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A simple inviscid model to predict the onset of breakdown in an axisymmetric vortex is proposed.
Three problems are considered: the shock-induced breakdown of a compressible vortex, the
breakdown of a free compressible vortex, and the breakdown of a free incompressible vortex. The
same physical reasoning is used in all three problems to predict the onset of breakdown. It is
hypothesized that breakdown is the result of the competing effects of adverse pressure rise and
streamwise momentum flux at the vortex centerline. Breakdown is assumed to occur if the pressure
rise exceeds the axial momentum flux. A formula with no adjustable constants is derived for the
critical swirl number in all three problems. The dependence of the critical swirl number on
parameters such as upstream Mach number, excess/deficit in centerline axial velocity, and shock
oblique angle is explored. The predictions for the onset of shock-induced breakdown and free
incompressible breakdown are compared to experiment and computation, and good agreement is
observed. Finally, a new breakdown map is proposed. It is suggested that the adverse pressure rise
at the vortex axis be plotted against the axial momentum flux to determine the onset of breakdown.
The proposed map allows the simultaneous comparison of data from flows ranging from
incompressible breakdown to breakdown induced by a shock wave. ©1996 American Institute of
Physics.@S1070-6631~96!02112-5#

I. INTRODUCTION

A large body of information exists~e.g. see the review
articles by Hall,1 Leibovich,2 Wedemeyer,3 Escudier,4

Stuart,5 and Delery6! on the breakdown of incompressible
streamwise vortices. Less is known about vortex breakdown
at high speeds. An interesting example of supersonic vortex
breakdown is the breakdown induced by the interaction of
the vortex with a shock wave. The flow in supersonic engine
inlets and over high-speed delta wings constitute technologi-
cally important examples of this phenomenon, which is
termed ‘‘shock-induced vortex breakdown.’’

Gustintsevet al.7 and Zatolokaet al.8 appear to have
conducted the earliest investigations into shock-induced vor-
tex breakdown. The qualitative similarity of the flow to that
of a separated boundary layer was noted in these experi-
ments. Subsequently, Horowitz,9 Delery et al.,10 Metwally
et al.,11 and Cattafesta and Settles12 have experimentally
studied vortex breakdown induced by a normal shock. The
interaction between streamwise vortices and wedge-attached
oblique shock waves was experimentally investigated by
Kalkhoran and Sforza.13

Horowitz9 and Deleryet al.10 were the first to quantita-
tively characterize the nature of the breakdown. Their experi-
ments studied normal shocks of strength equal to Mach 1.6,
1.75, 2 and 2.28. At each Mach number, they varied the swirl
in the incident vortex and identified a critical swirl number
above which the vortex would break down. The results were
plotted on a ‘‘breakdown map’’ of swirl number against
Mach number, where it was observed that the critical swirl
number decreased as the Mach number of the shock in-
creased. A companion numerical study using the Euler equa-

tions supported the experimentally observed trends. The ex-
periments by Metwallyet al.11 and Cattafesta and Settles12

extended the range of available data to Mach 4. Based on
their visualization of the flow, Metwallyet al.11 proposed a
qualitative picture of the flow-field resulting from the break-
down of the vortex.

Rizzetta14 obtained numerical solutions to the Reynolds
averaged Euler and Navier–Stokes equations, with the objec-
tive of predicting Kalkhoran and Sforza’s13 experimental
measurements of pressure distribution on the wedge. The
swirling supersonic flow in a circular duct was computed by
Kandil et al.15,16 who provided qualitative flow-field infor-
mation on the breakdown. The most extensive computations
of shock-induced vortex breakdown are the recent calcula-
tions by Erlebacheret al.17 These workers studied the inter-
action between a streamwise vortex and a normal shock
wave using the unsteady, axisymmetric, compressible
Navier–Stokes equations. Mach numbers from 1.3 to 10
were computed. In the same spirit as Deleryet al.,10 a critical
swirl number was numerically identified at each Mach num-
ber, and a breakdown map of swirl number against Mach
number made. The trend observed by Deleryet al.10 was
seen to extend to Mach 10; i.e., the critical swirl number
decreased with increasing Mach number. Some interesting
features of the flow field were also highlighted.

The only attempt to quantitatively predict some aspect of
shock-induced breakdown appears to have been made by
Cattafesta18 who equated the ratio of swirl number~down-
stream to upstream! across the shock wave to the velocity
ratio ~upstream to downstream! across the shock. By com-
paring to experimental data, he obtained a value of 0.6 for
the swirl number behind the shock wave. More recently, Er-
lebacheret al.17 have proposed an empirical correlation be-
tween the critical swirl number and the Mach number of the
shock wave, based on a curve fit to their data.
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In this paper, we propose a model to predict the onset of
shock-induced vortex breakdown. The proposed model has
no adjustable constants, and is compared to both experiment
and computation. Also, the dependence of the critical swirl
number on parameters such as the upstream Mach number,
excess/deficit in centerline axial velocity, and shock oblique
angle is explored. Two other problems are then considered:
the breakdown of a free compressible vortex, and free in-
compressible vortex breakdown. The same breakdown crite-
rion is used in all three problems to predict the onset of
breakdown. Finally, a new breakdown map is proposed, that
allows the simultaneous comparison of data from flows rang-
ing from incompressible breakdown to breakdown induced
by a shock wave.

This paper is organized as follows. A description of the
upstream vortex is first provided in Section II A. This is
followed in Section II B by a description of the proposed
breakdown criterion and expressions for the critical swirl
number. Section III compares the model predictions to com-
putation and experiment. The influence of centerline excess/
deficit in axial velocity, and obliquity of the shock wave is
also discussed. The onset of breakdown in a free compress-
ible vortex is discussed in Section IV. Incompressible vortex
breakdown is briefly considered in Section V. A new break-
down map is then proposed in Section VI. The paper is con-
cluded with a brief summary in Section VII.

II. STATEMENT OF PROBLEM

Figure 1 shows a schematic of the interaction between a
streamwise vortex and a normal shock wave. The axial flow
is from left to right. The variablesx andr are used to denote
the axial and radial coordinate respectively. The axial and
swirl components of velocity are denoted byU and vu re-
spectively, andp, r andT represent the pressure, density and
temperature. The subscripts ‘‘` ’’ and ‘‘ c’’ correspond to
values in the free-stream and the centerline of the vortex, and
the states upstream and downstream of the shock wave are
respectively denoted by the subscripts ‘‘1’’ and ‘‘2’’~e.g.,
p`2 denotes the free-stream pressure downstream of the
shock wave!.

A description of the incident vortex is first provided in
Section II A. This is followed in Section II B by an outline of
the model.

A. The upstream vortex

Studies of incompressible vortex breakdown~e.g.
Darmofal19! suggest that the onset of breakdown is generally
independent of viscosity for vortex Reynolds number~based
on free-stream axial velocity and core radius! greater than
about 300. As a result, viscosity is neglected in this paper.
The upstream vortex is therefore governed by the axisym-
metric, compressible Euler equations. It is readily seen that
the profiles,

vu5vu~r !, U5U~r !, p5p~r !, r5r~r ! ~1!

trivially satisfy the continuity, axial momentum and energy
equations. The radial momentum equation,

dp

dr
5

rvu
2

r
~2!

remains to be satisfied. Experiments10,12 show that the swirl
profile of the Burgers vortex is a good fit to experimental
data. However, the Burgers profile makes analytical solution
difficult. As a result, this paper uses the Rankine vortex as an
approximation for the upstream vortex. Non-
dimensionalizing the radial coordinate by the core radius~lo-
cation wherevu is maximum! and velocity by the peak value
of the swirl velocity ~denoted byvum), the swirl velocity
profile of the upstream vortex is given by,

ṽu5 r̃ , r̃ <1

5
1

r̃
, r̃ >1, ~3!

where the tilde is used to denote non-dimensional variables.
The density varies with radius for a compressible vortex.

This paper considers two different idealizations of the ther-
modynamic field in the upstream vortex: spatially uniform
stagnation temperature and spatially uniform entropy. The
assumption of uniform stagnation temperature is prompted
by experimental data. Deleryet al.10 note that the total tem-
perature in the upstream vortex in their experiments is ap-
proximately uniform. Measurements in a Mach 3 vortex by
Metwally et al.11 and Cattafesta and Settles12 seem to sup-
port this approximation. Cattafesta and Settles’ data~Fig. 7
of their paper! show a deficit of about 4% of free-stream in
total temperature at the centerline. The idealization of uni-
form entropy is prompted by past theoretical and computa-
tional studies on compressible vortices~e.g. Colonius
et al.20!.

Expressions for the centerline pressure and density for
the uniform stagnation temperature vortex and uniform en-
tropy vortex are obtained below. Defining the non-
dimensional variables,

p̃5
p

p`
, r̃5

r

r`
, T̃5

T

T`
~4!

the radial momentum equation becomes,

dp̃

dr
5g~GM`!2r̃

ṽu
2

r̃
. ~5!

FIG. 1. Schematic of the interaction between a streamwise vortex and a
normal shock wave.
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The variableg denotes the ratio of specific heats and is taken
as 1.4 in this paper.G is the swirl number of the vortex, and
is defined asG5vum /U` . M` is the free-stream Mach num-
ber, defined asM`5U` /c` . GM` will be recognized as the
swirl Mach number,vum /c` .

Uniform entropy vortex:If the entropy is spatially uni-
form,

p̃5 r̃g. ~6!

Expressing the density in terms of the pressure in the radial
momentum equation and integrating yields the following ex-
pressions for the centerline pressure and density:

p̃c5@12~g21!G2M`
2 #g/~g21!,

r̃c5@12~g21!G2M`
2 #1/~g21!.

~7!

Uniform stagnation temperature vortex:The spatial uni-
formity of stagnation temperature requires that

T1
U21vu

2

2Cp
5T`1

U`
2

2Cp
. ~8!

Delery et al.’s10 experiments show that the axial velocity in
the upstream vortex was nearly uniform; i.e.,U5U` . Cat-
tafesta and Settles12 on the other hand, observe a wake-like
profile. This paper assumes uniform axial velocity for the
uniform stagnation temperature vortex. This yields the fol-
lowing expression for the non-dimensional temperature in
the vortex:

T̃512
g21

2
~GM`!2ṽu

2. ~9!

The equation of state implies thatp̃5 r̃ T̃. Substituting for
r̃ and T̃ in the radial momentum equation and integrating
yields the following expressions for the density and pressure
at the centerline of the uniform stagnation temperature vor-
tex:

p̃c5F12
~g21!

2
G2M`

2 G2g/~g21!

,

~10!
T̃c51, r̃c5 p̃c .

B. A criterion for shock-induced breakdown

A simple criterion for breakdown of the upstream vortex
is first proposed. The properties of the upstream vortex~Sec-
tion II A ! are then used to obtain an expression for the criti-
cal swirl number above which the vortex would break down.
The breakdown criterion is based upon an approximation to
the axial momentum equation at the centerline of the vortex.
Note that as a result of axisymmetry, the radial velocity at
the centerline would be zero. When combined with the swirl
velocity being zero at the centerline, this suggests that the
flow near the vortex centerline would largely be in the
streamwise direction. The one-dimensional momentum equa-
tions may therefore be used to model the flow around the
vortex centerline.p1rU2 would therefore be constant
across a region of rapid streamwise variation.

Consider the vortex impinging upon the shock wave. On
account of the rotation, the pressure at the center of the vor-

tex is less than the free-stream value; i.e.,pc1,p`1. Pressure
rises across a shock wave; i.e.,p`2.p`1. The vortex there-
fore experiences an adverse streamwise pressure rise, which
may be quantified by the pressure difference,p`22pc1. The
fluid in the vortex has a certain inertia in the streamwise
direction, which may be quantified by the streamwise mo-
mentum flux,rc1Uc1

2 . Breakdown is assumed to occur if the
axial pressure rise exceeds the upstream streamwise momen-
tum flux, thereby stagnating the flow; i.e., if

p`22pc1>rc1Uc1
2 >rc1U`1

2 S 11
DU

U`1
D 2 ~11!

whereDU denotes the upstream excess in axial velocity at
the centerline. If the axial velocity is uniform, then
DU50. The threshold for breakdown is therefore given by
the relation,

p`22pc15rc1U`1
2 S 11

DU

U`1
D 2. ~12!

The axial velocity is assumed to be uniform through most of
this paper. The effect of non-uniform axial velocity is sepa-
rately discussed in Section III B. Equation~12! may be re-
written in non-dimensional form for uniform axial velocity
as,

p̃`22 p̃c15gr̃c1M`1
2 . ~13!

We have already obtained expressions forp̃c1 and r̃c1 in
terms ofG andM`1. The Rankine–Hugoniot equations for a
normal shock expressp̃`2 in terms of the upstream Mach
number,M`1. Substituting for p̃c1, r̃c1 and p̃`2 into the
above breakdown criterion will therefore yield an expression
for the critical swirl numberGcrit in terms of Mach number of
the shock wave for a vortex with uniform axial velocity. This
expression is derived below.

Uniform stagnation temperature vortex:For a uniform
stagnation temperature vortex, we haver̃c15 p̃c1. Substitu-
tion into the criterion for breakdown@Eq. ~13!# yields,

p̃c15
p̃`2

11gM`1
2 , ~14!

wherep̃`2 is given by the Rankine–Hugoniot equations as,

p̃`2511
2g

g11
~M`1

2 21!. ~15!

Substituting forp̃c1 from Eq.~10! andp̃`2 from Eq.~15! into
Eq. ~14!, we get,

F12
g21

2
Gcrit
2 M`1

2 G2g/~g21!

5
1

11gM`1
2 F11

2g

g11
~M`1

2 21!G , ~16!

which upon rearrangement yields the following expression
for the critical swirl number as a function of the Mach num-
ber of the shock:
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Gcrit5
1

M`1
A 2

g21 H 12S 1

11gM`1
2 F11

2g

g11
~M`1

2 21!G D ~g21!/2gJ . ~17!

Uniform entropy vortex:Expressions for the centerline
density and temperature for a uniform entropy vortex are
given by Eq.~7!. Substitution into Eq.~13! yields the follow-
ing implicit equation for the critical swirl number as a func-
tion of the Mach number:

11
2g

g11
~M`1

2 21!2@12~g21!Gcrit
2 M`1

2 #g/~g21!

5gM`1
2 @12~g21!Gcrit

2 M`1
2 #1/~g21!. ~18!

The Newton–Raphson method was used to solve the above
equation forGcrit as a function of the Mach number of the
shock wave.

III. RESULTS: SHOCK-INDUCED VORTEX
BREAKDOWN

A. Uniform axial velocity

Results for the critical swirl number are presented for the
case where the axial velocity is uniform. Figure 2 shows the
predicted values of the critical swirl number as a function of
the Mach number of the shock. The predicted values are
compared to the experimental values reported by Delery
et al.10 ~the data were obtained from Fig. 35 of their paper!
for Mach numbers of 1.75, 2 and 2.28. Also shown are re-
sults from the computations by Erlebacheret al.17 ~the data
were obtained from Table 3 of their report!. Note that the
computational data at Mach 1.7 were very close to the ex-
perimental value at Mach 1.75~0.331 as compared to 0.33!.
This made the experimental data hard to discern when both
experimental and computational results were plotted. As a

result, the computational value at Mach 1.7 is not plotted in
Fig. 2.

The predicted values are seen to be in good agreement
with both experiment and computation. The critical swirl
number is predicted to decrease with increasing Mach num-
ber as observed. According to the proposed criterion@Eqs.
~7!, ~10! and ~13!#, this decrease inGcrit is due to a combi-
nation of two factors: increase in the adverse pressure rise
~due top̃`2 increasing whilep̃c1 decreases! and decrease in
streamwise momentum flux~due tor̃c1 decreasing! with in-
creasing Mach number.

The ability of the model to predict the onset of shock-
induced breakdown is further evaluated in Fig. 3, where data
from Metwally et al.11 are plotted~obtained from Fig. 6 of
their paper!. The ‘‘strong interactions’’ observed experimen-
tally are seen to lie in the region where the model predicts
breakdown, while the ‘‘weak interaction’’ regions lie in the
predicted region of non-breakdown. Note that the curve of
Gcrit in Fig. 3 assumes uniform axial velocity. Metwally
et al.11 point out that the Mach 3 and Mach 3.5 vortices had
noticeable deficit in centerline velocity for the breakdown
cases. As will be seen in Section III B, the critical swirl
number is predicted to decrease as the centerline velocity
decreases; i.e., the filled symbols for the Mach 3 and Mach
3.5 cases would move further into the breakdown region if
the deficit in centerline velocity were accounted for in Fig. 3.

B. Non-uniform axial velocity

The influence of an excess/deficit in the centerline axial
velocity on the critical swirl number is next considered. For

FIG. 2. Comparison of predicted critical swirl number to experiment and
computation of shock-induced vortex breakdown. —~Prediction: uniform
stagnation temperature!, --- ~prediction: uniform entropy!, d

~computation—Ref. 17!, 3 ~experiment—Ref. 10!.

FIG. 3. Evaluation of model in predicting the onset of shock-induced vortex
breakdown. —„PredictedGcrit @Eq. ~17!#: uniform stagnation temperature…,
d ~experiment—Ref. 11: breakdown!, s ~experiment—Ref. 11: no break-
down!.
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convenience, results are shown only for the uniform entropy
vortex. The breakdown criterion@Eq. ~12!# may be divided
through byp`1 to yield the following non-dimensional cri-
terion:

p̃`22 p̃c15gr̃c1M`1
2 S 11

DU

U`1
D 2. ~19!

Substituting for p̃c1 and r̃c1 from Eqs. 7, we get the
following equation for Gcrit as a function ofM`1 and
DU/U`1:

p̃`22@12~g21!Gcrit
2 M`1

2 #g/~g21!

5gM`1
2 S 11

DU

U`1
D 2@12~g21!Gcrit

2 M`1
2 #1/~g21!. ~20!

The Newton–Raphson method was used to solve the
above equation forGcrit , after expressingp̃`2 in terms of
M`1. Figure 4 shows the variation of the critical swirl num-
ber with Mach number for different values ofDU/U`1. Note
thatDU.0 corresponds to a jet-like axial velocity profile of
the upstream vortex whileDU,0 corresponds to a wake-
like profile. The predicted results show a strong sensitivity to
the excess/deficit in centerline axial velocity. Jet-like profiles
of the axial velocity are observed to delay breakdown, while
a wake-like profile makes the vortex more susceptible to
breakdown. The same trend is known to apply in the break-
down of an incompressible vortex, where axial blowing is
often used to alleviate the breakdown.6

Figure 4 shows that for vortices with a wake-like axial
velocity, the critical swirl number becomes zero at a finite
Mach number; i.e., breakdown is predicted at and beyond
this cut-off Mach number, even in the absence of swirl . This
result may be explained as follows. In the absence of swirl,
the ‘‘vortex’’ reduces to an axisymmetric wake~or jet!. This
wake ~or jet! can undergo reverse flow accompanied by ra-
dial outflow upon experiencing a strong enough adverse
pressure gradient. We have assumed that breakdown occurs
when the adverse pressure rise at the vortex centerline ex-

ceeds the centerline axial momentum flux. We noted that on
account of its rotation, the centerline pressure rise,
p`22pc1 is greater than the free-stream rise,p`22p`1.
Also, rotation results in the centerline density (rc1) being
lower than the free-stream density. As a result, the centerline
momentum flux,rc1Uc1

2 is less than its value computed us-
ing the free-stream density. Thus, swirl ‘‘amplifies’’~in the
terminology of Hall1! the adverse pressure rise experienced
by the vortex while suppressing the axial momentum flux.
Both factors make the vortex more susceptible to breakdown.
This implies that if the free-stream pressure rise exceeds the
axial momentum flux computed using the free-stream den-
sity, then the presence of swirl is not needed for ‘‘break-
down.’’ The flow at and above the cut-off Mach number
corresponds to this scenario. The cut-off Mach number~de-
noted byM cut) can therefore be predicted by the following
criterion:

p`22p`15r`1Uc1
2 ~21!

which yields,

p̃`2215gM cut
2 S 11

DU

U`1
D 2. ~22!

Substituting for p̃`2 from Eq. ~15!, we get the following
equation for the cut-off Mach number in terms of the veloc-
ity excess/deficit:

2g

g11
~M cut

2 21!5gM cut
2 S 11

DU

U`1
D 2 ~23!

which may be rearranged to obtain the following expression
for the cut-off Mach number:

M cut5A 2g

g11 F 2g

g11
2gS 11

DU

U`1
D 2G21

. ~24!

C. Breakdown induced by an oblique shock wave

If the shock wave were oblique, the onset of breakdown
would be expected to depend on the oblique angle. Although
the interaction of an oblique shock with an axisymmetric
vortex is not axisymmetric, it is envisioned that the onset of
breakdown can be predicted by extending the arguments of
the previous section. Reiterating the criterion for breakdown
for uniform axial velocity, we require that
p̃`22 p̃c15gr̃c1M`1

2 . The influence of shock obliquity is
modeled as follows. The properties of the upstream vortex
( p̃c1 ,r̃c1) depend solely upon the free-stream Mach number
and swirl number. However the pressure behind the shock
( p̃`2) is determined by the normal Mach number,M`1sina
(a denotes the angle the shock makes with the streamwise
direction!. ReplacingM`1 in Eq. ~15! by M`1sina to obtain
p̃`2 and substituting as before forp̃c1 and r̃c1 yields the
following expressions for the critical swirl number.

FIG. 4. Influence of axial velocity on the onset of vortex breakdown in-
duced by a shock. –•– (DU/U`1520.5), –-– (DU/U`1520.25), —
(DU/U`150), --- (DU/U`150.5), ••• (DU/U`151).
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Uniform stagnation temperature vortex:

Gcrit5
1

M`1
A 2

g21H 12S 1

11gM`1
2 F11

2g

g11
~@M`1 sin a#221!G D ~g21!/2gJ . ~25!

Uniform entropy vortex:

11
2g

g11
~@M`1 sin a#221!2@12~g21!Gcrit

2 M`1
2 #g/~g21!5gM`1

2 @12~g21!Gcrit
2 M`1

2 #1/~g21!. ~26!

It is readily seen that for the same upstream Mach num-
ber, Gcrit is predicted to increase as the shock becomes in-
creasingly oblique. This prediction may be explained by not-
ing that the pressure rise across an oblique shock is lower
than that for a normal shock at the same Mach number. As a
result, the adverse pressure rise that the vortex experiences is
smaller, thereby delaying the onset of breakdown.

IV. SHOCK-FREE BREAKDOWN OF A
COMPRESSIBLE VORTEX

Section III discussed vortex breakdown induced by a
shock wave. The breakdown of a free axisymmetric vortex,
i.e. breakdown in the absence of an externally imposed pres-
sure gradient, is considered in this section. Incompressible
streamwise vortices at sufficiently high swirl number are
known to break down, even in the absence of an externally
applied adverse pressure gradient. It is to be expected that
their high-speed counterparts would exhibit similar behavior.
The critical swirl number in high-speed flow would be a
function of the Mach number. This section derives an ex-
pression for the critical swirl number in terms of the free-
stream Mach number; i.e., we consider the influence of com-
pressibility on the breakdown of a free vortex. The
arguments used are identical to those in breakdown induced
by a shock. The only difference is that while the adverse
pressure rise was set equal top`22pc1 for shock-induced
breakdown, it is set equal top`12pc1 for the shock-free
breakdown. The rationale for this assumption is that in the
absence of the shock, the vortex discharges into the atmo-
sphere. As a result, the vortex sees a pressure equal top`1

ahead of it, as well as in the free-stream. The difference
between atmospheric pressure (p`1), and the pressure at the
vortex centerline (pc1) provides the adverse pressure rise
that causes breakdown. Breakdown of the vortex is therefore
assumed to occur when

p`12pc1>rc1Uc1
2 . ~27!

The criterion for shock-free breakdown is therefore given by,

12 p̃c15gr̃c1M`1
2 ~28!

which is identical to the expression obtained whenp̃`2 is set
to 1 in Eq.~13!. The corresponding expressions for the criti-
cal swirl number are given below.

Uniform stagnation temperature vortex:

Gcrit5
1

M`1
A 2

g21 F12S 1

11gM`1
2 D ~g21!/2gG . ~29!

Uniform entropy vortex:

12@12~g21!Gcrit
2 M`1

2 #g/~g21!

5gM`1
2 @12~g21!Gcrit

2 M`1
2 #1/~g21!. ~30!

Figure 5 shows the predicted values of the critical swirl
number as a function of the free-stream Mach number. Also
shown ~for supersonic flow! are the values obtained for
breakdown induced by a shock wave at the same Mach num-
ber. Compressibility is seen to make the vortex more suscep-
tible to breakdown. A similar trend was noted by Keller.21

This trend may be explained by noting@Eqs. ~7! and ~10!#
that increase in the free-stream Mach number decreases the
centerline pressure and density, thereby increasing the ad-
verse pressure rise while decreasing the axial momentum
flux. The predicted values ofGcrit in the absence of the shock
are seen to be greater than those predicted for shock-induced
breakdown. This trend can be explained by noting that the
pressure rise across the shock wave produces a larger ad-
verse pressure rise for the same upstream momentum flux.

FIG. 5. Predicted critical swirl number for shock-free vortex breakdown
compared to the prediction for shock-induced breakdown. —~Shock-free:
uniform stagnation temperature!, --- ~shock-free: uniform entropy!, •••
~shock-induced: uniform stagnation temperature!, –-– ~shock-induced: uni-
form entropy!.
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V. INCOMPRESSIBLE VORTEX BREAKDOWN

Figure 5 shows that asM`1 tends towards 0,Gcrit tends
towards 1. An incompressible vortex in the absence of exter-
nally imposed adverse pressure gradients, is therefore pre-
dicted to undergo breakdown at a critical swirl number of
one. The same result can of course be derived, by setting
r5r` in the radial momentum equation and integrating to
obtain the centerline pressure (pc15p`12r`vum

2 ), which is
then substituted into the breakdown criterion@Eq. ~27!#. In a
recent review article, Delery6 documents~Section 3.4.5 of
his paper! critical swirl numbers for incompressible vortex
breakdown as predicted by different theories. He considers a
Burgers vortex, and defines a swirl parameterS as

S5
C

r cU`
, ~31!

where the variablesC andr c denote the circulation and core
radius respectively. For a Burgers vortex, the swirl velocity
is given by~Eq. 1 in Delery’s6 paper!

vu5
C

r
@12e21.256~r /r c!2#. ~32!

This implies that the swirl parameterS is related to the swirl
numberG by,

S5
G

12e21.25651.398G. ~33!

Thus Gcrit51 corresponds toScrit51.398'1.4. We repro-
duce in Table I, from Delery’s6 paper, the critical swirl num-
bers predicted by different approaches. Most approaches are
seen to predict values very close to that predicted by our
simple criterion.

VI. A ‘‘UNIVERSAL’’ BREAKDOWN MAP

The preceding sections presented results for the onset of
vortex breakdown by plotting the critical swirl number as a
function of Mach number. The curveGcrit5Gcrit(M`1) de-
fined the boundary between the regimes of breakdown and
non-breakdown. However, it is clear that the critical swirl
number is not universal~as also observed by Delery6!. For
example, Section III B~Fig. 4! showed thatGcrit depended on
the velocity excess/deficit at the centerline. If the breakdown
were precipitated by an oblique shock wave as opposed to a
normal shock, thenGcrit was noted to depend on the inclina-

tion angle of the shock. Similarly, if the breakdown were that
of a free vortex instead of being shock induced, yet another
curve for the critical swirl number was obtained.

In this section, we propose a breakdown map that allows
a common breakdown boundary to be defined for all of the
above mentioned problems. The proposed map is based on
the breakdown criterion that was proposed in Section II B;
i.e.,

p`22pc1>rc1Uc1
2 . ~34!

Recall that the same criterion withp`2 appropriately defined,
was applied to all the breakdown problems discussed in this
paper. This suggests that a plot ofp`22pc1 againstrc1Uc1

2

could be used to map the onset of vortex breakdown. The
proposed map could even be used for incompressible vortex
breakdown, and would be expected to adequately represent
the onset of breakdown induced by pressure gradients acting
over distances that are small as compared to a characteristic
length scale of the vortex. The curvep`22pc15rc1Uc1

2 ~the
45° line! would act as the boundary between the breakdown
and non-breakdown regimes. Note that the proposed map
does not require any additional data to be measured. Experi-
mental information on parameters such asG,DU/U` ,M`

and shock angle could be used to obtain both the pressure
rise and the axial momentum flux using the equations in
Section II A. The proposed map is illustrated in Fig. 6. Note
that the pressure rise and momentum flux are non-
dimensionalized byr`1U`1

2 to allow incompressible data to
be plotted. Data from Metwally11 ~the same data shown in
Fig. 3! are also shown. The data from Fig. 3 are combined
with Eq. 10 to determine the pressure rise and axial momen-
tum flux. The breakdown and non-breakdown cases are seen
to be appropriately delineated.

VII. SUMMARY

A simple inviscid model was proposed to predict the
onset of breakdown in an axisymmetric vortex. Three prob-
lems were considered: the shock-induced breakdown of a
compressible vortex, the breakdown of a free compressible
vortex, and the breakdown of a free incompressible vortex.

FIG. 6. Evaluation of the proposed breakdown map in predicting the onset
of vortex breakdown.d ~Experiment: breakdown!, s ~experiment: no
breakdown!.

TABLE I. Prediction of critical swirl number for incompressible vortex
breakdown compared to other approaches. All data other than the present
reproduced from review article by Delery~Ref. 6!.

Scrit

Quasi-cylindrical 1.41
Axisymmetric N-S 1.35
Bossel 1.12
Squire 1.4
Benjamin 1.4
Num. simulation 1.28
Spallet al. 1.37
Present 1.4
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The same physical reasoning was used to predict the onset of
breakdown in all three problems. It was hypothesized that
breakdown is the result of the competing effects of adverse
pressure rise and streamwise momentum flux at the vortex
centerline. Breakdown was assumed to occur if the pressure
rise exceeded the axial momentum flux. A formula with no
adjustable constants was derived for the critical swirl number
in all three problems. The dependence of the critical swirl
number on parameters such as upstream Mach number,
excess/deficit in centerline axial velocity, and shock oblique
angle was explored. The predictions for the onset of shock-
induced breakdown and free incompressible breakdown were
compared to experiment and computation, and good agree-
ment was observed. Finally, a new breakdown map was pro-
posed as an alternative to the map of critical swirl number
against free-stream Mach number. The new map was based
on the observation that the same breakdown criterion was
used in all the problems considered in this paper. To deter-
mine the onset of breakdown, it was suggested that the ad-
verse pressure rise at the vortex centerline, be plotted against
the axial momentum flux. The proposed map allows the si-
multaneous comparison of data from flows ranging from in-
compressible breakdown to breakdown induced by a shock
wave.
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