménez
(2003) and Morrison (2007), and is the reason for the mixed scaling (De Graaff &
Eaton 2000) of the streamwise velocity r.m.s. peak in wall-bounded flows.

We further investigate the fractional contributions of the wall-pressure sources in
the inner (y+ < 30), overlap (30 < y+ < 0.2Reτ ) and outer regions (0.2 < y/δ <
1) and their cross-correlations to the wall-pressure PSD by splitting

∫ Reτ
0

∫ Reτ
0

(Γ (r+, s+, ω+)/φpp(ω
+)) dr+ ds+ into the sum,∫ Reτ

0

∫ Reτ

0

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+ =
∫ 30

0

∫ 30

0

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+︸ ︷︷ ︸
C11

+

∫ 0.2Reτ

30

∫ 0.2Reτ

30

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+︸ ︷︷ ︸
C22

+

∫ Reτ

0.2Reτ

∫ Reτ

0.2Reτ

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+︸ ︷︷ ︸
C33
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Term Reτ = 180 Reτ = 400
ωδ

uτ
= 36.7 ω+ = 1

ωδ

uτ
= 50.2 ω+ = 1

C11 1.45 0.87 2.3 0.9
C22 0.67 0.02 3.03 0.04
C33 0.87 0.02 1.08 0.001
2Re(C12) −0.76 0.038 −3.65 0.06
2Re(C23) −0.44 0.005 −1.83 −0.003
2Re(C31) −0.76 0.039 0.09 0.0006

TABLE 2. Fractional contributions of the inner, overlap and outer regions to the
wall-pressure fluctuation PSD. For definitions of C11, C22, C33, C12, C23 and C31, see (4.7).

+ 2Re


∫ 30

0

∫ 0.2Reτ

30

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+︸ ︷︷ ︸
C12

+

∫ 0.2Reτ

30

∫ Reτ

0.2Reτ

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+︸ ︷︷ ︸
C23

+

∫ Reτ

0.2Reτ

∫ 30

0

Γ (r+, s+, ω+)
φpp(ω+)

dr+ ds+︸ ︷︷ ︸
C31

. (4.7)

Table 2 shows the value of each term on the right-hand side of the above equation at
the two Reτ for the same frequencies chosen in figure 9(b). For the lower frequency,
we observe that the magnitude of the contribution from the cross-correlations between
the regions is comparable to the contribution within the regions. However, at high
frequency, the contribution within each region dominates over the cross-correlation
between the regions. The real part of the cross-correlations is negative at the lower
frequency for Reτ = 180. As discussed in the previous paragraph, this implies that
the phase difference of the wall-pressure sources in the different regions lie in the
range π/2 to π or −π/2 to −π. For the higher Reτ , except the inner and outer
regions (2Re(C31)), the phase difference between all the other regions lies in the same
range as the lower Reτ . Overall, we observe that the cross-correlations between the
wall-pressure sources present in the inner, overlap and outer regions are important
contributors to the PSD at low frequency but not at high frequency.

Further, this framework can be used to identify the location of the dominant sources
that lead to the ω−1 behaviour of the wall-pressure PSD in the mid-frequency range
(observed at very high Reynolds numbers). Farabee & Casarella (1991) noted that the
ω−1 behaviour is responsible for the logarithmic dependence of the wall-pressure r.m.s.
on Reynolds number (Abe et al. 2005; Hu et al. 2006; Jimenez & Hoyas 2008).

4.3. Spectral POD of net source CSD
Before we investigate the spectral POD modes of the net source CSD, we first
examine the relevance of the modes to wall-pressure fluctuation. We can decompose
the wall-pressure fluctuation p(x, 0, z, t) at a typical point (x, z) on the wall by
expressing its Fourier transform p̂(x, 0, z, ω) (equation (3.5)) in terms of the spectral
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Analysis of wall-pressure fluctuation sources from DNS 898 A17-19

POD modes. We have

p(x, 0, z, t)=
∫
+∞

−∞

p̂(x, 0, z, ω)eiωt dω, (4.8)

p(x, 0, z, t)=
∫
+∞

−∞

(∫
+δ

−δ

f̂G(x, y, z, ω) dy
)

eiωt dω. (4.9)

We use the decomposition in (3.18) to express f̂G(x, y, z, ω) in terms of the spectral
POD modes and obtain

p(x, 0, z, t)=
∫
+∞

−∞

∞∑
j=1

αi(x, z, ω)
(∫

+δ

−δ

Φ∗j (y, ω) dy
)

eiωt dω. (4.10)

Rearranging the integral and writing Φj(y, ω) as |Φj(y, ω)|e−i6 Φj(y,ω), we obtain

p(x, 0, z, t)=
∫
+δ

−δ

∫
+∞

−∞

∞∑
j=1

αj(x, z, ω)|Φj(y, ω)|ei(−6 Φj(y,ω)+ωt) dω dy. (4.11)

The above equation expresses the wall-pressure fluctuation as a contribution from
each spectral POD mode. Recall that the individual contributions are decorrelated, i.e.
〈αi(x, z, ω)α∗j (x, z, ωo)〉 = λi(ω)δijδ(ω−ωo), where δ is the Dirac delta function. Note
that, since we integrate over all wavenumbers, the contribution of coherent structures
of all length scales is included.

The wall-normal phase velocity of the net sources represented by the ith spectral
POD mode can be quantified as a function of the wall-normal distance using the phase
6 Φi(y, ω). We define a local wall-normal phase velocity c+i (y+, ω+) in viscous units
as

c+i (y
+, ω+)=ω+/k+i (y

+, ω+), (4.12)

where the local wavenumber k+i (y+, ω+) is defined as k+i (y+, ω+)= ∂ 6 Φi(y+, ω+)/∂y+.
Note that a negative phase velocity indicates an enclosed wave travelling towards the
wall and vice versa. Also, this is similar to estimating the instantaneous frequency of
a temporal signal using Hilbert transform (Huang & Shen 2014).

We found that, for a wide range of frequencies, setting β (3.16) to 0.1 gives a
dominant spectral POD mode (Φ1) that contributes to all of the wall-pressure PSD
(see figure 10). This observation is consistent with the discussion after (3.20). Note
that the lowest frequency in figure 10 corresponds to the low-frequency peak in the
linear PSD. Also, ω+= 0.35 is the location of the premultiplied PSD peak. Therefore,
the dominant modes at these peak frequencies represent the decorrelated source
responsible for the peaks.

Further, the dominant mode represents the active part of the net source Fourier
transform (f̂G(x, y, z, ω)). It is active in the sense that it contributes to the entire
PSD. The remaining portion of f̂G(x, y, z, ω) is inactive in the sense that it does not
contribute to the wall-pressure PSD. The suboptimal spectral POD modes comprise
this inactive portion. Essentially, the contribution of the suboptimal modes from
different wall-normal locations undergo destructive interference resulting in zero net
contribution. Since the active and inactive parts of f̂G(x, y, z, ω) stem from different
modes, they are decorrelated.
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FIGURE 10. Fractional contribution of the first 20 spectral POD modes computed using
the Poisson inner product (β = 0.1) to the wall-pressure PSD for (a) Reτ = 180 and (b)
Reτ = 400 at different frequencies.

Separating the active and inactive parts of f̂G(x, y, z, ω) in (3.18), we have

f̂g(x, y, z, ω)= α1(x, z, ω)Φ∗1 (y, ω)+ I(x, y, z, ω),

I(x, y, z, ω)=
∞∑

j=2

αj(x, z, ω)Φ∗j (y, ω),

 (4.13)

where α1(x, z, ω)Φ∗1 (y, ω) and I(x, y, z, ω) are the active and inactive portions of
f̂G(x, y, z, ω), respectively. Correlating the two, we obtain

〈α∗1(x, z, ω)Φ1(r, ω)I(x, s, z, ωo)〉 =

∞∑
j=2

〈α∗1(x, z, ω)αj(x, z, ω)〉Φ1(r, ω)Φ∗j (s, ωo)

=

∞∑
j=2

λ1δj1Φ1(r, ω)Φ∗j (s, ωo) (using (3.18))

= 0. (4.14)

Therefore, both parts are decorrelated. Note that I(x, y, z, ω), the inactive part, is
orthogonal to the eigenfunction Φ̄∗1 (y, ω) (equation (3.15)) in the L2 inner product.
Decreasing β to even smaller values does not affect the mode shape or the eigenvalues
for the frequencies in figure 10.

Since we use a Poisson inner product, the dominant spectral POD mode need not
be energetically dominant. In other words, it need not contribute the most to the
integrated net source PSD (

∫
+δ

−δ
Γ (r, r, ω) dr). Figure 11 shows this behaviour for low

frequencies. In the figure, λ̄j(ω) = λj(ω)|
∫
+δ

−δ
Φj(y, ω) dy|2 is the contribution of the

jth mode to the integrated PSD. We observe that the fractional contribution of the
dominant mode increases with frequency. At ω+=1, the dominant spectral POD mode
is the energetically dominant mode.

Figure 12 shows the wall-normal variation of the envelope and phase of the
dominant mode at the premultiplied spectrum peak ω+ = 0.35 and a few higher
frequencies ω+ = 0.5, 0.7 and 1. The dominant modes have a similar shape in
inner units for both Reτ . Its envelope (figure 12a,c) represents sources confined near
the wall with intensities peaking in the buffer layer. With increasing frequency, the
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FIGURE 11. Fractional contribution of the first 20 spectral POD modes computed using
the Poisson inner product (β = 0.1) to the integrated net source PSD for (a) Reτ = 180
and (b) Reτ = 400 at different frequencies.
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FIGURE 12. Envelope (a,c) and phase (b,d) of the dominant spectral POD mode computed
using the Poisson inner product (β= 0.1) for a few selected high frequencies. Panels (a,b)
and (c,d) are for Reτ = 180 and 400, respectively. The left and right dashed black solid
line in (b,d) indicate 6 Φi(y+, ω+)− 6 Φn

i (ω
+) equal to −π/2 and π/2, respectively.

wall-normal location of the peak moves closer to the wall, and the width of the
envelope decreases. This behaviour of the dominant mode is consistent with that
of the wall-pressure fluctuation – net source CSD. The phase (figure 12b,d) of the
dominant mode varies between −π/2 and π/2. Therefore, the contributions from
different wall-normal locations undergo constructive interference. Further, the phase
variation is almost linear with a negative slope, at least around the envelope peak.
The negative slope indicates that the envelope encloses a wave travelling towards the
wall.

Figures 13(a) and 13(b) show the magnitude and phase, respectively, of the
dominant spectral POD mode at the low-frequency linear PSD peak (figure 4).
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FIGURE 13. Envelope (a) and phase (b) of the dominant spectral POD mode computed
using the Poisson inner product at the low-frequency linear PSD peak. Panels (c,d) show
the normalized wall-normal contribution of the dominant mode to the wall-pressure PSD
in inner and outer units, respectively.

Recall that the frequencies are ωδ/uτ = 37.6 for Reτ = 180 and 50.2 for Reτ = 400.
The envelope of the dominant mode peaks around y+ ≈ 15 for both Reτ . The phase
variation does not show any noticeable slope indicating that the different wall-normal
locations are in phase with each other, at least around the envelope peak.

In figures 13(c) and 13(d), we show the wall-normal contribution of the dominant
mode to the wall-pressure PSD in inner and outer units, respectively. The curves are
normalized to obtain unit integral along the y-axis. The contribution peaks at y+ ≈
15 for both Reτ . Also, figure 13(c) shows a negative contribution close to the wall
for Reτ = 400 that is not present for Reτ = 180. We observe that the region y+ >
30 contributes more for the higher Reynolds number, signifying an increase in the
outer region contribution. Further, from figure 13(d), we observe that the width of this
dominant source is around 0.25δ since the y-coordinate is significant for y < 0.25δ.
Overall, at the low-frequency PSD peak, the contribution from the dominant mode
peaks at y+ = 15, and its width is around 0.25δ.

We create a representative net source field that gives the two-dimensional structure
implied by a spectral POD mode. The representative field f̃G(x, y, z, t) implied by mode
Φj(y, ωo) at frequency ωo is constructed as

f̃G(x, y, z, t)= Re(α(x, z, ωo)e−i6 Φj(y,ωo)|Φj(y, ωo)|eiωot), (4.15)

where Re( f ) is the real part of f . Since α(x, z, ωo) is homogeneous in x and z,
we decompose it using the Fourier transform. Intuitively, we expect the streamwise
convective Fourier component e−iωox/co(ωo) of α(x, z, ωo) to be the most dominant
one. Here, co(ωo) is the convective velocity at frequency ωo. For simplicity,
we assume no spanwise variation of the representative net source. Substituting
α(x, z, ωo)= e−iωox/co(ωo) in the above equation, we obtain the representative field

f̃G(x, y, z, t)= Re(e−iωox/co(ωo)e−i6 Φj(y,ωo)|Φj(y, ωo)|eiωot). (4.16)
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FIGURE 14. Representative net source f̃G at the premultiplied spectrum peak (a,b) and the
linear spectrum peak (c,d). Panels (a,c) are for Reτ = 180, and (b,d) are for Reτ = 400.
Contours in (a,b) are 10 equally spaced values between the minimum and maximum of
f̃G. Contours in (c,d) are [±0.05 ± 0.1 ± 0.2 ± 0.5 ± 0.8] times the maximum value of f̃G.

To create the representative field at a frequency ωo, we need three inputs – the
mode Φj(y, ωo), the convection velocity co(ωo) and the time t. Figure 14 shows the
representative net source field constructed from the dominant spectral POD mode.
Figures 14(a,b) are at the premultiplied PSD peak frequency and figures 14(c,d)
are at the linear PSD peak frequency. We use a convection velocity defined as
co(ωo)/uτ = (ωoδ/uτ )/kp(ωo)δ, where kp(ωo) is the peak wavenumber coordinate at
frequency ωo in the wavenumber–frequency spectrum of wall-pressure. We choose
time t to be 0.

Figure 14(a,b) shows a convecting coherent structure inclined in the downstream
direction. Essentially, this is because of the negative slope in the phase of the mode.
As the inclined structures convect across a fixed streamwise location x+o , the wall-
normal intensity (magnitude of the field that depends on y and xo) propagates towards
the wall as indicated by the negative slope.

Figure 14(c,d) shows the coherent structure represented by the dominant POD mode
at the linear PSD peak. These structures are vertical, with almost no inclination in the
downstream direction, as indicated by almost no slope in the phase of the mode. Such
large scale vertical patterns with streamwise spacing of ∼2δ have been previously
observed in the instantaneous rapid pressure fields for Reτ ∼ 1000 by Abe et al.
(2005). They proposed that these patterns are responsible for the low-wavenumber
peak in the wall-pressure spectra. The coherent structures in figure 14(c,d) further
support this case.
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FIGURE 15. Spectral POD eigenvalues computed using the L2 inner product for (a)
Reτ = 180 and (b) Reτ = 400 at different frequencies.

Overall, the dominant spectral POD mode represents the active portion of the
net source that contributes to the entire wall-pressure PSD. The remaining POD
modes that comprise the inactive portion make zero contribution to the PSD. Further,
the active and inactive parts are decorrelated. At high frequencies (ω+ > 0.35), the
shape of the dominant POD mode is similar in inner units for the two Reτ . The
two-dimensional (2-D) coherent structure at the premultiplied PSD peak inclines in
the downstream direction. At the low-frequency linear PSD peak, the wall-normal
contribution peaks in the buffer layer at y+ ≈ 15 with a width of y/δ ≈ 0.25. The
corresponding 2-D structure has a large scale vertical pattern similar to the previous
observations of the instantaneous rapid pressure field by Abe et al. (2005).

We expect the similarity of the high-frequency dominant modes in inner units to
continue at even higher Reynolds numbers. In the low wavenumber/frequency wall-
pressure linear spectrum peak, the outer region (y+ > 30) contributes more for Reτ =
400 than for Reτ = 180. This low wavenumber/frequency peak is present in the linear
wall-pressure spectra up to Reτ = 5000 (Abe et al. 2005; Panton et al. 2017). With
increasing Reynolds number, we expect this contribution from the outer region to grow
larger. Further, at Reτ ≈ 5000, the low- and high-wavenumber contributions to the
premultiplied wall-pressure spectra show mild separation. We expect the spectral POD
modes responsible for the low-wavenumber peak to depend on outer units. Further,
high Reynolds number effects like amplitude modulation (Tsuji, Marusic & Johansson
2016) in the wall-pressure sources could be studied using the above spectral POD
framework.

4.3.1. Remark on spectral POD with the L2 inner product
We also performed spectral POD of the net source CSD using the L2 inner

product. Figure 15 shows the obtained eigenvalues for both Reτ . The eigenvalues give
the contribution of each POD mode to the wall-normal integral of the net source
PSD. The POD modes obtained with the L2 inner product, by definition, optimally
decompose the integral of the net source PSD. However, the dominant POD mode
might not contribute significantly to the wall-pressure PSD. Clearly, figure 16 shows
this behaviour for ω+ < 1.

To investigate this further, we plot the index of the POD mode that contributes
the most to the wall-pressure PSD as a function of frequency in figure 17. In the
frequency ranges 0.55<ω+< 1 and ω+> 1, the dominant wall-pressure mode (largest
γi(ω)) is the second and the first spectral POD mode, respectively. At low frequencies
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FIGURE 16. Contribution of the first 20 spectral POD modes computed using the L2 inner
product (normalized by the wall-pressure PSD) to wall-pressure PSD for (a) Reτ =180 and
(b) Reτ = 400 at different frequencies.
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FIGURE 17. Index of the spectral POD (computed using L2 inner product) that
contributes the most to the wall-pressure PSD for (a) Reτ = 180 and (b) Reτ = 400.

ω+ < 0.55, the dominant wall-pressure mode index is larger than or equal to 3. The
dominant spectral POD mode is not the dominant wall-pressure mode because of
destructive interference. The contributions of the dominant spectral POD mode from
different wall-normal regions cancel each other out. For more details, we refer the
reader to appendix D.

The magnitude and phase of the first two dominant spectral POD modes at a
high frequency of ω+ ≈ 1 are shown in figure 18. Note that, for this frequency, the
dominant spectral POD and wall-pressure modes coincide. Clearly, we observe that
the dominant modes resemble wavepackets. For both Reτ , the envelope and phase
of the wavepackets have a similar shape, which indicates similarity of the dominant
modes at high frequencies. The envelope shows that dominant modes correspond
to sources in the near-wall region (y+ < 30). The first and second dominant mode
envelopes have one and two lobes respectively (figure 18a,c). Since the slope of the
phase variation of both modes is negative near the wall (figure 18b,d), equation (4.12)
implies that these modes correspond to sources moving towards the wall.

Next, we investigate the first two dominant wall-pressure modes at ω+ = 0.35,
which together contribute approximately 50 % to the wall-pressure PSD in figure 19.
Note that the premultiplied spectrum peak occurs at this frequency (figure 1b). The
magnitude and phase variation shows that these modes do not resemble a near-wall
wavepacket. The envelope is not localized and the phase variation shows no sign
of linear variation. Not much can be said of the pattern of these low-frequency
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wall-pressure sources, except that the contributions from different wall-normal regions
undergo constructive interference. This is because the phase of the mode varies mostly
between the two dashed lines. Further, several suboptimal spectral POD modes each

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

41
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f M

in
ne

so
ta

 L
ib

ra
ri

es
, o

n 
08

 Ju
l 2

02
0 

at
 1

8:
05

:5
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.412
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Analysis of wall-pressure fluctuation sources from DNS 898 A17-27

contribute a small fraction the wall-pressure PSD at this frequency (figure 16). Thus,
the individual dominant wall-pressure mode obtained using the L2 inner product
does not give us much information of the wall-pressure sources. However, the mode
obtained using the Poisson inner product with β = 0.1 (figure 12) gives useful
information of the wall-pressure source.

Therefore, spectral POD using the Poisson inner product performs better than
the L2 inner product in isolating dominant wall-pressure sources for both low and
high frequencies. This is because the Poisson inner product decomposes the integral∫∫
+δ

−δ
(G(s, r, (β/1− β), 0)/1− β)Γ (r, s, ω) dr ds as the sum of eigenvalues. For small

enough β, this integral is a good proxy for wall-pressure PSD. On the other hand,
the L2 inner product decomposes the integrated net source PSD (

∫
+δ

−δ
Γ (r, r, ω), dr)

instead which is not a good proxy for the wall-pressure PSD.

5. Summary
We present a novel framework to analyse the sources of wall-pressure fluctuation

in turbulent channel flow. A net source function fG(y, t) is defined whose integral in
the wall-normal direction gives the wall-pressure fluctuation, i.e. p(t)=

∫
+δ

−δ
fG(y, t) dy.

The spectral properties of the defined net source function are studied by computing
its CSD using the generated DNS dataset at Reτ = 180 and 400. The wall-pressure
fluctuation – net source CSD shows a premultiplied peak at ω+ = 0.35 for both Reτ .
The wall-normal location corresponding to the peak is y+ = 16.5 and 18.4 for Reτ =
180 and 400, respectively. Therefore, the peak in the premultiplied wall-pressure PSD
at ω+ = 0.35 is due to the correlation with the sources in buffer layer. The wall-
pressure fluctuation – net source CSD has a log-normal behaviour in y+ for ω+ >
0.35. The location of the dominant wall-parallel plane obtained from the mean of
the log-normal profile varies exponentially with frequency. The wall-normal width of
the dominant region obtained from the standard deviation of the log-normal profile is
approximately proportional to the location of the dominant plane. At low frequencies,
a dominant inner and overlap/outer region interaction is observed at both Reτ .

We obtain the decorrelated net source patterns by performing spectral POD of the
net source CSD using an inner product that has a symmetric positive definite kernel.
The net source can be decomposed into active and inactive parts. The dominant
spectral POD mode identified with this new inner product is active in the sense that
it contributes to the entire wall-pressure PSD. The remaining portion of the net source
constituted by the suboptimal POD modes is inactive in the sense that it does not
contribute to wall-pressure PSD. Further, the active and inactive portions of the net
source are decorrelated.

The dominant mode at the premultiplied PSD peak (ω+ ≈ 0.35) has a similar
shape in inner units for both Reτ . It represents structures inclined in the downstream
direction. At the low-frequency linear PSD peak, the wall-normal contribution peaks
at y+ ≈ 15 and has a width of y/δ ≈ 0.25. The corresponding two-dimensional
structure has a large scale vertical pattern similar to the observations of Abe et al.
(2005) in the instantaneous fields of rapid pressure.

The analysis framework presented in this paper can be used to quantitatively
understand the contribution of large scale coherent motions in the outer region to the
wall-pressure PSD at very high Reynolds numbers. Such contributions are believed
to be the reason for the increasing low wavenumber contribution to wall-pressure
r.m.s. (Panton et al. 2017). The analysis has implications on wall-modelled large
eddy simulations (LES). The wall-pressure fluctuation net source CSD shows that
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sources correlated with the buffer layer are essential contributors to the premultiplied
power spectrum peak at ω+ = 0.35. However, in wall modelled LES where the first
point is in the logarithmic layer, one would not resolve the net source terms that
lie in the buffer region. Hence, wall-modelled LES would fail to accurately predict
the wall-pressure spectra at high frequencies. These conclusions are consistent with
Bradshaw (1967) who noted the importance of buffer layer eddies to the higher
frequencies in the wall-pressure spectra, and are consistent with Park & Moin (2016)
who attribute the errors in the high-frequency slope of wall-pressure spectrum to the
lack of resolution of the buffer layer eddies in their wall-modelled LES. Also, high
Reynolds number effects like amplitude modulation of the wall-pressure (Tsuji et al.
2016) can be studied using the above framework. The framework can also be used
to quantitatively investigate the location of the sources that lead to ω−1 decay in the
wall-pressure PSD at high Reynolds numbers.
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Appendix A. Implementation details
The theory presented in § 3.1 considered infinite domains in the spanwise and

streamwise directions. Here, we present the implementation for finite periodic
domains instead. The integrals over the wavenumbers are replaced by a summation
over the discrete wavenumbers that can be represented in the periodic domain. The
wavenumber spacing is determined by the length of the domain in each direction.

Let Nt be the number of time steps in each chunk used to compute the fast Fourier
transform, NT be the total number of time steps for which the data are acquired, nc
be the number of chunks used for temporal averaging the computed spectra, Tc be the
span of each chunk and povp be the percentage overlap between subsequent chunks.

The angular wavenumbers and frequencies are defined as

kx
l =

2πl
Lx
; kz

m =
2πm

Lz
; ωn =

2πn
Tc
;

l=−Nx/2, . . . ,Nx/2− 1; m=−Nz/2, . . . ,Nz/2− 1;
n=−Nt/2, . . . ,Nt/2− 1.

 (A 1)

We store the source terms of the pressure Poisson equation in hard disk from the
finite volume solver. The domain in the finite volume solver is split into multiple
processors and each processor writes one file per run containing the time history of
the source terms of the control volumes in its partition. A total of ≈ 8 TB and ≈ 30
TB was required to store the source terms of the pressure Poisson equation for the
Reτ = 180 and Reτ = 400 cases respectively.
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The portion of the time series that corresponds to the current chunk being processed
is first converted to stationary frame of reference and then written to a scratch space as
wall-parallel slices. Let f̄ denote the four-dimensional source term array in the moving
frame of reference corresponding to the current chunk. i.e.

f̄ = { f̄i,j,k,l | i= 0, . . . ,Nx − 1, j= 0, . . . ,Ny − 1, k= 0, . . . ,Nz − 1,
l= 0, . . . ,Nt − 1 },

f̄i,j,k,l =DxnumDxmun|xi,yj,zk,tl,

 (A 2)

where DxnumDxmun is the discrete approximation to the right-hand side of the pressure
Poisson equation. The data are converted to a stationary frame of reference using
Fourier interpolation and stored in the source term array f as

f = {fi,j,k,l | i= 1, . . . ,Nx, j= 1, . . . ,Ny, k= 1, . . . ,Nz, l= 1, . . . ,Nt},

fi,j,k,l =

Nx/2−1∑
m=−Nx/2

f̃m,j,k,le−ikx
mUctleikx

mxi,

f̃m,j,k,l =
1

Nx

Nx−1∑
i=0

f̄i,j,k,le−ikx
mxi .


(A 3)

Multiple processors are used to transfer the data from the Cartesian decomposition
of the solver to a wall-parallel decomposition of the computational domain. The wall-
parallel decomposition facilitates the computation of the wavenumber frequency cross-
spectra of the source terms. In order to obtain the fluctuation, the temporal mean of
the array f at each spatial point is subtracted to ensure that it has zero mean. i.e.

fi,j,k,l = fi,j,k,l − 〈 f 〉i,j,k,

〈 f 〉i,j,k =
1
Nt

Nt−1∑
l=0

fi,j,k,l.

 (A 4)

Each of the wall-parallel slices stored in the scratch space is then Fourier
transformed in streamwise, spanwise directions and in time. Let f̂ denote the Fourier
transformed f . Then,

f̂ = {f̂i,j,k,l | i=−Nx/2, . . . ,Nx/2− 1, j= 0, . . . ,Ny − 1,
k=−Nz/2, . . . ,Nz/2− 1, l=−Nt/2, . . . ,Nt/2− 1},

f̂i,j,k,l =
1

NxNzNt

Nx−1,Nz−1,Nt−1∑
m,n,p=1

fm,j,n,pwpe−i(kx
i xm+kz

kzn+ωltp),

 (A 5)

where wp = sin2(πp/Nt) is the Hanning window function multiplied with the time
series in order to avoid spectral leakage. The wall-parallel slice data are over written
by its three-dimensional Fourier transform. The processors are split in the wall-normal
and time directions to carry out the task in parallel and we use the parallel-FFTW
(Frigo & Johnson 2005) library to carry out the Fourier transform.

As discussed in the previous section, the memory requirement to store the five-
dimensional function φff (r, s, k1, k3,ω) is too large. We store and append the net source
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cross-spectral density sum array Γ s (defined below) instead. The possible {ri, sj}
Ny
i,j=1

pairs are split among multiple processors. For each (ri, sj) pair, we read the arrays
f̂:,i,:,: and f̂:,j,:,: from the scratch space and update the sum Γ s

i,j,: as

Γ s
= {Γ s

i,j,k | i= 1, . . . ,Ny, j= 1, . . . ,Ny, k=−Nt/2, . . . ,Nt/2− 1},

Γ s
i,j,k = Γ

s
i,j,k +

8
3

T
2π

L1

2π

L3

2π

Nx/2−1∑
l=−Nx/2

Nz/2−1∑
m=−Nz/2

f̂ ∗l,i,m,k f̂l,j,m,kG∗i,l,mGj,l,m
2π

L1

2π

L3
,

Gi,l,m =G(0, yi, kl, km).

 (A 6)

The factor 8/3 in the above equation accounts for the reduction in the spectral
magnitude due to windowing (Bendat & Piersol 2011). The update to Γ s

i,j,: given in
the above equation (A 6) is carried out in chunks along the frequency dimension due
to limited memory available in a cluster node. The net source cross-spectral density
Γ array is then defined by dividing the Γ s array by the number of chunks nc, i.e.

Γ ={Γi,j,k |Γi,j,k=Γ
s

i,j,k/nc, i=1, . . . ,Ny, j=1, . . . ,Ny, k=−Nt/2, . . . ,Nt/2−1}. (A 7)

We store and append only half of the entire Γ s array since Γj,i,k = Γ
∗

i,j,k. We use
50 % overlap between the chunks to increase statistical convergence. As new chunk
data become available, the net source cross-spectral density Γ s is updated.

Note that the Green’s function had to be evaluated in quadruple precision for
Reτ = 400 because for some wavenumbers, both the numerator and denominator were
so large that it could not be stored in double precision. However, when divided, the
resulting number could be stored in double precision. The above post-processing
methodology is parallel, aware of the limited memory available in a supercomputer
cluster node and can be used to analyse even larger channel flow datasets obtained
for higher friction Reynolds numbers.

To obtain the spectral POD modes, we first obtain the eigenvalues {λi,l}
Ny
i=1 and the

eigenvectors {ϕ̄i,l}
Ny
i=1 of the problem

Alϕ̄i,l = λi,lWϕ̄i,l; i= 1, . . . ,Ny, l=−Nt/2, . . . ,Nt/2− 1,
Al = {Al ∈CNy×Ny | {Al}m,n =1ymΓm,n,l1yn},

}
(A 8)

where the matrix W is the finite volume discretization of the operator (−(1 −
α)(∂2/∂y2) + α). The spectral POD eigenvalues are {λi,l}

Ny
i=1 and eigenvectors are

{ϕi,l}
Ny
i=1, where {ϕi,l}

Ny
i=1 is related to {ϕ̄i,l}

Ny
i=1 as

ϕi,l =D−1Wϕ̄i,l; i= 1, . . . ,Ny, l=−Nt/2, . . . ,Nt/2− 1,
D= {D ∈CNy×Ny | {D}m,n =1ymδmn}.

}
(A 9)

Appendix B. Orthogonality of the linear transformation C

We prove the orthogonality relation given by (3.22). Writing the Fourier transform
of the net source function as a linear combination of the set of modes {Φ̂i(y, ω)}∞i=1

and {Φ̃i(y, ω)}∞i=1, we have,

f̂G(x, y, z, ω)=
∑

j

α̂j(x, z, ω)Φ̂∗j (y, ω)=
∑

j

α̃j(x, z, ω)Φ̃∗j (y, ω), (B 1)

where α̂(ω) and α̃(ωo) are the coefficients of the linear combination. For brevity, we
drop the dependence of α̂ and α̃ on x and z. Using (3.21) in (B 1) and equating the
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FIGURE 20. Velocity field and pressure fluctuation statistics. Solid and dashed lines
denote the current DNS result at Reτ = 180 and 400, respectively. Circle and diamond
symbols denote DNS data at Reτ = 182 and 392 from Moser, Kim & Mansour (1999).
Panel (a) compares mean streamwise velocity, (b,c,d) compare mean-squared streamwise,
wall-normal and spanwise velocity fluctuations, respectively, and (e, f ) compare mean
tangential Reynolds stress and mean-squared pressure fluctuation, respectively.

coefficients of {Φ̃∗j }
∞

j=1, we have∑
j

α̂j(ω)Cjk(ω)= α̃k(ω). (B 2)

Correlating the coefficients, we have

〈α̃k(ω)α̃
∗

l (ωo)〉 =
∑

j

∑
m

〈α̂j(ω)α̂m(ωo)〉Cjk(ω)C∗ml(ωo). (B 3)
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FIGURE 21. Streamwise velocity fluctuation spectra. Panels (a–c) and (d–f ) are
streamwise and spanwise wavenumber spectra, respectively, at different wall-normal
locations. Solid and dashed lines denote the current DNS result at Reτ = 180 and 400,
respectively. Circle and diamond symbols denote DNS data at Reτ = 182 and 392 from
Moser et al. (1999).

Since the coefficients are decorrelated, we obtain

λ̃k(ω)δklδ(ω−ωo)=
∑

j

∑
m

λ̂jδjmδ(ω−ωo)Cjk(ω)C∗ml(ωo). (B 4)

Integrating in ωo and expression the above relation in matrix form, we have

Λ̃(ω)=CH(ω)Λ̂(ω)C(ω), (B 5)

where Λ̃(ω) and Λ̂(ω) are the diagonal matrices of the eigenvalues. Since the
eigenvalues are non-negative, we decompose Λ̂(ω) as Λ̂1/2(ω)Λ̂1/2(ω), respectively,
where Λ1/2(ω) is a diagonal matrix constructed using the set of values {

√
λi(ω)}

∞

i=1,
and obtain the required result

(Λ̂1/2(ω)C(ω))HΛ̂1/2(ω)C(ω)= Λ̃(ω). (B 6)
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FIGURE 22. Pressure fluctuation spectra. Panels (a–c) and (d–f ) are streamwise and
spanwise wavenumber spectra, respectively, at different wall-normal locations. Solid and
dashed lines denote the current DNS result at Reτ = 180 and 400, respectively. Circle and
diamond symbols denote DNS data at Reτ = 182 and 392 from Moser et al. (1999).

Appendix C. DNS validation
We compare the mean, intensities and spectra from the current DNS to the previous

reference DNS. We sample the velocity and pressure field every 50 time steps to
compute the statistics presented in this section.

Figure 20 shows the comparison of velocity field and pressure fluctuation statistics
to the previous DNS of Moser et al. (1999) performed at Reτ = 182 and 392.
Figure 20(a) compares mean streamwise velocity. Figures 20(b), 20(c) and 20(d)
compare mean-squared streamwise, wall-normal and spanwise velocity fluctuations,
respectively. Figures 20(e) and 20( f ) compare mean tangential Reynolds stress and
mean-squared pressure fluctuation, respectively. We observe good agreement in the
compared quantities.

Figure 21 compares both streamwise and spanwise wavenumber spectra of the
streamwise velocity fluctuations to the previous DNS of Moser et al. (1999) at
different wall-normal locations. We compare the spectra at y+ ≈ 10 (near the buffer
layer peak in the intensity), y+ ≈ 20 and y/δ ≈ 1 (channel centreline). The current
spectra agree well both near the wall and at the channel centre for the two Reτ .
Therefore, the DNS is well resolved.
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FIGURE 23. Comparison of destructively interfering regions of the dominant spectral POD
mode computed using the L2 inner product as a function of frequency for (a) Reτ = 180
and (b) Reτ = 400. In the cross and vertically hatched regions, | 6 Φi(y+, ω+)− 6 Φn

i (ω
+)|<

π/2 and π/2< |6 Φi(y+, ω+)− 6 Φn
i (ω

+)|<π, respectively.

In figure 22, we compare the streamwise and spanwise wavenumber spectra of the
pressure fluctuations to Moser et al. (1999) at y+ ≈ 5 (near the wall), y+ ≈ 30 (at
the peak intensity location) and y/δ ≈ 1 (channel centreline). The spectra show good
agreement. Also, we do not observe the spurious pile up of the spectrum levels at
very high wavenumbers seen in the results of Moser et al. (1999).

Appendix D. Destructive interference of dominant L2 inner product mode
contribution to wall-pressure PSD

We investigate the frequency dependence of the destructive interference of the
obtained dominant spectral POD mode (computed using the L2 inner product) in
figure 23. The envelope and the phase of the wavepacket are used to identify
destructively interfering regions. In the figure, the vertical and cross-hatched regions
of the mode interfere destructively. In the cross-hatched and vertically hatched regions,
the phase satisfies |6 Φi(y, ω)− 6 Φn

i (ω)|< π/2 and π/2< |6 Φi(y, ω)− 6 Φn
i (ω)|< π,

respectively. With increase in frequency, the ratio of the cross and vertically hatched
region increases. Therefore, the destructive interference in the contribution from the
dominant spectral POD mode to wall-pressure PSD decreases. Hence, the dominant
spectral POD mode becomes the dominant wall-pressure mode for ω+> 1 (figure 17).
For small frequencies, the dominant spectral POD mode does not resemble a
wall-normal wavepacket. Hence, we would not obtain a continuously (continuous
in frequency) varying interface between the destructively interfering region. Therefore,
we do not include the frequencies below ω+ = 0.35.
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