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Abstract

A non-dissipative, robust, implicit algorithm is proposed for direct numerical and large-eddy simulation of com-

pressible turbulent flows. The algorithm addresses the problems caused by low Mach numbers and under-resolved high

Reynolds numbers. It colocates variables in space to allow easy extension to unstructured grids, and discretely

conserves mass, momentum and total energy. The Navier–Stokes equations are non-dimensionalized using an incom-

pressible scaling for pressure, and the energy equation is used to obtain an expression for the velocity divergence. A

pressure-correction approach is used to solve the resulting equations, such that the discrete divergence is constrained

by the energy equation. As a result, the discrete equations analytically reduce to the incompressible equations at very

low Mach number, i.e., the algorithm overcomes the acoustic time-scale limit without preconditioning or solution of an

implicit system of equations. The algorithm discretely conserves kinetic energy in the incompressible inviscid limit, and

is robust for inviscid compressible turbulence on the convective time-scale. These properties make it well-suited for

DNS/LES of compressible turbulent flows. Results are shown for acoustic propagation, the incompressible Taylor

problem, periodic shock tube problem, and isotropic turbulence.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Direct numerical simulation (DNS), and large-eddy simulation (LES) are three-dimensional, time-
accurate approaches to compute turbulent fluid flows. The computational mesh and time-step in DNS
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are fine enough that viscous dissipation is accurately computed. In contrast, LES spatially filters the Navier–

Stokes equations, and directly resolves only the large-scales of motion; a subgrid model is used to account for

the effect of the smaller, unresolved scales.The nonlinear nature of turbulence results in interaction between

disparate length and time scales, and a broadband spectrum. As a result, numerical errors in the smallest

resolved scales can affect the behavior of the entire solution. This is particularly true in LES, where the
numerical method used to solve the LES equations can significantly affect the solution. Desirable require-

ments for a compressible algorithm for DNS/LES are therefore: (i) the ability to simulate compressible tur-

bulence at high Reynolds numbers without loss of robustness and accuracy, (ii) the ability to efficiently and

accurately compute flows with both, supersonic and highly subsonic regions, and (iii) the ability to accu-

rately simulate flows with shock waves. This paper proposes an algorithm that addresses items (i) and (ii).

1.1. High Reynolds number

Numerical dissipation appears to be undesirable for LES (e.g. [1]), since it can suppress Reynolds num-

ber effects on the solution, and the effect of the subgrid model [2]. However, most non-dissipative schemes

become unstable at high Reynolds numbers, skewed grids or flows in complex geometries. A key issue in

turbulence simulation is therefore ensuring robustness without the use of numerical dissipation.

Considerable attention has been devoted to this problem for incompressible flows on structured grids.

The instability has been shown to be related to aliasing errors, and influenced by the discretization

of the convective term: conservative, skew-symmetric or rotational [3–5]. An attractive solution has been

the development of numerical schemes that discretely conserve not only mass and momentum, but also ki-
netic energy in the inviscid limit [6–8]. Discrete energy conservation implies that the summation,P

cvsuioðuiujÞ=oxj only has contributions from the boundary faces, and is therefore bounded. The sec-

ond-order, staggered grid, Harlow–Welch algorithm [9] has this property and has been widely used for

LES/DNS on structured grids. Higher-order, energy-conserving, staggered schemes for structured grids

have been proposed by Morinishi et al. [10]. A colocated scheme with similar properties was developed

for unstructured grids by Mahesh et al. [2] and used to perform LES in geometries ranging from flow over

a cylinder to internal flow in a commercial gas-turbine combustor.

Less attention has been paid to the nonlinear stability of compressible turbulent flows. The importance
of the form of the nonlinear term in the discrete equations was addressed by Blaisdell et al. [11] for Fourier

spectral methods. The non-conservative form of the energy equation was found by Lee [12] to have reduced

aliasing error in LES of compressible isotropic turbulence using a colocated sixth-order, finite-difference

Pade scheme [13]. The colocated Pade scheme proposed by Lele has been widely and successfully used

to perform DNS of compressible turbulent flows and aeroacoustics. However, the Pade scheme is prone

to numerical instability in the presence of steep, unresolved gradients, or under-resolved high Reynolds tur-

bulence. Extensions of Lele�s schemes have focused on coupling them with shock-capturing schemes [14], or

increased accuracy [15], and do not address the problem of nonlinear instability. Recently, Nagarajan et al.
[16] have proposed a staggered variant of the original compact schemes. The staggered schemes are shown

to yield stable, accurate solutions for isotropic turbulence at Reynolds numbers where the original colo-

cated scheme is unstable. However, they note that even the staggered schemes are not stable in the absence

of a subgrid model if the Reynolds number is high enough (e.g. Rk > 300 on a 323 grid).

1.2. Low Mach number

The Mach number represents the ratio of acoustic to convective time-scales. Small Mach numbers there-
fore correspond to acoustic time-scales being much faster than convective time-scales. Numerically, this re-

sults in the compressible equations becoming very stiff as the Mach number tends to zero. Low Mach

number compressible flows are common in applications involving combustion, cavitation, and even the
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near-wall region of supersonic boundary layers. Preconditioning (see [17] for a review) and artificial com-

pressibility [18,19] are possibly the most common approaches to resolve stiffness at low Mach numbers.

However, preconditioned compressible equations can still prove quite expensive to solve for very small

Mach number, and artificial compressibility approaches can affect time-accuracy. The short time-scale

acoustics can be formally projected out using small Mach number asymptotics, which yields to lowest or-
der, the zero Mach number equations (e.g. [20]). However, a limitation of the zero Mach number equations

is the complete absence of acoustic effects; as a result they are not applicable to flows at finite Mach

number.

One solution to this problem is to cast the compressible Navier–Stokes equations so that they yield the

incompressible Navier–Stokes equations in the limit of small Mach number. The important differences

between the incompressible and compressible equations are that for incompressible flows: (i) the absolute

value of pressure is not important (ii) the velocity field is divergence-free, and (iii) the energy equation is

decoupled from the continuity and momentum equations. The Mach number-dependent behavior of pres-
sure can be treated by expressing pressure as the sum of a background value which is related to the mean

speed of sound, and a fluctuating pressure which scales with the inertia of the velocity field. Such non-

dimensionalization accounts for the well-known (e.g. [21]) behavior that the deviation p � p0 = O(M2),

where p, p0 and M denote the local pressure, background pressure and Mach number, respectively. Section

2 provides more details.

1.3. Motivation for proposed approach

A robust algorithm for compressible turbulence may be derived by requiring that the discrete equations

reduce to the incompressible equations at low Mach numbers, and that the discretization conserves kinetic

energy in the inviscid incompressible limit. The behavior of the divergence of the velocity is described by

Thompson [21]. The continuity, momentum and energy equation (expressed in terms of entropy) can be

rearranged to obtain
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Here, ui, q, p, T denote the velocities, density, pressure and temperature, respectively, l, lB and j denote the

dynamic viscosity, bulk viscosity and thermal conductivity, respectively, c denotes the speed of sound, and

C ¼ sij
oui
oxj

denotes the viscous dissipation. sij is the viscous stress in the momentum equation. The superscript
�*� denotes non-dimensional variables, and
u�i ¼ ui=ur, x�i ¼ xi=lr, p� ¼ p=ðqrurcrÞ, q� ¼ q=qr, T � ¼ T=T r,

t� ¼ t=tr, C� ¼ C l2r=lu
2
r

� �
: ð2Þ
Also, Mr and Rer denote the Mach number and Reynolds number based on the reference state, and cp, cv
and c denote the specific heat at constant pressure, specific volume and ratio of specific heats, respectively.

Note that the reference time-scale, tr can be chosen to be convective (lr/ur) or acoustic (lr/cr). Eq. (1) shows

that if Mr = ur/cr is small, and the flow is tracked on the convective time-scale (tr = lr/ur), then all terms on

the right-hand side drop out and the velocity-field is divergence free. If on the other hand, the variation of

the flow on the acoustic time-scale is sought (tr = lr/cr), the unsteady pressure term will produce a finite

divergence. This implies that a combination of the continuity, momentum and energy equations may be
used to provide a constraint on the divergence of the velocity field, which will ensure that the compressible
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equations yield the incompressible equations in the limit of zero Mach number. This is the approach used in

this paper to derive an algorithm, which in the limit of small Mach number is discretely energy-conserving.

The problems caused by low Mach number have been examined by the following workers. Shuen et al.

[22] have developed a preconditioned, dual time-stepping method for the Navier–Stokes equations with real

gas properties, and non-equilibrium chemistry. The non-conservative form of the governing equations are
used. The pressure is decomposed into a background pressure which is specified, and the difference between

the local pressure and background pressure is computed. Bijl and Wesseling [23] and Van der Heul et al.

[24] have proposed an �all Mach number� staggered algorithm on structured grids for the Euler equations,

and inviscid MHD equations, respectively. While Bijl and Wesseling solve the energy equation in non-

conservative form, a fully conservative energy equation is used by Van der Heul et al. [24]. The pressure is

non-dimensionalized by scaling its deviation from a reference pressure with fluid inertia, and the energy

equation is used to obtain an expression for the divergence of the velocity. The spatial discretization is dis-

sipative for the convection terms to allow application to shock waves. A different approach was followed by
Wall et al. [25], who propose a non-dissipative algorithm which eliminates acoustic stiffness by using a time-

centered, implicit discretization. The implicit pressure gradient term is used to develop a pressure-correction

approach, which yields a Helmholtz equation for the pressure correction.

None of the above workers examine discrete energy conservation, and the problems caused by high Rey-

nolds number turbulence on coarse grids. This paper develops a non-dissipative algorithm that addresses

the problems caused by both low Mach numbers, and high Reynolds numbers. The discrete equations

are scaled such that the incompressible Navier–Stokes equations are obtained at low Mach numbers. As

a result, the fast acoustic modes are analytically eliminated, and low Mach numbers can be efficiently com-
puted. The algorithm is also constrained to discretely conserve kinetic energy in the incompressible limit.

This ensures its robustness at high Reynods numbers without numerical dissipation, and for compressible

flows ensures high Reynolds numbers robustness on the convective time-scale. Also, the algorithm uses a

colocated storage of variables to allow easy extension to unstructured grids.

The paper is organized as follows. A description of the non-dimensional governing equations, and

their regular approach to the incompressible equations is provided in Section 2. Section 2.1 describes

a fully implicit, discretization of the governing equations that is centered in space and time. A predic-

tor–corrector approach is used to solve the discrete system, and is described in Section 3. The algorithm
has been implemented for parallel platforms and Cartesian grids, and Section 4 discusses numerical

examples that illustrate its behavior. The examples include acoustic wave propagation, the incompress-

ible Taylor problem, a periodic shock tube, and isotropic turbulence. A brief summary in Section 5

concludes the paper.
2. Governing equations

The governing equations are the continuity, and compressible Navier–Stokes equations for an ideal gas,
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where the superscript �d� denotes dimensional values. The variables q and ui denote the density and velocity,

respectively, and E = cv T + uiui/2 denotes the total energy per unit mass. sij ¼ lðoui
oxj

þ ouj
oxi

� 2
3
ouk
oxk

dijÞ is the vis-
cous stress tensor, cp is the specific heat at constant pressure, and Pr denotes the Prandtl number.

The above equations are non-dimensionalized using ur, L, qr, Tr as the reference velocity, length, density

and temperature, respectively. The reference pressure, pr = qr RTr. The following non-dimensional variables
are defined:
q ¼ qd

qr

, ui ¼
udi
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, t ¼ td
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qru2r

, T ¼ T d

T r
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Note that the pressure has been non-dimensionalized as p ¼ pd�pr
qru

2
r
. Such non-dimensionalization is moti-

vated by Thompson [21] analysis, and the work of Bijl and Wesseling [23] and van der Heul et al. [24]

described in Section 1. This yields the following non-dimensional equations:
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The non-dimensional equation of state is:
qT ¼ cM2
rp þ 1: ð6Þ
Note that as Mr tends to zero, the energy equation (5c) requires that
ouj
oxj

¼ 1
RePr

o
oxj

ðloT
oxj
Þ. Along with the

continuity equation, this shows that the velocity field is divergence free if the density and temperature
are constant. On the other hand, if the Boussinesque approximation is made, an advection–diffusion equa-

tion is obtained for temperature. The equation of state similarly reduces to qT = 1. The above non-dimen-

sional equations therefore naturally yield the incompressible equations in the limit of very small Mach

number. Also, all spatial derivatives in the above equations are in divergence form, and hence conservative.

The above set of governing equations are therefore very attractive in that at high Mach numbers, they

would yield the proper jump in variables across shock waves, and at very small Mach numbers, variations

on the fast, acoustic time-scale would be projected out at time-steps larger than the acoustic time-scale. The

primary reason for the above behavior of the non-dimensional equations is the definition of the non-dimen-
sional pressure as p ¼ pd�pr

qru
2
r
. Note that alternative definitions of non-dimensional pressure as p ¼ pd=ðqru

2
r Þ

or p = pd/pr yield
oqui
ot

þ oquiuj
oxj

¼ � 1

M2
r

op
oxi

ð7Þ
for the inviscid momentum equation, which is singular when Mr tend to zero.
2.1. Discretization

Fig. 1 shows the storage of variables. The Cartesian velocities, pressure and density are colocated in

space at the centroids of the control volumes. Also, density, pressure and temperature are staggered in time



Fig. 1. Schematic of the storage of variables for a three-dimensional Cartesian control volume. The Cartesian velocities, pressure,

temperature and density are stored at the centroids of the control volumes. The face-normal velocity is stored at the centers of the faces.
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from velocity. This feature makes the discretization symmetric in space and time, and is essential to ensur-

ing zero dissipation at finite time-steps. Such staggering in time was also used by Pierce and Moin [26], and
Wall et al. [25] for the zero-Mach number equations, and the compressible Euler equations, respectively.

The face normal velocity is located at center of the faces of the control volume and denoted by subscript

vN in this paper. As seen below, vN is obtained by projection and not interpolation. At every time step,the

velocity components ui, and vN are advanced from time t to t + 1 and the thermodynamic variables, p,q and

T are advanced from t þ 1
2
to t þ 3

2
.

Integrating the governing equations over a control volume, and using Gauss� theorem to transform vol-

ume integrals into surface integrals yields the following discrete equations. The discrete continuity equation

is
q
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Here, gi = qui denotes the momentum in the i direction and (sij)face is the stress tensor at the face. Nj is the

outward normal vector at the face. p
tþ1

2
cv is obtained by applying the trapezoidal rule to integrating the pres-

sure-gradient term, i.e.,
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The gradient theorem is used to compute the pressure gradient as
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Here, the subscript �nb� denotes the neighboring control volume that is attached to the face under consid-

eration. The discrete energy equation is given by
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Note that the density in the momentum g has to be interpolated in time to relate the momentum and veloc-

ity, because of the time staggering between density and velocity. The central differences in time and space

make the algorithm second order on regular grids. Also, the algorithm is fully implicit, and hence not lim-

ited by viscous, convective or acoustic stability limits. The discrete energy equation, shows thatMr and time

step, Dt determine whether high frequency acoustics are captured in a time-accurate manner. At small
Mach numbers, a timestep of the order of M2

r allows acoustic waves to be represented in a time-accurate

manner. When high frequency acoustics are not of physical importance, the time-step may be of the order

of the convective time-scale, and the energy-equation discretely projects out acoustic effects and yields zero-

divergence for the velocity field.
3. Predictor–corrector method

3.1. Algorithm

A pressure-correction method is used to solve the above equations. A notable feature is that the face-

normal velocities are projected to satisfy a constraint on the divergence that is determined by the energy

equation. This is in contrast to most approaches that project the momentum to be constrained by the con-

tinuity equation. A result of using the energy equation to project the velocity is that at small Mach number,

the projection step ensures that the velocity field is discretely divergence-free. Also as will be seen below,

there is no odd–even decoupling in the incompressible limit.
An iterative approach is used to solve the continuity, momentum and energy equations. Let k denote an

iteration level in an outer loop which seeks to advance the the velocities from t to t + 1 and pressure, tem-

perature and density from t þ 1
2
to t þ 3

2
. The continuity equation (Eq. (8)) shows that if the face-normal

velocity in the kth iteration vtþ1,k
N is assumed known, the resulting system of linear equations is readily

solved to obtain the corresponding density at time, t þ 3
2
. A predictor–corrector approach is used to solve

the momentum and energy equations. Let
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Note that the pressure correction is based on different iteration levels and converges to zero when the outer
loop has converged. The predictor step advances the momentum equation using the pressure at the current

iteration level, i.e.,
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Here, the superscript �*� denotes the predicted values of (k + 1)th iteration. g
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i-direction at the faces and is computed as
g
tþ1

2
,�

i,face ¼
gti,face þ g�i,face

2
: ð16Þ
The corrector step is the difference between the predictor equation (15) and the exact equation (9), i.e.,
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The dot product of Eq. (18) and the face-normal vector yields the corrector equation for the face-normal

velocity:
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Here, icv1 and icv2 denote the control volumes on either side of the face, and Ni denotes the face-normal.
Substituting the correction steps (18) and (19) in (13) converts the energy equation to a equation for dp .

The specific kinetic energy
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i.e., the �implicit� kinetic energy is the sum of an �explicit� kinetic energy, and corrections due to the pressure

changes. Note that the higher order terms in dp are ignored. Defining dp as the difference between iterations

means that dp converges to zero at each time-step, and hence the higher-order terms are negligible. If on the

other hand, dp were defined as the difference in pressure at each time-step, ignoring the higher-order terms

would result in pressure-splitting error.

The discrete energy equation yields an equation for dp as follows:
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. Substituting the kinetic energy,

and arranging the resulting equation in terms of dp, yields:
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Expanding the product in the second term yields:
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which can be represented as
apdp þ
X
nb

anbdpnb ¼ RHS: ð25Þ
Here, Nj is the face-normal, in the outward direction, the subscript �nb� denotes the neighboring control vol-
ume, and Dnb ¼ ð ~xnb � ~xcvÞ � ~N denotes the distance between the centers of the control volumes in the face-

normal direction. Note that Dnb reduces to Dx,Dy, Dz for neighbors in the x, y and z directions, respectively.

Also, u
tþ1

2
i and v

tþ1
2

N are the Cartesian velocities in the control volumes, face-normal velocities, respectively, at
time level t þ 1

2
and are computed as u�þut

2
and

v�NþvtN
2

, respectively in Eq. (24). Note that Eq. (25) shows that the

pressure-corrections at the nearest neighbors are coupled, i.e., odd–even decoupling is absent.
3.2. Implementation

The following iterative procedure is used to solve the above discrete equations.

1. Initialize the outer loop, i.e.,
utþ1,0
i ¼ uti, qtþ3

2
,0 ¼ qtþ1

2, T tþ3
2
,0 ¼ T tþ1

2, vtþ1
N ¼ vtN :
2. Advance the continuity equation (8) to get qtþ3=2; kþ1 by using the face normal velocity vtþ1,k
N .

3. Advance the momentum predictor equation (15) to get a provisional value of g�i by using pressure and

velocity at current iteration step.
4. Obtain velocities at the control volume centers using u�i ¼ g�i =q

tþ1,kþ1 where qt + 1,k + 1 = (qt + 3/2,k + 1

+ qt + 1/2)/2. Interpolate u�i to obtain v�N at the faces (Eq. (20)).
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5. Solve the pressure correction equation (22) to get dp.
6. Update the pressure, momentum and the velocities at center of the control volumes using Eqs. (14), (17),

(18), and update the face normal velocity by Eq. (19), respectively. Note that this implies that the face

normal velocity is obtained from a projection and not by interpolating the cell-centered velocities.

7. Check convergence for the pressure correction, density and momentum between outer loop iterations.

A parallel, algebraic multigrid approach is used to solve the equation systems arising from each of the

continuity, momentum and energy equations. The structured grid interface of the Hypre library (Lawrence

Livermore National Laboratory 2003) is used for this purpose.
4. Numerical examples

The properties of the algorithm are illustrated for the problems of acoustic wave propagation, incom-

pressible Taylor problem, shock tube, and high Reynolds number isotropic turbulence.

4.1. Acoustic problem

The algorithm is applied to the problem of inviscid, one-dimensional acoustic wave propagation in

uniform mean flow on a periodic domain. Numerical results are used to demonstrate that the algorithm

is non-dissipative and second-order in space and time. The initial conditions are specified from the analyt-
ical solution which is obtained as follows. Let
q ¼ q0 þ q0, u ¼ u0 þ u0, p ¼ p0 þ p0, ð26Þ

where the subscript �0� denotes the uniform mean flow, and the primes denote fluctuations about the mean

flow. Linearizing the Euler equation and transforming coordinates, to x 0 = x � u0t, s = t yields the follow-

ing equations for the fluctuations:
oq0

os
¼ �q0

ou0

ox0
,

ou0

os
¼ � 1

q0

op0

ox0
,

op0

os
¼ � 1

M2
0

ou0

ox0
: ð27Þ
The above equations are readily solved using Fourier representation which yields
p0ðx,tÞ ¼ A1e
ik x�ðu0�

u0
M0

Þt
h i

þ A2e
ik x�ðu0þ

u0
M0

Þt
h i

, ð28aÞ

u0ðx,tÞ ¼ �M0A1e
ik x�ðu0�

u0
M0

Þt
h i

�M0A2e
ik x�ðu0þ

u0
M0

Þt
h i

, ð28bÞ

and
p0p0 ¼ c
q0

q0

¼ c
c� 1

T 0

T 0

: ð28cÞ
A1 and A2 are determined by the initial conditions, i.e.,
A1 þ A2 ¼ p̂ð0Þ, A1 � A2 ¼ � 1

M0

ûð0Þ: ð29Þ
The solution is initialized using Eqs. (28a)–(28c), and (29). The initial amplitude is 10�3, the domain is of
length 2p, and the solution is advanced for a non-dimensional time of 10 (3.18 acoustic periods) at a mean

Mach number of 1. Fig. 2 evaluates the algorithm for its spatial and temporal order of accuracy. The spatial

accuracy is evaluated at a fixed time-step of 0.01, while varying the number of grid points from 32 to 256.

The temporal accuracy is evaluated at a fixed spatial resolution of 256 points, while varying the time-step



Fig. 2. Illustration of the non-dissipative nature and overall order of accuracy of the algorithm. The symbols denote the error in the

computed solution, and the solid lines are straight lines with a slope of �2. (a) Amplification factor, (b) temporal order of accuracy,

(c) spatial order of accuracy.
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from 0.006 to 0.1. Note that second-order accuracy is obtained. An indication of computational cost is

provided by the fact that for a grid with 64 points, four outer loop iterations, five continuity equation iter-

ations, two iterations for each momentum equation, and ten iterations for the pressure-correction equation

are needed to obtain a residual of 10�10 for the outer loop and 10�14 for the inner loop.

4.2. Taylor problem

Numerical solutions of the Taylor problem are used to show the ability of the algorithm to solve nearly
incompressible flow without being restricted by the acoustic CFL, and to illustrate its discrete-energy con-

serving properties in the incompressible limit. The Taylor problem is an analytical solution to the incom-

pressible Navier–Stokes equations which describes counter-rotating vortices that decay in time. The

velocity and pressure fields are given by (for a domain of length 2p in the x- and y-directions)
u ¼ � cos x sin ye�2mt, v ¼ sin x cos ye�2mt, p ¼ � 1

4
ðcos 2xþ cos 2yÞe�4mt: ð30Þ
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Fig. 3 shows numerical results for a mean Mach number of 10�3 obtained on a grid of 32 · 32 · 4 at a time-

step of 0.01 non-dimensional units. Note that this time-step corresponds to an acoustic CFl, c0Dt/Dx of 53.

The computed decay of kinetic energy is compared to analytical solution for Reynolds numbers that are

varied from a value of 1 to 1 (inviscid). Apart from agreeing with the analytical solution, note that the

solution is entirely stable in the inviscid limit, and preserves its initial kinetic energy as required by the ana-
lytical solution. Central difference schemes that only conserve momentum, and not kinetic energy, would

become unstable under these conditions, while schemes with numerical dissipation would decay at a rate

determined by the order of the scheme, and the grid used. This behavior in the inviscid limit translates into

robustness without compromising accuracy at high Reynolds numbers on grids that are too coarse to re-

solve viscous dissipation [2].

4.3. Shock tube problem

A periodic shock tube problem [11,27] is computed to illustrate the conservative properties of the algo-

rithm. Fig. 4(a) shows the initial condition. The gas is initially at rest with uniform temperature, pressure

and a jump in density. When the flow is advanced, the initial density discontinuity generates a shock wave

(with height q2, U2, T2 moving with speed s) and an expansion wave that moves in the opposite direction.

The shock and expansion waves are separated by a contact discontinuity with height q3, T3. Fig. 4(b) shows

instantaneous profiles of pressure, density and velocity at time t = 1 for a case where Re = 200. The reference

Mach number Mr = 1.0, and the computations were performed on a domain of length 4p, using a uniform

grid of 512 nodes at a time-step of 10�3. The thickness of the shock wave is resolved using approximately 6
points under these conditions. The jumps in density, pressure, velocity and temperature across the shock and

expansion waves are compared to analytical solution in Table 1, and seen to agree within 0.7%.

4.4. Isotropic turbulence

The algorithm is applied to simulate homogeneous, decaying isotropic turbulence on a very coarse grid

without a subgrid model. This problem poses a severe test of the ability of the algorithm to ensure robust-

ness at high Reynolds numbers without numerical dissipation. The initial fluctuation Mach number,
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Fig. 3. Kinetic energy decay at different Reynolds numbers for the Taylor problem. The symbols denote the computed solution and are

defined as follows: h, Re = 1; }, Re = 10; n, Re = 100; s, Re = 1 (inviscid). The solid lines denote the analytical solution at each

Reynolds number.



Fig. 4. (a) Initial conditions for the periodic shock tube problem: —, density; - - - -, velocity; –Æ–, pressure; � � �, temperature.

(b) Instantaneous solution at t = 1.0. —, density; - - - -, velocity; –Æ–, pressure. (c) Instantaneous temperature at t = 1.0.

Table 1

Comparison between predicted and calculated values for periodic shock tube

q2 q3 T2 T3 U2 s

Predicted 0.613 1.223 1.393 0.698 0.821 1.608

Calculated 0.614 1.214 1.394 0.702 0.821 1.590
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Mt = q/a and turbulent Reynolds number, Rek ¼ urmsk
m . Here, q ¼

ffiffiffiffiffiffiffiffi
u0iu

0
i

p
, a ¼

ffiffiffiffiffiffiffiffiffiffi
cRT 0

p
is the mean speed of

sound, and k denotes the initial Taylor microscale. The initial radial energy spectrum is
EðkÞ ¼ 16

ffiffiffi
2

p

r
u20
k0

k
k0

� �4

e
�2ð k

k0
Þ2
: ð31Þ
This initial spectrum is used to generate divergence-free, initial velocity field as suggested by Rogallo [28].

k0 = 5, and the initial fluctuations in pressure, temperature and density are set to zero.
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Simulations are performed for compressible (Mt = 0.4), and nearly incompressible (Mt = 0.01) condi-

tions. For each simulation, two Reynolds numbers, (Rk = 100 and Rk = 1, i.e., inviscid) are considered.

The domain is (2p)3, and the computational grid has 32 points in each direction. The time-step is fixed

at 0.025s for all the simulations. Here, s is an �eddy-turnover� time-scale which is equal to the initial value

of k/urms. Note that even the lower Reynolds number solution is not resolved by the computational grid.
Also, no subgrid model is used.

Fig. 5 shows the decay of turbulence kinetic energy decay at different Reynolds numbers and fluctuation

Mach numbers. The kinetic energy is normalized by its initial value and time is normalized by s. Note that

the solution reproduces the proper trend, i.e., reduced decay with increased Reynolds number. Also, the

solution is stable in the inviscid limit. The kinetic energy decreases slightly at Mt = 0.4 while it is equal

to its initial value for Mt = 0.01. This is a compressible effect; the decrease in kinetic energy at Mt = 0.4

is balanced by an increase in the potential energy.

An interesting aspect of homogeneous, compressible turbulence is that acoustic fluctuations generated
by the initial transient will be constrained by the periodic boundary conditions, and steepen due to the non-

linearity, while decaying at a rate determined by viscosity. In the inviscid limit therefore, even the Mt = 0.4

and Mt = 0.01 flows will form shock waves in finite time. A non-dissipative, scheme will capture this behav-

ior provided it is stable on the shock-formation time-scale. This is illustrated in Fig. 6(a) which shows the

solution for very long times. Note that the Mt = 0.4 solution is stable for about 30s, following which the

kinetic energy, and density fluctuations increase rapidly. This behavior is due to the formation of shock

waves in the domain. Fig. 6(b) shows that rms level of dilatation is comparable to that of vorticity when

the kinetic energy starts increasing. In contrast the Mt = 0.01 flow maintains its initial kinetic energy over
this considerable length of time; also the level of dilatation fluctuations is noticeably lower.

This behavior is explained by Fig. 7 which shows three-dimensional spectra of the turbulence kinetic en-

ergy for the Mt = 0.01 flow, and dilatation for the Mt = 0.4 flow. Note that the nearly incompressible flow

exhibits equipartition, i.e., its spectrum at long times varies as k2. The dilatation spectrum for the Mt = 0.4

flow explains its behavior at long times. Note that the levels of dilatation fluctuations increase with time,

with most of the increase being at the smallest scales. This behavior is consistent with the formation of

shock waves. These results therefore show that the algorithm is stable even in the inviscid limit on the
Fig. 5. Evolution of turbulence kinetic energy: (a) Mt = 0.4, (b) Mt = 0.01. For both plots — denotes Rek = 100, and - - - - denotes

inviscid flow.



Fig. 6. Long–time evolution of inviscid, isotropic, compressible turbulence. (a) —, turbulence kinetic energy at Mt = 0.4; - - - -, rms

density at Mt = 0.4; –Æ–, turbulence kinetic energy at Mt = 0.01; � � �, rms density at Mt = 0.01. The range of kinetic energy is shown on

the right of the plot, while the left of the plot shows the range of rms density. (b) —, rms vorticity at Mt = 0.01; - - - -, rms dilatation at

Mt = 0.01; –Æ–, rms vorticity at Mt = 0.4; � � �, rms dilatation at Mt = 0.4. Both quantities are normalized by the initial rms vorticity.

Fig. 7. Three–dimensional energy (E(k)) and dilatation (Ehh) spectra as a function of time for inviscid, isotropic, compressible

turbulence. The energy spectrum is normalized by the initial value of q2, and dilatation spectrum is normalized by initial x2
rms.

(a) Kinetic energy spectrum for Mt = 0.01: —, t/s = 0; - - - -, t/s = 5; –Æ–, t/s = 10; � � �, t/s = 70. (b) Dilatation spectrum for Mt = 0.4: —,

t/s = 1; - - - -, t/s = 4; –Æ–, t/s = 8; � � �, t/s = 56.
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convective time-scale, and is unstable only when shock waves form. This behavior is in contrast to other

commonly used non-dissipative schemes which become unstable at very short times even at very low Mach

numbers, i.e., they are unstable on the convective time-scale (t/s � 1) at high Reynolds numbers (e.g. see

Fig. 11 in [16]).
5. Conclusions

This paper proposes a non-dissipative, robust algorithm for direct numerical and large-eddy simulation

of compressible turbulent flows. The algorithm colocates variables in space, to allow easy extension to
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unstructured grids. The thermodynamic variables are staggered in time to ensure complete symmetry at fi-

nite time-steps. The Navier–Stokes equations are non-dimensionalized using an incompressible scaling for

pressure, as a result of which the incompressible Navier–Stokes equations are recovered in the limit that the

Mach number tends to zero. A pressure-correction approach is used to solve the resulting equations. The

algorithm is not limited by the acoustic time-scale at low Mach numbers, and is discretely energy-conserv-
ing in the incompressible limit. Results are shown for acoustic propagation, the incompressible Taylor

problem, periodic shock tube problem, and isotropic turbulence. The numerical examples suggest that

the proposed approach has some very desirable features for direct numerical and large-eddy simulation

of compressible turbulent flows.
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