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A two-dimensional model problem is used to study the evolution of the cross section of a transverse
jet and the counter-rotating vortex pair �CVP�. The solution to the model problem shows
deformation of the jet similar to that observed in a transverse jet, and also yields a CVP. These
phenomena are explained in terms of the acceleration the jet experiences in the direction of the
cross-flow, and the pressure field around the jet. The initial stages of the jet’s evolution are at
constant acceleration while the later stages are at constant velocity. The effects of Reynolds number
and velocity ratio on the evolution of the jet are used to explain the dependence of CVP formation
on velocity ratio, as observed by Smith and Mungal �J. Fluid Mech. 357, 83 �1998��. © 2006
American Institute of Physics. �DOI: 10.1063/1.2236304�
I. INTRODUCTION

A circular jet issuing into a cross-flow bends in the di-
rection of the cross-flow. As the jet bends, the jet cross sec-
tion deforms and a pair of counter-rotating vortices �CVPs�
are formed. The CVP is a “signature” feature of this flow and
has been the subject of much investigation. Detailed mea-
surements of velocity and vorticity fields in the cross section
of the CVP have been performed,1,2 and the CVP has been
observed to persist far downstream.3–5 Smith and Mungal6

report that the CVP formation appears slower at r=20 than at
r=10 �as a function of the nondimensional distance variable
x /rd�. The CVP is credited with the enhanced mixing ob-
served in transverse jets as compared to free jets.

Stages in the evolution of a transverse jet are shown in
Fig. 1, using contours of out-of-plane velocity on planes nor-
mal to the trajectory. The direction of the cross-flow fluid is
from the left to the right. Note the increase in size of the jet
cross section with distance from the jet exit. Close to the jet
exit, fluid with the highest velocity is seen toward the center
of the jet cross section. Away from the jet exit, the high
velocity contours are observed toward the edges of the jet,
while fluid toward the center appears to have a relatively
lower velocity. The figures also show a few representative
in-plane streamlines, which reveal a CVP trailing the jet
cross section. The CVP increases in size along the jet length.

Different mechanisms leading to the CVP have been
suggested. Broadwell and Breidenthal7 model the jet as a
point source of momentum. This results in a “lift force of
vanishing drag” and generates the CVP, similar to the wing
tip vortices observed in a flow past a wing. It has also been
suggested �e.g., Ref. 8� that the CVP is formed by the shear
layer emanating from the pipe. Coelho and Hunt9 suggest
that the CVP is initiated within the pipe. Kelso et al.5 con-
clude from their experiments that CVP roll-up is related to
the separation inside the pipe and that the “folding” of the jet
shear layer contributes to the circulation of the CVP.
Cortelezzi and Karagozian10 simulate the flow field using

vortex elements, in a domain that does not include the pipe,
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and agree with the mechanism proposed by Kelso et al.5

Karagozian11 models the jet as two curved, semi-infinite,
vortex lines originating near the jet exit. Equations governing
vortex spacing and jet velocity are numerically solved, and
theoretical prediction of parameters such as vortex trajectory
agree reasonably with experimental results. It is concluded
that the effect of jet velocity on the vortex strength becomes
apparent only in the far field, once the jet has been deflected
by the cross-flow. By relating the circulation of the CVP to
the impulse �of the jet� and using similarity arguments,
Broadwell and Breidenthal7 obtain scaling laws for jet trajec-
tory in the far field. Both of these models assume that the
CVP is present along the length of the jet, and that the flow
in the far-field is locally two dimensional.

The objective of this paper is to suggest that the forma-
tion of the CVP may be explained using a two-dimensional
model problem. The solution to this problem shows that CVP
formation and the jet cross-section deformation can be un-
derstood as a consequence of the cross-flow fluid accelerat-
ing the jet in the streamwise direction. It also shows that the
pipe is not necessary to generate the CVP. The model prob-
lem is solved using direct numerical simulations. The paper
is organized as follows. The model problem is described in
Sec. II A, and the numerical details outlined in Sec. II B.
Section III A presents the velocity and vorticity fields of the
solution. The relation of the model problem to a three-
dimensional jet in cross-flow is discussed in Sec. III C, and a
pressure-based argument to explain the solution is presented
in Sec. IV. The paper ends with a brief summary in Sec. V.

II. MODEL PROBLEM

A. Problem statement

A two-dimensional model problem is studied in order to
understand the evolution of the jet cross section. The initial
condition of the problem is shown in Fig. 2. Note that only a
part of the domain is shown. A circular region of diameter d
is defined. The fluid inside this region has a uniform out-of-

plane velocity �v=v j� and zero in-plane velocity �u ,w=0�.
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The fluid outside this region is prescribed to have an in-plane
velocity �u ,w� corresponding to potential flow past a circular
cylinder, and a zero out-of-plane velocity �v=0�. The fluid
inside the circle simulates the jet and the fluid outside of it
simulates the cross-flow. The direction of the cross-flow fluid
is from left to right. Uniform cross-flow velocity �u�� is
specified at the inflow and the spanwise boundaries. The evo-
lution of the jet in a three-dimensional transverse jet is spa-
tial �moving away from the jet exit� while the evolution of
the jet in the model problem is temporal.

The parameters in the model problem that can be inde-
pendently controlled are the cross-flow velocity �u��, the jet
velocity �v j�, the diameter �d�, and the kinematic viscosity

FIG. 2. Initial condition of the model problem used to study the evolution of
the jet. Streamlines show the potential flow past a circular cylinder, while

the contours show out–of–plane velocity.
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���. The velocity ratio r=v j /u�. To study the behavior of the
model problem at different r, u� was changed while keeping
the jet velocity constant. The effect of Reynolds number on
the solution was studied by varying �. Simulations are per-
formed at Reynolds numbers �Re=u�d /�� of 1000, 5000,
10 000, and 100 000. Computational meshes with varying
mesh sizes were used to perform preliminary simulations and
to study grid convergence. The results presented in this paper
are from grid converged solutions, and pertain to simulations
performed on a mesh with uniform edge lengths �x /d
=0.005 and �z /d=0.005.

B. Numerical details

The numerical scheme solves the incompressible Navier
Stokes equations on unstructured grids. The density of the
fluid is assumed constant and is absorbed into the pressure.
The numerical scheme is described in Mahesh et al.12 The
algorithm stores the Cartesian velocities and the pressure at
the centroids of the cells �control volumes� and the face-
normal velocities are stored independently at the centroids of
the faces. The scheme is a predictor-corrector formulation
that emphasizes discrete energy conservation on unstructured
grids. This property makes the algorithm robust at high Rey-
nolds numbers without numerical dissipation. The predicted
velocities at the control volume centroids are obtained using
the viscous and the nonlinear terms of the momentum equa-
tion, which are then used to predict the face-normal veloci-
ties on the faces. The predicted face-normal velocity is pro-
jected so that continuity is discretely satisfied. This yields a

FIG. 1. Contours of time-average out-
of-plane velocity shown on planes nor-
mal to the jet length. �a� s=d, �b� s
=3d, and �c� s=7d. Note the increase
in the size, and the change in shape, of
the jet cross section. The direction of
cross-flow fluid in these plots is from
the left to the right. These results are
from direct numerical simulation of a
turbulent jet in cross-flow �Ref. 15�,
Rejet=5000, r=5.7.
Poisson equation for pressure that is solved iteratively using
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a multigrid approach. The pressure field is used to update the
Cartesian control volume velocities. Time-advancing is per-
formed using the Adams-Bashforth scheme. The algorithm
has been validated for a variety of problems �see Mahesh et
al.12� over a range of Reynolds numbers.

III. SOLUTION

A. Velocity field

The model problem is effectively two-dimensional and,
hence, derivatives in the y direction vanish. The governing
equations for momentum reduce to

�u

�t
+ u

�u

�x
+ w

�u

�z
= −

�p

�x
+ �� �2u

�x2 +
�2u

�z2� ,

�w

�t
+ u

�w

�x
+ w

�w

�z
= −

�p

�z
+ �� �2w

�x2 +
�2w

�z2 �, and �1�

�v
�t

+ u
�v
�x

+ w
�v
�z

= �� �2v
�x2 +

�2v
�z2� .

Note that u and w are not affected by the out-of-plane veloc-
ity component v, and that the equation governing v is the
same as that governing passive scalar transport. The contours
of v, hence, accurately represent the jet fluid on the x-z
plane.

The jet cross section at different instants of time is
shown in Fig. 3 using contours of velocity �v�. These figures
correspond to a simulation where u�=vjet=1.0. Figures
3�a�–3�d� show the solution of the model problem at Re
=1000 and Figs. 3�e�–3�h� show the solution at Re=10 000.
Note that figures in the same row correspond to the same
time instant. Also, the oscillations observed exterior to the jet
are part of the solution and do not result from the numerics.
These oscillations appear to be aligned with the local curva-
ture of the jet and are resolved on the grid. The sequence of
Figs. 3�a�–3�d� shows that the initially circular jet begins to
flatten at the trailing edge, resulting in a kidney-shaped cross
section. The trailing edge continues to move toward the lead-
ing edge, forming a partial “ring” of jet fluid around cross-
flow fluid �Fig. 3�d��. Note that by this stage in the evolution
of the jet, the edges begin to roll up indicating a concentra-
tion of vorticity and the early stages in CVP formation.

By comparing Figs. 3�d� and 3�h�, it can be observed
that the jet deformation is slower at the higher Reynolds
number. Also, note that the jet at the higher Reynolds num-
ber has moved a smaller distance in the direction of the
cross-flow. The Reynolds number also affects the presence of
instabilities on the jet edge. At the lower Reynolds number,
no instabilities are observed. At Re=10 000, Figs. 3�e�–3�h�
show “rollers” on the top and bottom edges of the jet. Since
the cross-flow velocity field is initially that of potential flow
past a cylinder, shear is greatest at the top and bottom edges
of the jet. This results in the Kelvin-Helmholtz instability
mechanism being active on these edges. The initial stages of
this instability are observed in Fig. 3�f� and the ensuing “roll-

ers” are observed in Figs. 3�g� and 3�h�.
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The cross sections of the jet at a much later instant in
time are shown in Fig. 4. The figures correspond to a quasi-
steady-state where the jet translates in the direction of the
cross-flow with a constant velocity ufinal. The two plots are

FIG. 3. Behavior of the solution of the model problem. �a�–�d� Re=1000,
�e�–�h� Re=10 000. Only part of the domain is shown.

FIG. 4. Final stage in the evolution of the jet in the model problem. �a�
Re=1000 and �b� Re=10 000. The counter-rotating vortex pair is clearly

seen.
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not at the same instant of time. The jet at Re=1000 reaches
this state earlier than the jet at Re=10 000. Note that even at
the higher Reynolds number, the instabilities on the jet edge
are absent, and the counter-rotating vortex pair �CVP� is
clearly visible. Two aspects about the jet in this regime merit
mention. The separation distance between the concentrated
vortices appears to be the same at both the Reynolds num-
bers, and the translation velocity �ufinal� is less than the free-
stream velocity u�. Moreover, ufinal is a function of the Rey-
nolds number, and an increase in the Reynolds number
causes ufinal to decrease. This aspect of the jet’s evolution is

discussed in detail in Sec. III B.
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Under the conditions of the model problem, the vorticity
components reduce to
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, �y =
�u

�z
−

�w

�x
, and �z =

�v
�x

. �2�

Figure 5 shows vorticity contours in the vicinity of the jet for
a simulation where Re=10 000 and u�=v j. Plots in each
horizontal row show the solution at the same time instant.
The initial condition of the problem specifies that all the
vorticity is distributed along the jet circumference, as is ob-

FIG. 5. Evolution of vorticity around
the jet with time. The horizontal and
vertical axes are x /d and z /d, respec-
tively. Figures in each row are at the
same time instant. u�=v j; Recf

=10 000.
served in the top row of the figure. As the jet cross section
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evolves, vorticity contours indicate the instabilities along the
jet edge. �y is observed to accumulate into Kelvin-
Helmholtz rollers whose size increases toward the trailing
edge of the jet. Further in time, the regions of concentrated
�y merge, giving rise to the CVP as seen in Figs. 4�a� and
4�b�.

B. Jet center variation with time

Figure 6 shows the evolution of the center of the jet with
time. The center of the jet is defined as the centroid of the
vertical velocity �v�:

xc =

� �
D

vxdA

� �
D

vdA

,

where D is the complete flow domain in the x-z plane. Also
shown are quadratic fits to each of the trajectories, denoted
by symbols. The initial trajectory of the jet is quadratic while
the latter trajectory is linear. This suggests that initially, the
jet experiences a constant acceleration in the direction of the
cross-flow, and that it moves at a constant velocity �ufinal� at
a later time �tv j /d�1.0 for Re=1000, from Fig. 6�. The
acceleration of the jet �in the accelerating regime� and the
velocity of the jet �in the constant-velocity regime� appear to
depend on the Reynolds number. Figure 6 shows that as the
Reynolds number increases, the jet experiences a lower ini-
tial acceleration, and that the later–stage velocity is also
lower.

The acceleration of the jet �ajet� can be explained in
terms of the pressure gradient imposed on it by the cross-
flow fluid and imagined to be the result of competing inertias
of the cross-flow fluid �in the x direction� and the jet fluid �in
the y direction�, similar to the analysis of the jet trajectory
presented by Muppidi and Mahesh.13 It follows that along
with the Reynolds number, ajet depends on the momentum of
the cross-flow fluid and that of the jet fluid. Intuitively, as the
cross-flow momentum increases, the pressure gradient that
the cross-flow fluid imposes on the jet increases, as does ajet.

FIG. 6. Position of the jet plotted against time. ——, Re=1000; - - - -,
Re=10 000; and –·–, Re=100 000. Symbols show quadratic curve fits to
each of the trajectories. u�=v j for all the plots.
As the velocity ratio increases, the jet momentum increases,

Downloaded 21 Aug 2006 to 128.101.143.73. Redistribution subject to
causing ajet to decrease. Figure 7 shows the time history of
the center of the jet at different velocity ratios. Reynolds
number �Recf =ucfd /�� for all the simulations is the same, at
104. The curves in Fig. 7 indeed show that an increase in the
velocity ratio causes the acceleration of the jet to decrease.
The symbols show quadratic curve fits to these trajectories.
By evaluating the constants to these curve fits, ajet can be
computed. The acceleration at r=0.5, 1.0, 2.0, and 4.0 is
2.773, 0.693, 0.185, and 0.039, respectively, showing the de-
pendence of ajet on r to be

ajet �
1

r2 . �3�

Figure 6 shows the effect of Reynolds number �at a fixed
r� and Fig. 7 shows the effect of r �at a fixed Recf� on the
time history of the jet center. Clearly, the jet trajectory de-
pends on both of these parameters. To compare their relative
effects, Fig. 8 shows the jet trajectory for cases �a� r=1.0,
Recf =10 000; �b� r=2.0, Recf =5000; and �c� r=2.0, Recf

=10 000. The acceleration of the jet increases with a de-
crease in either Recf or r. However, the effect of changing r
is more pronounced than that of changing Re by the same
factor.

FIG. 7. Position of the jet plotted against time. ——, r=0.5; - - - -, r=1.0,
and –·–, r=2.0. Symbols show quadratic curve fits to each of the trajectories.
Recf =10000 for all the cases.

FIG. 8. Position of the jet plotted against the time. ——, r=1.0 and Recf
=10 000; . . .. . ., r=2.0 and Recf =5000; –·–, r=2.0 and Recf =10 000.
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C. Relation to 3D jets in cross-flow

The model problem is qualitatively related to a three-
dimensional �3D� transverse jet as follows. Close to the jet
exit, the jet fluid has no velocity in the direction of the cross-
flow. The cross-flow fluid accelerates the jet fluid in its di-
rection, causing the jet to bend. Consider the schematic in
Fig. 9�a�. At the initial condition �given by 0-0�, the jet has a
velocity v j in the y direction, uj�0, and the vorticity vector
�of magnitude �y� also points in the y direction. Consider the
jet after an interval dt shown by 1-1. Due to the acceleration
imposed by the cross-flow fluid, the jet gains a velocity uj in
the x direction. In the absence of uj, the jet cross section
would be displaced only in the y direction �as shown by the
dashed lines�. A nonzero uj, however, displaces the jet both
in x and y directions �shown by the solid lines�. Note that as
a result of the acceleration of the jet, the jet velocity vector
changes direction between 0-0 and 1-1. With increasing time,
the displacement of the jet yields the trajectory, shown in
Fig. 9�b�.

In a three-dimensional jet, bending of the jet is also as-
sociated with tilting of the vorticity. Consider the evolution
of vorticity vector �of the jet in the model problem� between
time t�0 and t=dt. At t=0, �x=�z=0. �y, however, is non-
zero. v=v j and uj =0. Past the initial condition, the jet accel-
erates in the x direction. That is, �u /�t�0. By a Galilean
transformation, this �u /�t corresponds to �u /�y for a three-
dimensional transverse jet. Consider the equation for the
evolution of vorticity

��i

�t
+ convection = � j

�ui

�xj
+ dissipation,

where � j��ui /�xj� is the stretching/tilting term. Between t
=0 and dt, a nonzero �y and a nonzero �u /�y result in the
production of the x direction component of the vorticity, �x.
The displacement of the jet and the deformation of the jet
cross section are accompanied, therefore, by a tilting of the
vorticity vector.

Initially, the jet and cross-flow directions are perpendicu-
lar to each other, and the relevance of the model problem to
the three-dimensional transverse jet is clear. The model prob-
lem does not directly account for the bending of the jet, and
past the near-field, the relationship with the transverse jet is
qualitative. Consider the schematic of the jet shown in Fig.
10. At a station where the jet is no longer vertical, consider
the plane normal to the jet trajectory �shown by the dashed
lines�. ucrossflow is the free-stream cross-flow velocity, and u�

FIG. 9. �a� Galilean transformation of the model jet as it evolves in time. �b�
Trajectory of the jet.
is the cross-flow velocity in the model problem. The accel-
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eration �ajet� and velocity �uj� of the jet, predicted by the
model problem, describe the evolution of the jet cross sec-
tion �in a three-dimensional transverse jet� in the trajectory
normal plane. In a transverse jet, the in-plane cross-flow ve-
locity �u�� decreases with decreasing angle between the jet
and the cross-flow. Also, v j decreases along the jet length. In
the two-dimensional model problem, u� is a constant.

Qualitatively, the figures showing the evolution of the jet
cross section in the three-dimensional jet in cross-flow �Fig.
1� are similar to those showing the evolution of the jet in the
model problem �Fig. 3�. The cross sections in both cases are
almost circular in the beginning �Figs. 1�a� and 3�a��. The
deformation in both cases begins with a flattening of the
trailing edge. Figures 1�b� and 3�b� both show the trailing
edge to move toward the leading edge and the jet to acquire
a “kidney-shaped” cross section. The thickness of the jet on
the symmetry line continues to decrease in both the cases
�1�c� and 3�c��, and the jets exhibit a shape in which the high
velocity �out-of-plane component� fluid surrounds the low-
velocity cross-flow fluid.

Formation of the CVP and the deformation of the jet are
simultaneous phenomena. They occur at a rate determined by
ajet which, in turn, depends on both the Reynolds number
and the cross-flow momentum �and, hence, r�. Consider two
jets at velocity ratios 10 and 20. Recalling that ajet�1/r2, ajet

for the r=20 jet decreases to a quarter of ajet at r=10. If it is
assumed that the rate of evolution of the jet is proportional to
the acceleration, it follows that the two jets will not exhibit

FIG. 10. Schematic showing the relevance of the model jet problem as the
three-dimensional jet begins to bend.
FIG. 11. Schematic of the jet cross section.

 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



085103-7 CVP formation in a transverse jet Phys. Fluids 18, 085103 �2006�
similar CVP development �and jet deformation� at the same
point in an rd–coordinate system, but rather in an
r2d-coordinate system. In other words, CVP development of
the r=20 jet occurs farther downstream in the rd space as
compared to the r=10 jet, a fact that was reported by Smith
and Mungal6 �Fig. 9�. It must be mentioned that the results
shown in that work correspond to the same Rejet. The Rey-
nolds number based on the cross-flow, therefore, is different
by a factor of 2, and the observed difference in the rate of
CVP formation is a consequence of a change in r and a
change in Recf. However, Fig. 8 shows that the effect of
doubling Recf on the jet acceleration is negligible, compared
to that of doubling r. Note that the velocity ratio r affects the
far-field behavior in two ways: �i� the near-field acceleration
and �ii� the local velocity ratio �v j /u�� along the jet length.
The 2D model accounts for �i� but not �ii�. Our inferences
regarding the far field are therefore qualitative.

The concentration of the vorticity and the formation of
the CVP in the model problem seem to suggest that the pipe
is not necessary for the formation of the CVP in transverse
jets as suggested by some past studies �e.g., Ref. 9�. The
pressure and velocity field in the vicinity of the jet cause the
CVP to be formed slightly downstream of it, and it appears
that the contribution to vorticity of the CVP comes from the
vorticity in the jet shear layer. Kelso et al.5 suggest that there
is a connection between the CVP roll-up and the separation
inside the pipe. In view of the present results, it appears that
while the separation might contribute to the formation of the
CVP, it does not cause the formation. In addition, separation
�and the resulting separation streamlines on the pipe surface�
inside the pipe is not evident as jet-to-cross-flow velocity
ratio increases.

Interestingly, aspects of the solution to the model prob-
lem bear similarities to the behavior of a drop subject to a
Downloaded 21 Aug 2006 to 128.101.143.73. Redistribution subject to
high-speed airstream. Joseph et al.14 report that such a drop
exhibits a constant acceleration in the initial stages. A change
in shape is also observed. The drop, which is initially spheri-
cal, begins to acquire a flattened trailing edge and the trailing
edge continues to move toward the leading edge �prior to the
drop breakup�, just as in the solution to the model problem.

IV. EXPLANATION

The evolution of the jet can be summarized as follows.
Cross-flow fluid pushes the jet fluid in its direction. While
the jet accelerates �to the right, in the context of the present
problem�, the trailing edge moves toward the leading edge.
The jet expands radially, and the cross section deforms. The
shear is maximum on the top and bottom edges, and the
Kelvin-Helmholtz instability is observed. The flow field and
the deformation cause the vorticity in the shear layer to re-
distribute, and �y concentrates toward the downstream side
of the jet. The jet moves with a constant acceleration, ini-
tially, and with a constant velocity at later stages. This sec-
tion attempts to explain these phenomena.

Initially, the jet fluid has no streamwise velocity. The
streamwise momentum of the cross-flow, therefore, acceler-
ates the jet in the direction of the cross-flow. Recall that the
x-direction equation for momentum is

�u

�t
1

+ u
�u

�x
2

+ w
�u

�z
3

= −
�p

�x
4

+ �� �2u

�x2 +
�2u

�z2�
5

. �4�

Consider a control volume that contains the leading edge
of the jet, at an instant close to the initial condition, as shown
in Fig. 11. By symmetry, w and, hence, term 3 are zero.
Figure 12 shows the streamwise profiles of velocity u on the
symmetry line at different instants of time. These profiles are

FIG. 12. Profiles of velocity u along
the symmetry line at increasing in-
stants of time.

FIG. 13. Profiles of pressure along the
symmetry line at increasing instants of
time. The vertical lines in �a� indicate
the edges of the jet.
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from a simulation where u��v j. Figures 12�a�–12�c� plot the
velocity profile at time instants soon after the initial condi-
tion and Fig. 12�d� plots the profile at a later time instant.
According to the initial condition, the jet fluid has no stream-
wise velocity, as shown in Fig. 12�a�. Along the x axis, the
velocity of the cross-flow fluid decreases moving closer to
the leading edge. The slope of this variation �down from u�

to zero� depends on the viscosity. Past the jet’s trailing edge,
u increases. At later instants, a negative velocity is observed
within the jet indicating a reverse flow. As the jet evolves,
the peak negative velocity decreases in magnitude. At the
leading edge of the jet, as can be observed from Fig. 12,

u � 0 and
�u

�x
� 0,

making the second term in Eq. �4� negative.
From the initial condition, it follows that the maximum

pressure occurs near the leading and trailing edges of the jet.
Figure 13 shows the streamwise variation of pressure at dif-
ferent instants of time. The edges of the jet are indicated in
Fig. 13�a�. Note that the pressure increases along the x axis
and reaches a peak just upstream of the jet edge. Past this
point, the pressure decreases and the pressure minima are
observed within the jet. Downstream of the jet’s trailing
edge, another pressure peak is observed. The first three plots
show profiles at time instants soon after the initial condition,
and the last profile plots the pressure at a much later instant
in time. From Fig. 13�a�, it is easy to see that at the leading
edge, �p /�x�0. For the purpose of the present analysis, and
considering that the range of � for the set of simulations
presented here is �10−4 ,10−6�, term 5 can be neglected.

FIG. 14. Schematic to show the stages of evolution of the jet cross section.
The two-dimensional cross sections are arranged along the y direction in �b�.
FIG. 15. Profiles of out-of-plane vorticity �y, velocity u, and pressure pl

Downloaded 21 Aug 2006 to 128.101.143.73. Redistribution subject to
Hence, for the control volume at the leading edge,

�u

�t
= −

�p

�x
− u

�u

�x
� 0.

In contrast, at the trailing edge,

u � 0,
�u

�x
� 0 and

�p

�x
� 0.

A similar analysis for a control volume containing the trail-
ing edge of the jet shows that �u

�t �0. Therefore, the leading
edge of the jet accelerates in the direction of the cross-flow,
while the trailing edge decelerates. The increase in u at the
leading edge and the decrease in u at the trailing edge are
clearly observed by contrasting Figs. 12�a� and 12�b�. Jet
fluid in the vicinity of the trailing edge is pushed toward the
leading edge �causing a reverse flow and a negative u veloc-
ity�. In order to satisfy continuity, some of the jet fluid is
forced radially outward from the symmetry plane. The jet
boundary acts as a limiting streamline, and symmetric recir-
culation regions are set up within the jet, as indicated by the
streamlines in Fig. 11. The jet cross section is compressed in
the horizontal direction causing the jet to expand in the ver-
tical �z� direction, leading the cross section to evolve as
shown in Fig. 14�a�. As the jet cross section deforms, con-
centration of �y causes a roll up, and the formation of a CVP.
An interesting way to look at the jet deformation is to stack
the jet cross sections in space, along the third dimension �y�.
Such a perspective is shown in Fig. 14�b�. Successive plots
are displaced in y by the same distance.

In the constant velocity regime �Fig. 4�, the local flow
field appears dominated by the CVP. Figure 15 shows the
variation of �y, u, and p along the spanwise variable z in this
regime. u�=v j and Recf =1000. These profiles are plotted at
x�5d, and along a line passing through the center of the
CVP. Vorticity profile �Fig. 15�a�� clearly shows the presence
of two concentrated, counter-rotating vortex regions. The
vorticity is negligible past a distance d from the symmetry
line and the centers of the vortices are indicated by peak �y.
Figure 15�b� shows that away from the symmetry line �z
=0�, streamwise velocity �u� is u�. Moving closer to the jet,
the velocity peaks near the edge of the jet. Moving further
toward the symmetry line, u decreases. Figure 15�c� plots the
pressure. Away from the symmetry line, the pressure corre-
otted against the spanwise distance variable. Re=1000, u�=v j =1.0.
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sponds to a free-stream pressure. Moving closer to the sym-
metry line, the pressure decreases. The minimum pressure
corresponds to the center of the vortices.

The jet in this stage can be visualized as a pair of
counter-rotating vortices translating in the direction of the
cross-flow fluid, as shown by the schematic in Fig. 16. Note
that Fig. 16 bears similarity to the classical representation of
the far field of a transverse jet �e.g., Fig. 4 in Ref. 11�. Let 	
be the circulation of each of the vortices and h be the sepa-
ration distance between them. Each vortex induces a velocity
uinduced=	 /2
h on the other. Note that the direction of this
induced velocity is opposite to that of the cross-flow velocity.
The cross-flow fluid attempts to accelerate the jet and to
increase ujet. In the absence of the CVP, ujet would be ex-
pected to increase to u� and remain constant. The induced
velocity due to the vortex pair attempts to decelerate the jet.
An equilibrium stage can be imagined, where the velocities
satisfy

u� − uinduced = ufinal.

The jet continues to accelerate until ujet reaches ufinal and the
jet translates at this constant velocity thereafter. The depen-
dence of ufinal on the Reynolds number is presented in Table
I.

It is seen that the effect of increasing the Reynolds num-
ber is to increase uinduced and to decrease ufinal. This can be
explained as follows. At a constant cross-flow velocity, ufinal

depends on uinduced, which depends on 	. The total circula-
tion in the domain, stipulated by the initial condition, is a
function only of the relative velocity of the �cross-flow� fluid

FIG. 16. Schematic of the flow in the far field, dominated by the counter-
rotating vortex pair.

TABLE I. Variation of translation velocity �ufinal� in the constant-velocity
regime with Reynolds number.

v j /u� Re ufinal /u� uinduced /u�

1 1000 0.784 0.2160

1 10000 0.684 0.3160

1 100000 0.488 0.5120
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past the jet fluid. Past the initial condition, viscosity dictates
the circulation decay. As the Reynolds number decreases, the
decay in circulation is higher, resulting in a lower 	. Hence,
a smaller value of uinduced and a higher value of ufinal are
obtained.

V. SUMMARY

A two-dimensional model problem is used to study the
evolution of a jet in cross-flow. Using the solution to the
model problem, the deformation of the jet cross section can
be explained in terms of the pressure field around the jet, and
the initial acceleration that the jet fluid experiences in the
direction of the cross-flow. The solution to the model prob-
lem also yields the CVP, indicating that the pipe is not nec-
essary for the formation of the CVP. The evolution of the jet
is a function of both the velocity ratio and the Reynolds
number. The dependence of the jet acceleration on the cross-
flow velocity explains the experimentally observed depen-
dence of the CVP formation on the velocity ratio.
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