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A novel constrained formulation for the dynamic subgrid-scale model for large eddy

simulation (LES) is proposed. An externally prescribed Reynolds stress is used as the

constraint and is imposed in the near-wall region of wall-bounded flows. However,

unlike conventional zonal approaches, Reynolds stress is not imposed as the solution,

but used as a constraint on the subgrid-scale stress so that the computed Reynolds

stress closely matches the prescribed one only in the mean sense. In the absence of an

ideal wall model or adequate near-wall resolution, a LES solution at coarse resolution

is expected to be erroneous very near the wall while giving reasonable predictions

away from the wall. The Reynolds stress constraint is limited to the region where

the LES solution is expected to be erroneous. The Germano-identity error is used as

an indicator of LES quality such that the Reynolds stress constraint is activated only

where the Germano-identity error exceeds a certain threshold. The proposed model

is applied to LES of turbulent channel flow at various Reynolds numbers and grid

resolutions to obtain significant improvement over the dynamic Smagorinsky model,

especially at coarse resolutions. This constrained formulation can be extended to

incorporate constraints on the mean of other flow quantities. C© 2013 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4819145]

I. INTRODUCTION

High Reynolds number flows of practical importance exhibit such a large range of length and

time scales that Direct Numerical Simulations (DNS) are rendered impossible for the foreseeable

future. Large eddy simulation (LES) is a viable analysis and design tool for complex flows due

to advances in massive parallel computers and numerical techniques. LES is essentially an under-

resolved turbulence simulation using a model for the unresolved scales to account for the inter-scale

interaction between the resolved and the unresolved scales. The success of LES is primarily due

to the dominance of the large, geometry dependent, resolved scales in determining important flow

dynamics, and statistics.

In LES, the large scales are directly accounted for by the spatially filtered Navier-Stokes

equations and the small scales are modeled by the sub-grid scale (SGS) stress. The spatially filtered

incompressible Navier-Stokes equations are

∂ui

∂t
+

∂

∂x j

(ui u j ) = −
∂ p

∂xi

+ ν
∂2ui

∂x j∂x j

−
∂τi j

∂x j

,

∂ui

∂xi

= 0,

(1)

where xi denotes the spatial coordinates, ui is the velocity field, p is the pressure, ν is the kinematic

viscosity, (·) denotes the spatial filter at grid scale �, and τi j = ui u j − ui u j is the SGS stress.

It is generally assumed that small scales are more universal and isotropic than large scales;

eddy viscosity type SGS models are therefore widely used in LES. Unfortunately, however, re-

solved scale dominance and small-scale isotropy is not always the case such as near the wall in
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wall-bounded flows. It is well known that LES with simple eddy viscosity model works poorly

under such circumstances.1–3 This is primarily due to the fact that near the wall, flow structures scale

in viscous units. If the near-wall grid is constructed to resolve the large or integral length scales of the

flow, these dynamically important near-wall structures remain unresolved. Moreover, near-wall flow

structures tend to be anisotropic and simple SGS models fail to accurately represent the turbulent

stress near the wall. It has been estimated that the grid requirement for a wall-resolved LES scales

as Re2
τ ,4 comparable to that for a DNS which scales as Re

9/4
τ . In order to overcome this severe

resolution requirement, various wall modeling approaches have been suggested and summarized

in some excellent review articles.5, 6 One such approach is that of hybridizing Reynolds Averaged

Navier-Stokes (RANS) and LES formulations. The present study is motivated by (1) the inherent

limitations of the existing hybrid RANS-LES methodologies and (2) the challenges in implementing

a robust hybrid RANS-LES framework for complex flows on unstructured grids. A brief review of

the limitations of existing hybrid RANS-LES approaches is presented in Sec. I A.

A. Hybrid RANS-LES approaches

The idea of hybridization of RANS and LES methodologies has been investigated by numerous

investigators. Schumann7 had elements of a hybrid approach which used averaged N-S equations as

a near-wall model for LES. Speziale8 proposed SGS models that allow DNS to transition smoothly

to a LES to Very LES (VLES) to RANS depending on the computational grid. Along the lines

of Speziale’s original idea is the Limited Numerical Scales (LNS) of Batten et al.9 and Girimaji’s

Partially Averaged Navier-Stokes (PANS) model.10 The most successful approach, however, has

been the Detached-Eddy Simulation (DES) by Spalart et al.11 for high Reynolds number complex

flows.

The near-wall region of a high Reynolds number wall-bounded flow is more appropriately

modeled by RANS than a coarse grid LES whose filter width is greater than the integral scale of

the turbulence. DES uses a limiter based on wall distance and local grid spacing to transition from

RANS to LES. The idea is to compute the boundary layer (“attached” region) using RANS and use

LES away from the wall (in the “separated” region). DES showed moderate success for external

flows with massive separation for which it was originally conceived. However, over the years, it has

had to evolve to address various issues arising out of different grid and flow situations. Menter and

Kuntz12 found that DES suffered from grid-induced separation where the grid was small enough

for the DES limiter to be activated but not small enough for proper LES. This was alleviated in

the Delayed DES (DDES) by Spalart et al.13 where dependency on the solution was introduced to

prolong the RANS region near the wall and delay separation. DES was also found to have a zonal

interface problem when applied to non-separating boundary layer. Nikitin et al.14 showed that when

applied to turbulent channel flow, DES results show unnatural change of the slope of the mean

velocity at the zonal interface in the log layer (refer to Piomelli and Balaras:5 p. 366, Figure 10).

This log-layer mismatch is explained by the absence (or lack) of resolved scale fluctuation in the

RANS zone and resolved by stochastic forcing in the interface region.15 The Improved Delayed

DES (IDDES) due to Shur et al.16 addresses the log-layer mismatch by stimulating instabilities in

the zonal interface.

Another hybrid RANS-LES approach is constructed by coupling separate RANS and LES flow

solvers which are running on separate domains of a complex geometry. Apart from the huge challenge

in the implementation of the coupling of two separate solvers in a parallel computing framework,17

flow information needs to be exchanged at the RANS-LES interface as boundary conditions. Areas

where problems arise are boundary conditions for the RANS turbulence model and those for the

LES solver, especially since the RANS region has no temporal fluctuations.18

B. An ideal RANS-LES zonal simulation

Since this zonal interface problem might be the main drawback of a hybrid approach, further

investigation is performed to determine whether it is an inherent problem or it is caused by curable

reasons like modeling/numerical error or switch design. To this end, an ideal zonal simulation of
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TABLE I. Grid parameters for turbulent channel flow.

LES

Case Reτ Nx × Ny × Nz Lx × Lz �x+ �z+ �y+
w �ycen/δ

590spec 590 12 × 64 × 16 π × π /2 154 58 0.7 0.05

590s 590 160 × 64 × 66 2π × π 23.2 28.1 4 0.05

590un 590 160 × 66 × (150, 100) 2π × π 23.2 12.4, 18.5 3.5 0.05

1kun 1000 160 × 70 × (150, 100) 2π × π 39.3 21, 31.4 4 0.05

2kun 2000 160 × 74 × (150, 100) 2π × π 78.5 42, 63 4 0.05

10kun 10 000 160 × 90 × (150, 100) 2π × π 393 209, 314 4 0.05

DNS

Moser et al.32 587 384 × 257 × 384 2π × π 9.7 4.8 . . . 0.012

Alamo et al.33 934 − × 385 × − 8π × 3π 11 5.7 . . . . . .

Hoyas and Jimenez34 2003 − × 633 × − 8π × 3π 12 6.1 . . . . . .

turbulent channel flow is considered, whose governing equation is

∂ui

∂t
+

∂ui u j

∂x j

= −
∂p

∂xi

+
1

Re
∇2ui − Fi ,

Fi =

{
∂τi j

∂x j
, y ≥ δz

σ (ui − URANS), y < δz,

∂ui

∂xi

= 0,

(2)

where δz is the zonal interface location, URANS denotes the exact mean velocity from RANS, σ is a

forcing coefficient. Reynolds number is Reτ = uτ δ/ν where uτ denotes friction velocity, δ channel

half-width, and ν viscosity. Case 590spec is simulated (described later in Table I) and the details

of the pseudo-spectral numerical method used are in Appendix A. The forcing term Fi enforces the

RANS solution and attenuates fluctuations for y < δz. Therefore, this region corresponds to an ideal

RANS region in the zonal simulation. Since there is no forcing in the region y ≥ δz, this region

corresponds to a LES zone. Mean velocity profile and root-mean-square (rms) velocity fluctuations

for this simulation is shown in Fig. 1. Though more exaggerated, the predicted mean velocity shows

the same jump across the boundary as shown in the DES of Nikitin et al.14 Baggett19 argues that

the velocity jump is unavoidable to balance the rapid jump of Reynolds stress in the log layer. Also,

this approach creates false wall-turbulence starting at the zonal interface that has striking similarity

with true wall-turbulence (Fig. 1(b)).

FIG. 1. Mean statistics from turbulent channel flow at Reτ = 590: (a) mean velocity, (b) rms velocity fluctuations. · · · · · · · ·

DNS of Moser et al.;32 ——— ideal RANS-LES zonal simulation with δ+
z = 60.
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C. Proposed hybridization approach

The zonal simulation leads to the conclusion that using a RANS model directly in the near-wall

region produces excessive dissipation. A less dissipative “subgrid-scale model” is needed which

leads the solution to a target quantity prescribed from external data only in the mean sense. This

target quantity may be the wall stress, Reynolds stress, or mean velocity and could be sourced from

RANS, DNS, experiments, or even empirical closures/fits. The intention is to perform LES in the

whole computational domain. Away from the wall, in general, LES has relaxed grid requirements

and simple eddy viscosity models work well. Hence, the external constraint should be imposed in a

limited region near the wall where LES is expected to be erroneous.

This paper addresses the “zonal interface issue” inherent in existing hybrid RANS-LES for-

mulations. It proposes a hybrid framework which “seamlessly” couples a desired mean behavior

near the wall to a “pure” LES solution away from the wall. Note that the proposed formulation still

provides for LES everywhere in the domain. The paper is organized as follows. A hybrid dynamic

SGS model constrained by externally prescribed Reynolds stress is formulated in Sec. II. The re-

sults of applying the proposed model to turbulent channel flow at various Reynolds numbers and

grids, and their discussion is in Sec. III. The applicability of the proposed SGS model as a wall

model is studied in Sec. IV. A summary of this work is presented in Sec. V. For completeness,

Appendixes A and B provide a short description of the numerical methods and models used.

II. CONSTRAINED DYNAMIC SGS MODEL

The Smagorinsky model20 for LES is a model for the SGS stress τ ij in terms of the local resolved

flow

τi j −
1

3
τkkδi j = −2(Cs�)2|S|Si j = −2νt Si j , (3)

where Cs is a fixed model coefficient, � is the filter width, Si j is the strain rate tensor,

|S| = (2Si j Si j )
1/2 and νt = (Cs�)2|S| are the eddy-viscosity. The Dynamic Smagorinsky model

(DSM) due to Germano et al.21 computes a spatially and temporally varying model coefficient Cs.

It is based on the Germano identity

L i j = Ti j − τ̂i j , (4)

where

L i j = ûi u j − ûi û j , Ti j = ûi u j − ûi û j , and τ̂i j = ûi u j − ûi u j . (5)

Here, (̂·) denotes test filtering at scale �̂ and is usually taken to be �̂ = 2�. Lij is the stress due to

scales intermediate between � and 2� and can be computed directly from the resolved field. Tij is

analogous to τ ij and is the corresponding SGS stress at the test filter scale

Ti j −
1

3
Tkkδi j = −2(Cs�̂)2 |̂S |̂Si j . (6)

The dynamic procedure to obtain the SGS model coefficient Cs attempts to minimize the Germano-

identity error (GIE),

ǫi j = T d
i j − τ̂ d

i j − Ld
i j

= 2(Cs�)2

[
|̂S|Si j −

(�̂

�

)2
|̂S |̂Si j

]
− Ld

i j

= (Cs�)2 Mi j − Ld
i j ,

(7)

where ( · )d denotes the deviatoric parts and Mi j = 2
[
|̂S|Si j −

(
�̂
�

)2
|̂S |̂Si j

]
. Since ǫij(Cs) = 0 is a

tensor equation, Cs is overdetermined. Lilly22 found the equations to be regularized when minimizing
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the GIE in a least-square sense. The cost function to be minimized can be expressed in the form

J =

∫




ǫi j (x)ǫi j (x)dx, (8)

where 
 is the averaging domain. This yields

(Cs�)2 =
(L i j Mi j )h

(Mi j Mi j )h

, (9)

where ( · )h denotes averaging over homogeneous directions for stability.21

To enable averaging in complex flows without any homogeneous directions, Meneveau et al.23

developed a Lagrangian version of DSM (LDSM) where Cs is averaged along fluid trajectories.

Essentially, LDSM attempts to minimize the pathline average of the local GIE in a least square

sense. The objective function to be minimized is given by

J =

∫


=pathline

ǫi j (z)ǫi j (z)dz =

∫ t

−∞

ǫi j (z(t ′), t ′)ǫi j (z(t ′), t ′)W (t − t ′)dt ′, (10)

where z is the trajectory of a fluid particle for earlier times t′ < t and W is a weighting function

to control the relative importance of events near time t, with those at earlier times. Choosing the

time weighting function of the form W (t − t ′) = T −1e−(t−t ′)/T yields two transport equations for

the Lagrangian average of the tensor products LijMij and MijMij as IL M and IM M , respectively. Their

solution yields

(Cs�)2 =
(L i j Mi j )p

(Mi j Mi j )p

=
IL M

IM M

, (11)

where ( · )p denotes averaging along pathlines and T is a time scale which represents the “memory”

of the Lagrangian averaging. Park and Mahesh24 introduced a dynamic approach to estimate the

Lagrangian time scale T based on a correlation of the GIE. Verma and Mahesh25 developed and

applied the model to complex flows on unstructured grids and showed better results over other

averaging methods. The large eddy simulations in Sec. III D are performed using DSM with

averaging along homogeneous directions (Eq. (9)), and using Lagrangian averaged DSM (Eq. (11))

with dynamic Lagrangian time scale25 elsewhere in the paper.

An advantage of the dynamic procedure is that various terms can be easily incorporated to

form dynamic mixed models.26 The minimization of an objective function yields the various model

coefficients in a mixed model. The construct of a minimization problem also allows the incorporation

of constraints. Ghosal et al.27 showed that the averaging and truncation operations on the computed

eddy viscosity can be viewed as a constrained minimization of Eq. (7). Shi et al.28 imposed an energy

dissipation constraint on the dynamic mixed similarity model. Under the ambit of the dynamic

procedure, Eq. (8) can be generalized and the objective function for constrained minimization can

be constructed to be of the form

J =

∫




ǫLi jǫ
L
i j dx + ωC

∫




ǫCi jǫ
C
i j dx, (12)

where ǫLi j is a measure of the error in the LES model, ǫCi j is a constraint which is desired to be

satisfied, ωC is a weighting function, and L and C denote LES and constraint, respectively.

For the scope of the present work, only Reynolds stress is considered to be provided as a

constraint. More particularly, only a time average of the Reynolds stress needs to be provided and

hence it could be sourced from RANS, DNS, experimental statistics, or even empirical closures/fits.

A simple and efficient hybrid SGS model is proposed in Subsection II A that incorporates Reynolds

stress constraints into the dynamic procedure. This idea was first introduced by Park and Mahesh.29
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A. Reynolds stress constrained DSM

Performing an ensemble average of the momentum LES equations (Eq. (1)) results in

∂〈ui 〉

∂t
+

∂

∂x j

(〈ui 〉〈u j 〉) = −
∂〈p〉

∂xi

+ ν
∂2〈ui 〉

∂x j∂x j

−
∂

∂x j

(〈ui u j 〉 − 〈ui 〉 〈u j 〉 + 〈τi j 〉), (13)

where 〈 · 〉 denotes an ensemble average, equivalent to ( · )t, h = (temporal + spatial averaging in

homogeneous directions, if any). Note that 〈ri j 〉 = 〈ui u j 〉 − 〈ui 〉〈u j 〉 is the resolved Reynolds stress.

Under the Ergodic assumption that 〈ui 〉 = 〈ui 〉 and 〈p〉 = 〈p〉, Eq. (13) can be compared with the

RANS equations to yield

〈ri j 〉 + 〈τi j 〉 = Ri j , (14)

where the RANS Reynolds stress Ri j = 〈ui u j 〉 − 〈ui 〉〈u j 〉 is assumed to be available from an

external source. Note that this assumption does not strictly hold, if the LES grid is coarser than

the RANS grid. Strictly speaking 〈ui 〉 = 〈ui 〉 is always true. The above condition that the ensemble

average of the sum of the resolved and SGS stress be equal to the RANS Reynolds stress is desired

to be imposed as a constraint.

Using a SGS stress model τ M
i j , the error in Eq. (14) is ensemble-averaged upto the current time

t and written instantaneously (for unsteady simulation) as

ǫRi j = 〈ui u j 〉t − 〈ui 〉t 〈u j 〉t + 〈τ M
i j 〉t − Ri j , (15)

where ǫRi j is the error (andR denotes RANS), and 〈(·)〉t = 1
t

∑t
0(·) is cumulative, ensemble-averaged

up to current time t. When t is sufficiently large, ǫRi j in Eq. (15) represents deviation from Eq. (14)

due to SGS modeling error. Thus, the minimization of ǫRi j seems to be a proper RANS constraint.

Initially, minimization of ǫRi j forces the current time step’s Reynolds stress (resolved+modeled) to

closely resemble the target Ri j . With such a “close” initial state, the running time averaged Reynolds

stress reaches the target fast (4δ/uτ for case 590spec).

Thus, following Eq. (12), the cost function to be minimized can take the form

J =

∫




ǫLi jǫ
L
i j dx + ωR

∫




ǫRi j ǫ
R
i j dx, (16)

where 
 is the domain, ǫLi j is the LES (Germano-identity) error, and ωR is the weight function

for RANS constraints. For the sake of brevity, (Cs�)2 is denoted as Cs henceforth. Considering a

one-parameter SGS model τ M
i j = τ M

i j (Cs), the optimal Cs is given by

δJ (Cs) =

∫




∂

∂Cs

[
ǫLi jǫ

L
i j + ωRǫRi j ǫ

R
i j

]
δCsdx = 0, (17)

which implies that

∂

∂Cs

[
ǫLi jǫ

L
i j + ωRǫRi j ǫ

R
i j

]
= 0. (18)

Equation (18) is a general relation that can be used for complex flows and one-parameter SGS

models. Averaging along homogeneous directions or pathlines can be incorporated by considering

ω to be the averaging domain and by assuming Cs to be constant in ω.

Substituting GIE from Eq. (7) in the first term of the above Eq. (18) leads to

∂

∂Cs

[
ǫLi jǫ

L
i j

]
= 2Cs(Mi j Mi j ) − 2(L i j Mi j ). (19)

Clearly, equating Eq. (19) to zero results in the standard DSM (Eqs. (9) and (11)). Next, the RANS

Reynolds-stress reconstruction error (Eq. (15)) is considered by substituting the Smagorinsky model
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for τ M
i j (Eq. (3)),

ǫRi j = 〈ri j 〉t − 2〈Cs |S|Si j 〉t − Ri j

≈ 〈ri j 〉t − 2Cs〈|S|Si j 〉t − Ri j

= 〈ri j 〉t − Ri j︸ ︷︷ ︸
Ai j

− 2〈|S|Si j 〉t︸ ︷︷ ︸
Bi j

Cs

≡ Ai j − Bi j Cs, (20)

where 〈ri j 〉t = 〈ui u j 〉t − 〈ui 〉t 〈u j 〉t and Cs is taken out of the 〈 · 〉t operator. Similar to Eq. (19), the

second term of Eq. (18) is

∂

∂Cs

[
ǫRi j ǫ

R
i j

]
= 2Cs Bi j Bi j − 2Ai j Bi j . (21)

Inserting Eqs. (19) and (21) in Eq. (18) yields the constrained SGS model coefficient Cs as

Cs =
L i j Mi j + ωRAi j Bi j

Mi j Mi j + ωRBi j Bi j

. (22)

B. Dynamic determination of ω
R

In principle, the expression for Cs in Eq. (22) is applicable throughout the flow. However, as

mentioned earlier, the intention is to apply the external constraint only in a limited region where

LES is expected to be erroneous. Figure 2(a) shows that instantaneously, the GIE is high near the

wall and infact manifests itself in the form of long correlation times near-wall streaks as shown in

Fig. 2(b).

The GIE (Eq. (7)) is proposed as a measure of accuracy of LES utilizing a dynamic Smagorinsky

SGS model. In fact, the GIE has been used to compare the performance of different models during

LES.26, 30 Figure 3 shows that time-averaged GIE is very high near the wall so that the validity of the

Smagorinsky SGS model (Eq. (3)) in this region can be questioned. The external constraint should

be active in such regions where the GIE is deemed too high; to be determined by the weight function

ωR. Note that, to transition from RANS to LES, DES uses purely grid parameters such as the wall

distance and local grid spacing; its variants incorporate some flow information. The current proposal

to use GIE is explicitly dependent on the flow and the underlying SGS model.

The Germano-identity error is normalized by the modeled SGS stress as

E = ǫLi jǫ
L
i j/τ

M
i j τ M

i j . (23)

(a) (b)

FIG. 2. Instantaneous contours of Germano-identity error g = ǫLi j ǫ
L
i j /u4

τ from LES of turbulent channel flow at Reτ = 590.

(a) yz plane, contours vary as 0 ≤ g ≤ 3, (b) xz plane at y+ = 12, contours vary as 0 ≤ g ≤ 40. Reproduced by permission

from A. Verma and K. Mahesh, Phys. Fluids 24, 085101 (2012). Copyright 2012 by American Institute of Physics.
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FIG. 3. Turbulent channel flow at Reτ = 590 – Case 590spec: Germano-identity error normalized by, (a) bulk velocity Ub,

(b) modeled subgrid stress.

The weight function ωR is then proposed to be of the form

ωR = Cω max (E − Et, 0), (24)

where Cω is a scaling coefficient and Et is the threshold value. Nominally, Cω = 0.1 and Et = 100 is

chosen to impose the constraints in the near-wall region. Separately, the Eddy Damped Quasi Normal

Markovian (EDQNM) analysis of isotropic turbulence also yields Et = 100. Hence ωR �= 0 implies

the external constraint is active only in the region where the normalized Germano-identity error E

exceeds a certain threshold Et . Clearly, ωR = 0 retrieves the standard DSM (Eq. (9) or Eq. (11)).

Sensitivity of the proposed hybrid model to these two parameters is studied in Sec. III C.

Note that such a form for ωR is also consistent with Baggett19 who proposed that the ‘blending’

function merging the RANS and LES regions of the flow be a function of the resolution and might

be parameterized by the ratio of a measure of the filter width and a measure of the turbulent integral

dissipation length. It is however, different from a blending function β : 0 ≤ β ≤ 1 which transitions

from pure LES to RANS eddy viscosity.31

III. RESULTS

LES is performed for turbulent channel flow at various Reynolds numbers Reτ = uτ δ/ν and grid

resolutions as tabulated in Table I. Here uτ , δ and ν denote the friction velocity, channel half-width,

and viscosity, respectively. All cases have uniform spacing in x. Cases 590spec and 590s have uniform

spacing in z. The rest have an unstructured grid near the wall in the spanwise direction which allows

near-wall spacings (scaling with viscosity) independent of outer region spacings. A slightly finer

�z+ is used near-wall which is then quickly coarsened to the outer region �z+ after 11 rows. Away

from the wall in the channel center, the grids are constructed to have almost-isotropic cells; the cell

size scales with the outer variables and hence are the same for all Reτ . Also note that the near-wall

�z is the same; only �y is varied to achieve the same �y+
wall ≈ 4. This gridding methodology is

used for the unstructured grid cases 590un, 1kun, 2kun, and 10kun. The LES results are compared to

DNS whose grid parameters are also included in the table for comparison. Henceforth, DSM denotes

Dynamic Smagorinsky Model (Eq. (9) or Eq. (11)) and CDSM denotes Constrained DSM which

is the proposed Reynolds stress constrained model (Eq. (22)). The proposed model is validated in

Sec. III A, the effect of the imposed constraint is studied in Sec. III B, and the sensitivity to model

parameters and numerical methods is discussed in Secs. III C and III D, respectively. The numerical

methods employed for the LES and a RANS model to provide the Reynolds stress constraint are

briefly described in the Appendix.
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FIG. 4. Mean statistics from turbulent channel flow at Reτ = 590 – Case 590un: (a) mean velocity, (b) rms velocity

fluctuations, (c) Reynolds stress, (d) eddy-viscosity.

A. Validation

Results are shown at Reτ = 590 and 1000 (cases 590un and 1kun) to provide validation for

CDSM as a LES model. An unstructured finite-volume method (Appendix A) is used and the LES

terms are Lagrangian averaged (Eq. (11)). Figure 4 shows results from case 590un using the ensemble

averaged Reynolds shear stress from the DNS of Moser et al.32 as the constraint. Both DSM and

CDSM predict the mean and rms velocity and Reynolds shear stress in good agreement with the

DNS of Moser et al.32 In fact, CDSM shows a slight improvement over DSM for mean and rms

streamwise velocity. Figure 4(c) shows the resolved, modeled, and total Reynolds stress for DSM

and CDSM. For CDSM, the resolved shear stress is slightly lower than DSM near the wall but is

compensated by higher SGS stress such that the total shear stress is closer to the DNS constraint

than DSM. Eddy viscosity computed due to CDSM is higher near the wall than DSM.

Admittedly, the grid resolution for case 590un is adequate for a reasonably resolved LES. In this

limit, CDSM offers marginal improvement over DSM. A coarser grid is used for LES at Reτ = 1000

and results are shown in Fig. 5 for case 1kun. The mean and rms streamwise velocity and Reynolds

shear stress predicted by CDSM is in good agreement with the DNS of Alamo et al.33 The magnitude

of peak urms is better predicted due to reasonable near-wall �z+ even though it is shifted due to

coarse near-wall �y+. Analogous to case 590un, the computed eddy viscosity is higher near the

wall using CDSM which increases the modeled SGS stress, compensating for the reduced resolved

Reynolds stress such that the total shear stress is closer to the imposed constraint near the wall

(Figs. 5(c)–5(d)). This validates the current hybridization procedure to incorporate mean constraints
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FIG. 5. Mean statistics from turbulent channel flow at Reτ = 1000 – Case 1kun: (a) mean velocity, (b) rms velocity

fluctuations, (c) Reynolds stress, (d) eddy-viscosity.

in an unsteady LES methodology. The mean velocity profile is captured better with CDSM than

DSM on coarse grids.

B. Effect of constraint

As seen in Subsection III A, the constraint plays a more significant role on coarser grids when

the base SGS stress model is unable to compensate adequately for the reduced resolution (for case

1kun). Hence, the effect of the constraint on the solution is studied at Reτ = 590 for case 590s which

is a coarser grid than that was employed to validate the model in Subsection III A (for case 590un).

Figures 6(a)–6(b) show again that CDSM improves the mean velocity and total Reynolds shear

stress prediction compared to DSM. Note that increased �z+ resolution near the wall was found to

improve the mean velocity prediction (case 590un). For LES on a coarse grid, imposition of a steady

constraint in the mean increases the modeled stress and reduces the resolved stress. As a result, Lij

and Mij are reduced, resulting in a lower GIE near the wall with CDSM as shown in Fig. 6(c). This

indicates that constraining the mean near-wall Reynolds stress to the appropriate value reduces the

error inherent in the SGS stress model. Furthermore, Fig. 6(d) shows that only a few points near the

wall have the SGS stress normalized GIE greater than the threshold Et . Hence the constraint is active

only at a few points near the wall (y+ < 100) as can be seen by non-trivial values of the weight

function ωR > 0. The near-wall variation of the terms of Eq. (22) are plotted in Fig. 4(e). In the

computation of Cs, the term due to the Reynolds stress constraint
Ai j Bi j

Bi j Bi j
is dominant near the wall
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FIG. 6. Mean statistics from turbulent channel flow at Reτ = 590 – Case 590s: (a) mean velocity, (b) Reynolds stress, (c)

Germano-identity error, (d) weight function, (e) model coefficient, (f) eddy-viscosity.

due to high values of ωR. Away from the wall as ωR → 0, Cs →
L i j Mi j

Mi j Mi j
. Hence the transition and

variation of the hybrid Cs given by Eq. (22) (denoted by solid red). Increased Cs results in increased

eddy viscosity with CDSM (Fig. 4(f)). The transition of the CDSM ν t to the DSM ν t occurs around

the same location (y+ ∼ 80) where Cs transitions because ωR → 0. Also plotted is the RANS eddy

viscosity ν+
t which is obtained from the non-dimensionalised RANS equation for channel flow

(1 + ν+
t )

du+

dy+
= 1 −

y+

Reτ

,
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(a) (b)

FIG. 7. Instantaneous contours of streamwise vorticity ωx in the xz plane at y+ = 12 – Case 590s: (a) DSM, (b) CDSM.

where du+/dy+ is the gradient of the ensemble averaged streamwise velocity from CDSM. Note that

the value of ν t computed using CDSM approaches and has a similar slope as the RANS ν t near the

wall. Templeton et al.35 provide a relation between the LES and RANS eddy viscosity for channel

flow

νL E S
t = νR AN S

t +
〈uv〉

〈du/dy〉
,

which also predicts that the mean LES eddy viscosity is always less than the RANS eddy viscosity.

Such behavior of the CDSM eddy viscosity near the wall indicates that minimization of the RANS

Reynolds-stress reconstruction error ǫRi j (Eq. (15)) could also be construed as a near-wall RANS

model.

The effect of the near-wall constraint on the instantaneous flow field is assessed in Fig. 7 which

compares streamwise vorticity ωx in an xz plane near the wall at y+ = 12. Clearly, the small structures

are at the same scale for DSM and CDSM. This demonstrates that having an eddy viscosity higher

than DSM near the wall did not dissipate away the smaller scales. Different from hybrid RANS/LES

methods, Park and Mahesh24 also reported higher eddy viscosity near the wall and comparable

near-wall structures using their control-based DSM which attempts to further minimize the GIE by

including the sensitivity of the velocity field to Cs. Hence, the current formulation is indeed behaving

as a large eddy simulation all through the domain and may even be successful in predicting higher

order statistics near the wall.

C. Sensitivity to Et and Cω

Various numerical experiments have been performed to study the sensitivity of CDSM to the

threshold Et and scaling coefficient Cω. Figure 6(d) shows that the normalized GIE has a logarithmic

variation near the wall. Hence changing Et only by factors may add or remove any significant volume

to/from the constrained region. It has indeed been observed that changes of the order of this did not

make any apparent difference to the statistics. Note that reducing Et to levels which would constrain

a significant portion of the domain beyond the near-wall region (e.g., Et = 0) essentially results in

Cs ∼
Ai j Bi j

Bi j Bi j
which is not a desirable SGS stress model for LES (but akin to a RANS model near

the wall as shown before). Setting Et to low values indeed results in spurious solutions. Increasing

Et leads to the constraint being active in a smaller region and the solution tends towards DSM. For

instance in Fig. 6(d), Et = 100 results in ωR > 0 for y+ ≤ 90. Et = 1000 would result in ωR > 0 for

only y+ ≤ 30. Unless there is an order of magnitude change in Et which would significantly expand

or contract the constrained region, it can be said that CDSM is free of sensitivity to a judicious

choice of the threshold Et limiting it to a small region near the wall. Recall that Et = 100 is also

justified from EDQNM analysis of isotropic turbulence.

Similar to Et , CDSM is sensitive to only orders of magnitude change in the value of Cω.

Obviously, in the limit Cω → 0, CDSM tends to DSM. Increasing Cω implies a stronger imposition

of the constraint over the base SGS stress model. Sensitivity of CDSM to the scaling coefficient

Cω is studied at Reτ = 2000 and shown in Fig. 8. The coarse near-wall �z+ in case 2kun serves

to distinguish the performance of CDSM when Cω is changed by an order of magnitude (Cω = 0.1
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FIG. 8. Mean statistics from turbulent channel flow at Reτ = 2000 – Case 2kun: (a) eddy-viscosity, (b) Germano-identity

error and weight function, (c) resolved and SGS Reynolds stress, (d) total Reynolds stress, (e) mean velocity.

is increased to 1.0). Stronger imposition of the mean Reynolds stress constraint increases the

eddy viscosity near the wall, following the RANS eddy viscosity (Fig. 8(a)). As can be expected,

Fig. 8(b) shows that the weight function ωR is an order of magnitude higher at Cω = 1.0 than at

Cω = 0.1 and there is a significant drop in GIE near the wall. The increased eddy viscosity leads to

higher modeled SGS stress accompanied by a drop in the resolved Reynolds shear stress (Fig. 8(c)).

Since ωR is a decade higher at Cω = 1.0, the total Reynolds shear stress is closer to the imposed

constraint in the small region around 20 ≤ y+ ≤ 40 than at Cω = 0.1 (Fig. 8(d)). The impact on

the bulk flow is such that the mean streamwise velocity is slightly closer to the DNS with Cω = 1.0

(Fig. 8(e)). Hence, CDSM is marginally sensitive to the choice of Cω.
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FIG. 9. Mean velocity from turbulent channel flow at Reτ = 590 (case 590spec) using different numerical methods:

(a) pseudo-spectral, (b) finite-difference, (c) unstructured finite-volume.

D. Effect of numerical method

As is true for any simulation methodology, an idea of what constitutes an adequate grid re-

quirement for a reasonable solution is essential, particularly when the intention is to simulate high

Reynolds number flows in complex geometries. Apart from the base SGS model, the inherent accu-

racy of the numerical method plays a major role in the accuracy of results obtained from CDSM on

coarse grids. Figure 9 shows mean velocity profiles from using three numerical methods (described

in Appendix A): Chebychev pseudo-spectral, structured finite-difference, and unstructured finite-

volume method. These results are obtained for case 590spec which has a very coarse near-wall �z+

and �x+. The Chebychev pseudo-spectral solver produces reasonable results. The log-layer and the

outer region are not predicted as accurately by spatially second-order central difference schemes on

such a coarse grid. However, CDSM consistently predicts better results than DSM and relatively

relaxes the near-wall grid requirement for accurate Cf prediction over DSM.

IV. IMPLICATIONS AS A WALL MODEL

The goal of wall modeling is to relax the near-wall grid scaling with Reynolds number. DES

achieves this by operating on a RANS near-wall grid where the wall-parallel spacing is large

compared to the boundary-layer thickness (�‖ ≫ δ) but the wall-normal grid spacing requirement

is stricter (�+
⊥,w ≤ 1). Nikitin et al.14 followed this guideline for their DES of channel flow and

showed results with �‖ = 0.1δ and �y+
w < 1. Further savings could be obtained by relaxing the

wall-normal grid spacing requirement. When the first off-wall grid point is in the log layer, the filter

width is much larger than the local turbulent integral scales. Hence, wall stress models are required

to compensate for the SGS modeling errors in this region. Nicoud et al.,36 Templeton et al.35 and

various other researchers use walls stress models on coarse grids. Chung and Pullin37 propose a

stretched-vortex SGS model to compute an instantaneous slip velocity at a “virtual wall” which

scales with δ.

In this work, LES is performed using no-slip boundary conditions at the wall with a slightly

relaxed near-wall grid requirement. Results have been shown with wall parallel coarsening

(�x ≥ 0.04δ, �z > 0.02δ) and reasonable wall-normal resolution (�y+ ∼ 4). For instance,

Fig. 8(e) in Sec. III C showed that CDSM predicts the mean velocity for Reτ = 2000 at such a

coarse resolution where DSM is just not expected to perform well. Figure 10 shows that CDSM is

able to reasonably predict the mean velocity even when �z+
w > 200 at Reτ = 10 000. The reference

lines are plotted to allow comparison to the high Re DES of Nikitin et al.14 and LES of Chung

and Pullin.37 The log-law is not well predicted and the Reynolds shear stress is not expected to be

resolved; the CDSM constraint compensates by increasing the modeled SGS stress near the wall.

At such coarse resolution, there is a log-layer mismatch and CDSM does not work as a proper wall

model.

Recall that the target Reynolds stress could be sourced from RANS, DNS, experiments, or

empirical closures/fits. For instance, case 590spec uses Reynolds stress from a RANS solution
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FIG. 10. Mean statistics from turbulent channel flow at Reτ = 103 – Case 10kun: (a) mean velocity; - - - -: log(y+/11)/0.37 +

11 (Ref. 37); — · —: y+, log(y+)/0.41 + 5.2 (Ref. 14), (b) Reynolds stress.

(Appendix B), and cases 590s, 590un, and 1kun use Reynolds stress from DNS. At high Reynolds

numbers and complex flows, the target Reynolds stress may not be available a priori. A more

convenient alternative may be models for Reynolds stress. Such models need only be reasonably

accurate in the near-wall region as the constraint is only intended to be applied there. Cases 2kun and

10kun use Reynolds stress obtained using the model described by Perry et al.38 and made available

as an online tool. Figure 8(c)–8(d) show that the constraint is in good agreement with DNS near the

wall and this is also found to be true for other available DNS data (not shown here). Figure 11 shows

that the weight function ωR is significant only at some grid points near the wall upto y ≤ 0.07δ; this

region gets smaller with increasing Re. Hence the Reynolds stress constraint is only active at these

points, implying that the target Reynolds stress needs only be accurate in this region near the wall.

The proposed procedure to impose a constraint is general (Eq. (12)) and can in principle, be

extended to incorporate constraints other than Reynolds stress. In general, the constraint ǫCi j would

need to be expressed as a function of the model coefficient Cs and then the minimization can be

carried out either analytically or numerically. For instance, a desired and relatively easily available

constraint is the skin friction Cf or wall shear stress τw. Then, the velocity U would need to be

expressed as an implicit function of Cs and the minimization of ǫCi j (U (Cs)) may be carried out in a
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FIG. 11. Comparison of weight function ωR from cases 590un, 1kun, 2kun, and 10kun using Cω = 0.1.
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predictor-corrector manner. In fact, such a predictor-corrector approach has been used by Park and

Mahesh24 in their control-based SGS model. However, such “implicit dependence” models would

not lend themselves to an algebraic expression for Cs such as Eq. (22). Wikström et al.39 and Fureby

et al.40 use a model for the wall eddy viscosity νbc,

ν + νbc = τw/(du/dy)w,

where u is given by the law of the wall. Instead of imposing a steady condition like the law of the

wall, this expression for the wall shear stress can be imposed in the mean as

〈(ν + 2Cs,bc|S|) Si j 〉t = 〈τi j,w〉t .

Analogous to Eq. (15), the constraint can be now be formulated as the error

ǫi jR = 〈τi j 〉t − 〈νSi j 〉t − 〈Cs |S|Si j 〉t

≈ Ai j − Bi j Cs .

Finally, skin-friction coefficient C f = τw/( 1
2
U 2) and wall pressure fluctuations σ (p)/τw are

plotted in Figs. 12 and 13, respectively. Cf in Fig. 12(a) is based on the centerline velocity Ucl and

plotted against Reτ , whereas in Fig. 12(b), it is based on the bulk velocity Ub and bulk Reynolds

number Reb = 2Ubδ/ν. CDSM is in reasonable agreement with DNS data and empirical fits and it

is always better than DSM. Only when the grid is very coarse (case 10kun), CDSM tends to recede
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FIG. 13. Wall pressure fluctuations σ (p)/τw from cases 590un, 1kun, 2kun, and 10kun. - - - -: (6.5 + 1.86 log(y+/333))1/2

(Ref. 42); ———: (2.60 log(Reτ ) − 11.25)1/2 (Ref. 43); ⋄ : experiment of Bull and Thomas.44
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from the empirical fits. Figure 13 shows that wall pressure fluctuations from CDSM are in good

agreement with DNS and the empirical fit at Reτ = 590 and 1000. However, as the grid coarsens and

resolved stress decreases, CDSM predicts decreased resolved σ (p)/τw as is expected. Thus, CDSM

is a reliable model to perform LES all the way to the wall, better predict skin friction over DSM and

also predicts rms wall pressure fluctuations reasonably well.

V. CONCLUSION

DES is a widely used methodology for high Reynolds number external aerodynamics.45 LES has

been used successfully for high Reynolds number separated flows such as in gas turbine combustors46

and predicting unsteady forces on marine propellers.47 The strong scaling of the computing cost of

LES with Reynolds number is a challenge to LES being applied to attached wall-bounded flows

of engineering interest. However, LES for wall-bounded flows offers the advantage of computing

fluctuating quantities on the wall such as wall pressure fluctuations and sound.48

Nicoud et al.36 note that DES is a suboptimal SGS model because the underlying model is

calibrated in the RANS mode. An ideal zonal RANS/LES simulation shows that the zonal interface

problem comes from excessive dissipation in the RANS region. The proposed model approaches the

mean modeled behavior of RANS through a constraint on what is essentially a SGS model. Primarily,

it allows hybridization of the LES methodology with a desired or expected mean target quantity.

Currently, external Reynolds stress constraints are incorporated into the Dynamic Smagorinsky

model. Second, this target quantity may be imposed in a small region near the wall for wall-bounded

flows where SGS modeling errors are expected to be large. Normalized Germano-identity error is

used as a measure of SGS modeling errors and hence as a weight for the constraint.

LES is performed for turbulent channel flows at various Reynolds numbers and grid resolutions.

CDSM outperforms DSM and this improvement is more apparent as the near-wall grid coarsens.

At very coarse resolution, there is a log-layer mismatch and CDSM does not work as a proper wall

model. CDSM achieves better predictions than DSM by constraining the total Reynolds stress to an

a priori imposed target. It has been shown that this target Reynolds stress can be obtained from

RANS, DNS, and near-wall models. The model is shown to be marginally sensitive to the scaling

coefficient Cω upto an order of magnitude. Threshold Et must be judiciously chosen such that the

constraint is imposed only in the near-wall region. Imposition of the near-wall Reynolds stress

constraint raises the eddy viscosity and reduces the Germano-identity error.

Finally, this procedure does not force the instantaneous flow to a mean quantity but only

constrains the mean behavior. Hence, CDSM predicts unsteady behavior down to the wall and is

a reliable tool to predict quantities of engineering interest such as skin friction and wall pressure

fluctuations. For future work, CDSM will be applied to complex geometries and separated flows.
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APPENDIX A: NUMERICAL METHOD

1. Unstructured finite-volume

Equation (1) is solved by a numerical method developed by Mahesh et al.46 for incompressible

flows on unstructured grids. The algorithm is derived to be robust without numerical dissipation.

It is a finite volume method where the Cartesian velocities and pressure are stored at the centroids

of the cells, and the face normal velocities are stored independently at the centroids of the faces.

A predictor-corrector approach is used. The predicted velocities at the control volume centroids are

first obtained and then interpolated to obtain the face normal velocities. The predicted face normal

velocity is projected so that the continuity equation in Eq. (1) is discretely satisfied. This yields a
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Poisson equation for pressure which is solved iteratively using a multigrid approach. The pressure

field is used to update the Cartesian control volume velocities using a least-square formulation.

Time advancement is performed using an implicit Crank-Nicolson scheme. The algorithm has been

validated for a variety of problems over a range of Reynolds numbers.46 To improve results on skewed

grids, the viscous terms and the pressure Poisson equation are treated differently. The generalized

improved deferred correction method by Jang49 is used to calculate the viscous derivatives and the

right-hand side of the pressure Poisson equation.

2. Pseudo-spectral

This numerical method is similar to that used in Kim et al.50 Fourier expansion with 3/2-rule

dealiasing for homogeneous (x and z) directions and a Chebychev polynomial expansion is adopted in

the wall-normal direction. The governing equations are written in terms of the resolved wall-normal

vorticity (g ≡ ∂u/∂z − ∂w/∂x) and the Laplacian of the resolved wall-normal velocity (φ ≡ ∇2v)

to eliminate the pressure, which take the form

∂∇2v

∂t
= hv +

1

Reτ

∇4v,

∂g

∂t
= hg +

1

Reτ

∇2g,

∇ · u = 0,

(A1)

where hv = −∂y(∂x H1 + ∂z H3) + (∂2
x + ∂2

z )H2, hg = ∂zH1 − ∂xH3, and Hi = −∂ j (ui u j ) − ∂ jτ
M
i j

(i = 1, 2, 3) are nonlinear and SGS terms. Plane-averaged streamwise and spanwise velocities, or

wall-parallel velocities at (kx, kz) = (0, 0) modes are integrated separately. The flow is driven by

a fixed mean pressure gradient, and the governing equation (A1) is naturally normalized in terms

of uτ and δ. hv and hg are treated explicitly with the Adams–Bashforth scheme and viscous terms

are treated implicitly with the Crank–Nicolson method. A temporal discretization scheme similar to

Ref. 51 is used for the implicit treatment of viscous terms. As the test filter of DSM, the sharp cutoff

filter is applied to homogeneous directions with �̂/� = 2.

3. Structured finite-difference

Equation (1) is solved by a second order fully conservative finite difference scheme in a staggered

grid system.52 A semi-implicit time marching algorithm is used where the diffusion term in the wall

normal direction is treated implicitly with the Crank-Nicolson scheme and a third order Runge-Kutta

scheme53 is used for all other terms. The fractional step method54 is used in order to enforce the

divergence free condition. The resulting Poisson equation for the pressure is solved using Fourier

Transform in the streamwise and spanwise directions and a tri-diagonal matrix algorithm in the

wall normal direction. A three-point Simpson’s filter is used as the test filter along the wall parallel

directions with �̂/� = 2.

APPENDIX B: RANS MODELS

In a practical computation, the Reynolds stress Ri j in Aij (Eq. (20)) could be replaced by RANS

model RM
i j . The algebraic eddy viscosity model is given by

RM
i j = −2νR

T

〈
Si j

〉
, (B1)

where νR
T denotes RANS eddy viscosity. The Spalart-Allmaras model55 for RANS eddy viscosity

νR
T is used:

Dν̃

Dt
= cb1 S̃ν̃ +

1

σ

[
∇ · ((ν + ν̃) ∇ν̃) + cb2 (∇ν̃)2

]
− cw1 fw

(
ν̃

d

)2

, (B2)
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where νT = ν̃ fv1, fv1 = χ3/(χ3 + cv1), and χ = ν̃/ν. S is either magnitude of vorticity or strain

rate. The model is closed with the following coefficients and wall functions:

S̃ = S + ν̃
κ2d2 fv2, fv2 =

(
1 +

χ

cv2

)−3

,

fw = g
(

1+c6
w3

g6+c6
w3

)1/6

, g = r + cw2(r6 − r ), r = ν̃

S̃κ2d2 ,

cb1 = 0.1355, σ = 2
3
, cb2 = 0.622, κ = 0.41, cv2 = 5,

cw1 = cb1

κ2 + 1+cb2

σ
, cw2 = 0.3, cw3 = 2, cv1 = 7.1.

(B3)
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5 (1994).

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  128.101.142.134 On: Thu, 10 Mar

2016 18:21:24


