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Numerical and modeling issues in LES of compressible

turbulence on unstructured grids

Noma Park∗ and Krishnan Mahesh†

University of Minnesota, Minneapolis, MN, 55455, USA

This paper discusses numerical and modeling issues that arise in cell-centered finite-
volume methods (FVM) for large eddy simulation (LES) of compressible flows on unstruc-
tured grids. These are: accuracy and stability of flux interpolation scheme, shock capturing
strategy, and subgrid-scale (SGS) modeling. To enhance the accuracy of flux reconstruc-
tion, a new scheme with added first derivative term from each cell center is proposed, and
tested for various benchmark problems. It is shown that stability as well as accuracy is
determined by the formulation of gradient at cell center. As a shock-capturing method,
a characteristic based filter is formulated for cell-centered FVM on unstructured grids.
The filter is combined with a sensor based on the local divergence and vorticity. Also,
a one-equation subgrid model based on the subgrid kinetic energy transport equation for
compressible flows is proposed.

I. Introduction

Upwind schemes and centered difference with artificial dissipation have been popular discretization meth-
ods for the Reynolds-Averaged Navier-Stokes (RANS) simulation of compressible flows. However, there is
evidence that such schemes might be undesirable for large eddy simulation (LES) due to excessive numerical
dissipation.1–3 Furthermore, in order to handle complex geometries, unstructured grids are preferred. Non-
dissipative finite volume schemes on unstructured grids introduce some nontrivial numerical and modeling
issues. The present paper considers (i) the accuracy and stability of the base scheme, (ii) shock-capturing
scheme and (iii) the SGS model.

The accuracy of the scheme is determined by the flux reconstruction at cell faces. In collocated FVM,
simple symmetric average is preferred due to its good quadratic conservation property.4,5 However, this
symmetric average is only first-order accurate, and this degradation of accuracy becomes a serious problem
for highly skewed unstructured grids. However, the increase of formal accuracy in the context of unstruc-
tured FVM is not straightforward. Also, the introduction of high order interpolation can cause numerical
instability.

An external shock-capturing mechanism should be provided for non-dissipative FVM. Possible candidates
are Jameson type artificial dissipation,6 characteristic filtering7 and combination with upwind scheme such
as ENO.8,9 The key issue is to concentrate numerical dissipation in the vicinity of the flow discontinuity and
minimize unnecessary dissipation. Especially, it is important for shock capturing schemes to discriminate
between the shock wave and under-resolved turbulence. Even advanced upwind schemes such as WENO do
not meet this requirement,3 and can even laminarize flow when applied to fully developed channel flow.

Finally, we consider issues regarding LES on unstructured grids. The first problem one encounters is
that the shape of filter associated with grid is unknown. This fact makes it difficult to compare DNS data
with computed LES solution since the exact LES solution is undefined. Another problem arises in the
implementation of the dynamic Smagorinsky model (DSM),10 which is one of the most popular subgrid scale
(SGS) models. DSM requires test filtering and averaging over homogeneous, if any, direction(s). However,
it is difficult to derive the desired test filter since it is hard to derive the transfer function in the spectral
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space. Also, in incompressible flows, the subgrid kinetic energy is absorbed in the pressure. However, for
compressible flows, the subgrid kinetic energy requires explicit modeling.

The objective of the present paper is to propose a numerical method and SGS model which consider the
above numerical issues. The paper is organized as follows. In Sec. II, governing equations, finite volume
formulation and time integration schemes are summarized. Sec. III deals with numerical issues related
with convective and viscous flux reconstruction. The implementation of shock capturing scheme and its
performance is evaluated in Sec. IV. Issues regarding SGS model implementation and computational results
are presented in Sec. V. The paper is summarized in Sec. VI.

II. Governing equation and finite volume formulation

The governing equations are the spatially filtered continuity, momentum, and total energy conservation
equations:

∂ρ

∂t
= − ∂

∂xk
(ρuk) ,

∂ρũi

∂t
= − ∂

∂xk
(ρũiũk + pδik − σ̃ik + τik) , (1)

∂ET

∂t
= − ∂

∂xk

{(
ET + p

)
ũk − σ̃ikũi −Qk + qk

}
,

where ρ, ui, p and ET are density, velocity, pressure and total energy, respectively. The viscous stress σ̃ij

and heat flux Qi are given by

σ̃ij =
µ

Re

(
∂ũi

∂xj
+

∂ũj

∂xi
− 2

3
∂ũk

∂xk
δij

)
, (2)

Qi =
µ

(γ − 1)M2∞RePr

∂T

∂xi
(3)

after standard non-dimensionalization, where Re, M∞ and Pr denote the Reynolds, Mach and Prandtl
numbers. For all problems considered in this paper, µ = (T/Tref )0.7 and Pr = 0.72. Here

φ(x) =
∫

Ω

G∆(x,y)φ(y)dy (4)

denotes spatial filtering of φ(x), (x ∈ Ω) with nominal filter width ∆ and tilde denotes Favre-filtered quan-
tities; i.e. φ̃ = ρφ/ρ. As mentioned above, the shape of filter kernel G∆(x,y) is unknown for general
unstructured grid. Nevertheless, we assume that the filtering is the mapping from the fully resolved so-
lution to continuous representation of discrete solution with filter size ∆(x). τij = ρ(ũiuj − ũiũj) and

qk = ρ
(
ũiT − ũiT

)
are SGS stress and heat flux.

Equations (1) are discretized using collocated, or cell-centered finite volume method. The schematics for
collocated FVM are shown in Fig. 1. Integrating over control volume CV and applying the Gauss theorem,
Eq. (1) takes the form

∂ρcv

∂t
= − 1

Vcv

∑

faces

ρfvNAf ,

∂ (ρũi)cv
∂t

= − 1
Vcv

∑

faces

[
(ρũi)f vN + pfni − σ̃ik,fnk + τik,fnk

]
Af , (5)

∂
(
ET

)
cv

∂t
= − 1

Vcv

∑

faces

[(
ET + p

)
f

vN − σ̃ik,f ũi,fnk −Qk,fnk + qk,fnk

]
Af ,

where Vcv is the volume of CV, Af is the area of the face, ni is the outward normal vector at surface, vN is the
face-normal velocity, and qcv =

(∫
cv

qdV
)
/Vcv is the volume average within the cell, where q =

(
ρ, ρũi, ET

)
is the conservative variable. Here, the subscript f denotes the interpolation at each face of CV. Discretization
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Figure 1. Schematic of the collocated scheme and parallel faces.

of the governing equation involves reconstruction of face values from cell center values. The emphasis of
this paper is on the spatial discretization; the discretized system (5) is therefore advanced in time using the
explicit Adams-Bashforth scheme to yield

qn+1
j = qn

j +
∆t

2
(
3rhsj(qn)− rhsj(qn−1)

)
, (6)

where rhsj denotes j th component of r.h.s. of Eq. (5), and superscript n denotes n th time step.
In the subsequent sections, the effects of flux reconstruction, shock-capturing scheme and SGS models on

the solution of (5) are investigated through various benchmark problems. Table 1 summarizes computational
parameters of those problems. More detailed parameters, if necessary, will be described where they first
appear in the paper.

III. Flux reconstruction at cell face

III.A. Convective flux

The spatial accuracy of the scheme is entirely dependent upon the “flux reconstruction” at the cell face
from center values. It is known5 that an interpolation that shows quadratic conservation (for divergencefree
velocity) is the simple symmetric average

φfc =
φicv1 + φicv2

2
(7)

Table 1. Computational parameters of problems considered

problem def. grid type (size)a domain flow type (SGS) shockb Re, M∞
scalar equation TET (1800) 4× 1× 1 scalar eqn. No N/A
vortex convection HEX (323) (2π)3 Euler eqn. No N/A
Taylor-Green HEX (323) (2π)3 laminar No 10, 0.1
shock-tube TET (38834) 10× 2× 2 laminar Yes 1000, 1.2
shock-vortex HEX (101× 101) 10× 10 laminar Yes 1000, 1.2
mixing layer HEX (81× 81)/ TRI 30× 100 laminar Yes 1000, 0.8
isotropic turb. HEX (323) (2π)3 turbulent (No) Yes/No 100c, 0.1
CBC11 HEX (323)/TET (2π)3 turbulent (Yes) No 71c, 0.1

a: HEX = hexahedral grid, TET=tetrahededral grid, TRI=triangular grid
b: shock capturing scheme (characteristic based filter), c: Taylor scale based initial Reynolds number
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Figure 2. (a) Stencil for the computation of gradient and (b) schematic of computation of face normal gradient for
viscous terms.

for any cell center variable φ, where fc, icv1 and icv2 are illustrated in Fig. 1. In what follows, we will refer to
Eq. (7) as the “symmetric average.” In addition to (7), vN should be given by means of projection to satisfy
discrete continuity equation in order to guarantee the quadratic conservation in the inviscid, incompressible
limit.5 A compressible counterpart is recently proposed by Hou and Mahesh4 based on the projection onto
the energy equation. The Hou and Mahesh algorithm is fully implicit; however, since the focus of this paper
is on spatial discretization, we consider the conventional interpolation-based method for vN = (ρui)f/ρf ·Ni

and, thus, resulting scheme does not conserve the kinetic energy in the incompressible, inviscid limit.
In addition, this reconstruction is only first order accurate scheme for nonuniform grid. This may result

in significant deterioration of the solution as will be shown later. An obvious choice for a better resolution
is adding a gradient base term using Taylor series expansion at each cell to yield

φfc =
φicv1 + φicv2

2
+

1
2

(∇φ|icv1 ·∆xicv1 + ∇φ|icv2 ·∆xicv2
)
, (8)

where ∆xicv1 = xfc −xicv1, and ∇φ|icv1denotes the gradient defined at icv1. We consider the following two
approaches to obtain the gradient.

III.A.1. Least-square method (LSQ)

The first approach is called the ‘least square method’ (LSQ) since we develop ∇φ|cv that can be used for
the approximation of values at any adjacent points by

φ(x) ≈ φ(x0) + ∇φ|cv · (x− x0), (9)

where x0 denotes coordinates of CV cell center, P0 in Fig. 2, and x is any point that belongs to neighbor
cells (see Fig. 2). Let ∇φ|cv = (A, B, C), then the best choice of ∇φ|cv is the one that minimizes the
functional

F (A, B, C) =
∑

nbr

[φnbr − φ(x0)− (A, B, C) · (xnbr − x0)]
2
wnbr, (10)

where φnbr and xnbr denote the values and locations of neighbor cells shown in Fig. 2. Here wnbr is the
weighting function, which is set to be 1 for simplicity and preserving symmetry of scheme. From the condition
∂F/∂A = ∂F/∂B = ∂F/∂C = 0, ∇φ|cv is given by the solution of the system




∑
nbr ∆x2

∑
nbr ∆x∆y

∑
nbr ∆x∆z∑

nbr ∆x∆z
∑

nbr ∆y2
∑

nbr ∆y∆z∑
nbr ∆x∆z

∑
nbr ∆y∆z

∑
nbr ∆z2






A
B
C


 =




∑
nbr ∆φnbr∆x∑
nbr ∆φnbr∆y∑
nbr ∆φnbr∆z


 , (11)

where ∆x = xnbr − x0, ∆φnbr = φnbr − φ0 and other terms are defined similarly.
For a uniform one-dimensional grid with spacing ∆x, LSQ reduces to a second order interpolation formula

given by

φi+ 1
2

=
1
8

(−φi+2 + 5φi+1 + 5φi − φi−1) , (12)
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Figure 3. Modified wavenumbers for first derivative. Here, CD2 and CD4 denote second and fourth order central
differences.

where φi+1/2 is the value at cell face and φi, φi+1, ... are cell center values. The corresponding finite-difference
is

δφ

δx
=
−φi+2 + 6φi+1 − 6φi−1 + φi−2

8∆x
. (13)

The scheme is formally second-order accurate. The modified wavenumber characteristics of this scheme is
shown in Fig. 3, which clearly shows that resolution capability at high wavenumber is better than 4th order
central difference scheme.

The LSQ scheme is first evaluated on the inviscid, vortex convection equation defined on a periodic box
of [0, 2π]3 domain. The initial condition is given as

u = 1− C(y − yc)
R2

exp(−r2/2),

v =
C(x− xc)

R2
exp(−r2/2), (14)

p = p∞ − ρC2

2R2
exp(−r2),

Figure 4. Vorticity contours at t = 2π for inviscid vortex convection problem.
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Figure 5. Grid and pressure contours at t = 1.0 from the Taylor-Green problem at Re = 10 and M∞ = 0.1 with a
perturbed haxahedral grid. Symbol, analytic solution; dashed, symmetric average; solid, least-square reconstruction.

where r2 = ((x − xc)2 + (y − yc)2)/R2. Here, R = 1, C = 0.02, xc = yc = π. Fig. 4 shows the vorticity
contours at t = 2π from exact solution, symmetric average and LSQ. As shown in Fig. 4, the large lagging
phase due to the dispersion error is reduced by LSQ. Next, the Taylor-Green problem at Re = 10,M∞ = 0.1
at a perturbed hexahedral grid (Fig. 5) is considered. See, e.g., Hou and Mahesh4 for the initial condition
and exact solution. Fig. 5 shows the decay of kinetic energy and pressure contour at t = 2.0. As shown, LSQ
gives much more accurate prediction of pressure than the symmetric average. Next, highly under-resolved
decaying isotropic turbulence is considered. The computation is performed at 323 resolution with initial
micro-scale Reynolds number Reλ = urmsλ/ν = 100, and the initial spectrum obeys

E(k) = 16

√
2
π

u2
0

k0

(
k

k0

)4

exp
(−2k2/k2

0

)
, (15)

where k0 = 5 and u0 = 1. Fig. 6 shows the decay of kinetic energy and the energy spectra at t/te = 4, where
te = λ/urms is the eddy turn-over time. As the reference solution, results from the dealiased pseudo-spectral
method using the code described in Park and Mahesh12 is also shown. Note that energy decay and spectra
from LSQ are closer to those from the spectral method.

However, a serious instability of LSQ-reconstruction was observed on tetrahedral grids. Surprisingly, this
instability is observed even for a linear problem where most schemes are Cauchy stable. As an example,
the results from the scalar convection equation ∂φ/∂t + ∂(Ujφ)/∂xj = 0 on a tetrahedral grid are shown in
Fig. 7. Initial and boundary condition at the inlet (x = −2) are given by φ(x, 0) = 0.5 and φ(−2, t) = 1,
respectively. As shown from Fig. 7(a), the solution diverges abruptly after t > 0.4.

0 1 2 3 4
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0.4

0.6

0.8

1

10 20 30
10-3

10-2

10-1

Figure 6. Effect of flux reconstruction scheme on the decaying isotropic turbulence at Reλ = 100 on a hexahedral grid
at 323 resolution.
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Figure 7. Stability and accuracy of high-resolution reconstruction: results from a scalar convection equation ∂φ/∂t +
∂(Ujφ)/∂xj with a tetrahedral grid. Shown are (a) time evolution of total φ2, (b) grid and instantaneous contours of φ
at t = 1.0, and (c) φ along y = 0 (center) at t = 1.0.

III.A.2. Modified least-square method (MLSQ)

An alternative way of defining the gradient is provided by the gradient theorem

∇φ|cv =
1

Vcv

∑

faces

φ?
fc

niAf . (16)

The main problem is Eq. (16) again requires the face value φ?
fc

which we are trying to estimate through
Eq. (8). The superscript ? is to discriminate this face value from φfc in Eq. (8). This recursive relationship
between gradients and face values is terminated simply by approximating φ?

fc
= 0.5(φicv1 + φicv2). The

computed gradient from (16) is then inserted to (8) to obtain φfc . It is easy to show that this method is
identical to LSQ for uniform hexahedral grid, and thus has the same modified wavenumber characteristics
as shown in Fig. 3. Even though this method does not use the idea of least-square error minimization, we
will refer to it as the modified least-square (MLSQ) reconstruction for some reasons other than notational
convenience that 1) it is considered as the alternative of LSQ, and 2) it stems from the same idea of Eq. (8),
and 3) it reduces to LSQ for uniform grid.

The scalar convection equation mentioned above is again solved with MLSQ to get stable and more
accurate result that that from the symmetric average as shown in Fig. 7. Note that results on vortex
convection (Fig. 4) and decaying isotropic turbulence from LSQ are also those from MLSQ. Thus, it appears
that MLSQ overcomes the instability problem of LSQ while keeping comparable accuracy. In what follows,
all results that will be shown adopts MLSQ unless otherwise specified.

III.B. Viscous flux

In order to compute viscous flux vectors at cell face,

σ̃ij ,f =
( µ

Re

)
f

(
∂ũi

∂xj

∣∣∣∣
f

+
∂ũj

∂xi

∣∣∣∣
f

− 2
3

∂ũk

∂xk

∣∣∣∣
f

δij

)
, (17)
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Figure 8. Three-dimensional modified wavenumbers for second derivative

all nine components of velocity deformation tensor Dij = ∂ eui

∂xj
should be defined at each cell face. This

increases the computational overhead significantly. A simple remedy is to compute Dij at cell centers and
interpolate it at cell face by either symmetric average or (M)LSQ reconstruction. However, this approach is
equivalent to get second derivative by double applications of first derivative, which results in non-compact
stencil formulation. It is well known12 that such method has much worse modified wavenumber characteristics
than compact stencil methods, as illustrated in Fig. 8. In Fig. 8, three-dimensional modified wavenumbers12

are shown for second order accurate, second derivatives realized by the double application of first derivative
(non-compact) and compact approach, respectively.

In this paper, we make the trade-off by splitting σ̃ij = σ̃1
ij + σ̃2

ij into two parts, where σ̃1
ij = µ

Re
∂ eui

∂xj

and σ̃2
ij = µ

Re

(
∂euj

∂xi
− 2

3
∂euk

∂xk
δij

)
. σ̃2

ij can be interpreted as the compressible part, since it vanishes in the

incompressible limit. Then, r.h.s. of Eq. (5) that contains incompressible part, σ̃1
ij , is computed by

1
Vcv

∑

faces

( µ

Re

)
f

∂ũi

∂xj

∣∣∣∣
f

njAf =
1

Vcv

∑

faces

( µ

Re

)
f

∂ũi

∂n

∣∣∣∣
f

Af . (18)

Here, the normal gradient at the face is computed by

∂φ

∂n
=

φifn2 − φifn1

df
, (19)

where ifn1 (ifn2) is the projection of icv1 (icv2) onto the extension of normal vector n as illustrated in
Fig. 2, and df is the distance between ifn1 and ifn2. φifn1 is given by

φifn1 = φicv1 + ∇φ|icv1 · (xifn1 − xicv1), (20)

where the least-square method, Eq. (11), is used to determine the gradient ∇φ at icv1. Viscosity at the cell
face is given by Eq. (8) and LSQ reconstruction. Thus, the incompressible part corresponds to compact-
stencil method. Whereas, σ̃2

ij,f is constructed by the interpolation of σ̃2
ij

∣∣
icv1

and σ̃2
ij

∣∣
icv2

using Eq. (8).
Here again, the least-square method is used for all spatial derivatives at cell centers. Note that the least-
square method does not raise any numerical instability for viscous flux vectors. Thus, the compressible part
corresponds to non-compact scheme.

By using the proposed hybrid method, the computation of velocity deformation tensor at cell faces is
avoided so that significant reduction of computational overhead is achieved. In terms of accuracy, the hybrid
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Figure 9. Effect of viscous term discretization on (a) kinetic energy decay and (b) energy spectra at t/te = 4.0 for
a decaying isotropic turbulence at initial Reλ = 100. Solid, compact viscous term; doted, non-compact viscous term;
closed square, dealiased spectral; open circle, Hou and Mahesh.4

scheme is justified by the fact that viscous flux is dominated by incompressible part even with non-negligible
compressibility. Since σ̃2

ij is directly involved with the divergence, the compressible part becomes significant
only in the vicinity of the shock, where most numerical dissipation is provided by shock-capturing scheme
that will be described in the next section. Fig. 9 compares the kinetic energy decay and energy spectra from
compact, and non-compact viscous flux discretization for the decaying isotropic turbulence at Reλ = 100
described earlier. Here, the compact scheme denotes proposed hybrid scheme and non-compact scheme is
achieved by the interpolation of both σ1

ij and σ2
ij from cell center values. For convective flux, symmetric

average is adopted for the comparison with the existing result4 on the structured grid. As shown, the
agreement with result from structured grid is good for the case of compact method. On the other hand,
results from non-compact method shows significantly slow decay of kinetic energy due to large pile-up of
energy at high wavenumber region as expected from bad modified wavenumber characteristics in Fig. 8.

IV. Shock-capturing scheme

As mentioned in Sec. I, shock-capturing for non-dissipative schemes can be performed either by adding
filter, or hybridization with upwind scheme. In the present study, we consider the filtering technique since
the filter can be independently implemented with base scheme by predictor-corrector-like scheme described
as follows. Once a physical time step ∆t is advanced to get the solution q̂n+1 from qn, the final solution
qn+1 at t + ∆t is determined from a corrector-like scheme:7

qn+1
cv = q̂n+1

cv − ∆t

Vcv

∑

faces

(
F∗f · nf

)
Af , (21)

where F∗f is the filter numerical flux. Using this strategy, shock-capturing is easily isolated from the base
scheme so that refinement of base scheme and shock capturing can be pursued independently. In this paper,
the characteristic-based filter proposed for structured grids by Yee et al.7 is generalized to unstructured
grid. The main difficulty lies in the dependence on adjacent grid indices in the grid direction, and is realized
on the unstructured grid by introducing two parallel faces f1 and f2 as represented in Fig. 1. Note that f1

(f2) is defined as the most parallel face to fc among all the faces f that surrounds icv1 (icv2) except for fc

itself (≡ {f}icv1(icv2)). Practically, f1 ∈ {f}icv1 and f2 ∈ {f}icv2 are planes such that

ϕ(f, fc) = 1− |nfc · nf | . (22)

has the minimum possible value.
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Details of the implementation are as follows. The filter numerical flux has the form

F∗fc
=

1
2
RfcΦ

∗
fc

, (23)

where R is the right Eigenvector of (convective flux vector) =
[
ρfvN , (ρũi)f vN + pfni,

(
ET + p

)
f

vN

]T

(i =

1, 2, 3) from Eq. (5). See, e.g., Rohde13 for the complete expression. The face value Rfc
= R(qicv1,qicv2) is

constructed using Roe’s average:

ufc,Roe =
√

ρicv1uicv1 +
√

ρicv2uicv2√
ρicv1 +

√
ρicv2

,

Hfc,Roe =
√

ρicv1Hicv1 +
√

ρicv2Hicv2√
ρicv1 +

√
ρicv2

, (24)

c2
fc,Roe = (γ − 1)

[
Hroe − 1

2
(
u2

fc,Roe + v2
fc,Roe + w2

fc,Roe

)]
,

where H = (Et + p) /ρ is the enthalpy and c is the speed of sound. On the other hand, the expression for
the `-th component of Φ∗, φ∗` is given by

φ∗`fc
= κθ`

fc
φ`

fc
, (25)

where κ is the adjustable parameter and θfc
is the switch function given by

θfc
=

√
0.5

(
θ̂2

icv1 + θ̂2
icv2

)
,

θ̂icv1 =
∣∣∣∣
|αfc | − |αf1 |
|αfc |+ |αf1 |

∣∣∣∣
p

, (26)

θ̂icv2 =
∣∣∣∣
|αf2 | − |αfc |
|αf2 |+ |αfc |

∣∣∣∣
p

.

Here, αf = R−1
f ∆q = R−1

f (qicv2 − qicv1) is the difference of the characteristic variable across the face,
and p = 1 is used. Note that the formulation θfc in Eq. (26) is a code-friendly variation of the original

formulation7 θfc = max
(
θ̂icv1, θ̂icv2

)
for the case icv1 and icv2 belong different processors in MPI-based

parallel algorithm, and is proven to make a negligible difference with the original formulation.
For φ`, we choose the Harten-Yee TVD form

φ`
fc

=
1
2
Ψ

(
a`

fc

) (
g`

icv1 + g`
icv2

)−Ψ
(
a`

fc
+ γ`

fc

)
α`

fc
, (27)

γ`
fc

=
1
2

Ψ
(
a`

fc

) (
g`

icv2 − g`
icv1

)
α`

fc(
α`

fc

)2

+ ε
, (28)

where ε = 10−7 and Ψ(z) =
√

δ + z2 (δ = 1/16) is introduced for the entropy fixing. a`
fc

is the element of
the eigenvalues. According to Yee et al.,7 g`

icv’s are cell center values defined in terms of α`
f ’s. One possible

expression in the structured mesh is

g`
i,j,k = minmod

(
α`

i,j−1/2,k, α`
i,j+1/2,k

)
(29)

along j-direction. See Yee et al.7 for other types of limiters. Equivalent definition holds for i- and k-
directions. Therefore, there are three distinct values of g`

i,j,k according to the orientation of the faces under
consideration. This fact brings about a significant problem in unstructured grid where the concept of the
Cartesian direction does not exist. The best way to overcome this problem is to define g’s at cell faces
to account for this directional dependence. Since what we actually need are the symmetric average and
difference, or 1

2 (gicv1 + gicv2) and 1
2 (gicv2 − gicv1), it is natural to define these quantities at cell faces:

g+`
fc

≡ 1
2

{
minmod

(
α`

f1
, α`

fc

)
+ minmod

(
α`

fc
, α`

f2

)}
, (30)

g−`
fc

≡ 1
2

{
minmod

(
α`

f2
, α`

fc

)−minmod
(
α`

f1
, α`

fc

)}
. (31)
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Figure 10. Performances of the characteristic-based filter. (a) pressure contours from a shock-vortex interaction at
t = 4.0 with a uniform grid and (b) stationary shock tube problem with a tetrahedral grid.

Accordingly, φ`
fc

and γ`
fc

are rewritten as follows:

φ`
fc

= Ψ
(
a`

fc

)
g+`

fc
−Ψ

(
a`

fc
+ γ`

fc

)
α`

fc
, (32)

γ`
fc

=
Ψ

(
a`

fc

)
g−`

fc
α`

fc(
α`

fc

)2

+ ε
, (33)

The advantage of this three face-approach is that it does not use any interpolation between cell center
and face values. Thus, this approach can guarantee the same result as what could be obtained from the
original formulation, when the structured grid is used. The main concern about the parallel face approach
lies in its feasibility on triangular and tetrahedral grids on which the appearance of ‘not-so-parallel’ parallel
faces is unavoidable. Another concern is the problem of characteristic filtering itself that it depends on a
tunable parameter κ. These are the main issues investigated by numerical tests.

Fig. 10 shows pressure contours from shock-vortex interaction and shock-tube problems. For both
problems, κ = 1.0 is used. For shock-vortex interaction problem, a complete domain is shown in Fig. 10
which is discretized by a 101× 101 uniform hexahedral grid. A vortex initially at x = 3.0 which is described
by Eq. (14) with a stronger intensity (C = 0.8), interacts with a shock at x = 5.0 with M = 1.2. From
Fig. 10, the basic performance of characteristic filter is excellent showing no oscillation near the shock and
no smearing of vortex. The same conclusion is true for shock-tube problem for which a coarse tetrahedral
grid is used as shown in Fig. 10. In spite of coarse resolution, the shock is captured within two grid points.
Thus, it appears that parallel face approach is works well even for tetrahedral grids.

The next test case is a two-dimensional mixing layer at convective Mach number Mc = 0.8 and Reynolds
number based on the vorticity thickness is 1000, which was intensively tested by Yee et al.7 The main
objective here is to investigate the performance of the shock capturing scheme on a triangular mesh shown
in Fig. 11. For the purpose of comparison, computation is also performed on a 81 × 81 hexahedral grid
which has a comparable resolution to the triangular grid. The base flow is u = 0.5 tanh(2y) and the initial
perturbation is given by

v′ =
2∑

k=1

ak cos
(

2πkx

Lx
+ φk

)
exp

(
−y2

b

)
, (34)

where a1 = 0.05, a2 = 0.01, φ1 = φ2 = −π/2, b = 10 and Lx = 30. u′ is determined from divergence-
free condition. Temporal evolution of temperature contours are shown in Fig. 11 for both hexahedral and
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Figure 11. Temporal evolution of temperature contours for a time-developing mixing layer at Mc = 0.8 and Re = 1000
with (a) a hexahedral and (b) a triangular grid. Shown are 15 contours in the range of 0.8 ≤ T/Tref ≤ 1.1.

tetrahedral grids. Here, κ = 0.3 is applied for both cases. The formation of shocklets as well as the pairing
and merging of vortex are well represented by both grids. Especially, good results from triangular grid
again demonstrates the feasibility of the parallel face approach. Fig. 12 shows the effects of reconstruction
accuracy, κ and the switch θ in Eq. (26). For this problem, it seems that the difference between symmetric
average and MLSQ is small, because the flow is essentially laminar and well resolved except for the shock.
Whereas, the increase of κ (= 0.1) results in the smearing of the shock. Furthermore, both the vortex and
and shock are smeared significantly when the Harten-Yee switch (Eq. (26)) is turned off by setting κθ = 1
as shown in Fig. 12 (d). Recall that without the Harten-Yee filter, or with φ∗`fc

= φ`
fc

, the characteristic
based filter approaches a common TVD scheme. Therefore, Fig. 12 clearly shows the advantage of using the
characteristic filter over TVD schemes.

However, when this filter is applied to an under-resolved turbulent problem, it is shown that the charac-
teristic filter kills resolved-scale turbulence significantly even with small κ = 0.1 as shown in Fig. 13, where
kinetic energy decay and energy spectra at t/te = 4 for the decaying isotropic turbulence at Reλ = 100 are
depicted. Thus, we consider the modification of the Harten-Yee filter with the idea of Ducros et al.1 by
multiplying the following sensor to θfc in Eq. (26):

θ?
fc

=
1
2

(θ?
icv1 + θ?

icv2) , (35)

θ?
icv1 =

(∇ · u)2icv1

(∇ · u)2icv1 + Ω2
icv1 + ε

, (36)

where Ω is the vorticity magnitude and, here again, ε = 10−7 is a small positive value. θ?
icv2 is defined
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Figure 12. Temporal evolution of temperature contours for a time-developing mixing layer at Mc = 0.8 and Re = 1000
with a triangular grid: the effect of numerical parameters on the accuracy of the shock-capturing scheme. (a) MLSQ
and κ = 0.3, (b) symmetric average and κ = 0.3, (c) MLSQ and κ = 1.0, (d) MLSQ and with no Harten-Yee switch.7

similarly to Eq. (36). As shown in Fig. 13, it is clear that proposed composite switch θfc · θ?
fc

removes most
of unnecessary dissipation even for considered under-resolved turbulence. Numerical tests (not shown here)
indicates this switch preserves good shock-capturing capability of characteristic based filter. This behavior
is readily imagined from the expected behavior of θ?

fx
which moves between 0 to 1: it approaches 1 only in

the vicinity of shock and remains very small value close to 0 in other region.

V. Subgrid scale model

In this paper, we consider the compressible version of the dynamic Smagorinsky model14 (DSM) and an
one-equation model that uses SGS kinetic energy. In DSM, SGS stress and heat flux is modeled by

τij − δij

3
τkk = −2CS(x, t)ρ∆2

∣∣∣S̃
∣∣∣ S̃∗ij , (37)

τkk = 2CI(x, t)ρ∆2
∣∣∣S̃

∣∣∣
2

, (38)

qi = −ρ
CS(x, t)∆2

∣∣∣S̃
∣∣∣

PrT

∂T

∂xi
, (39)
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Figure 13. Effect of dissipation due to shock capturing scheme on (a) kinetic energy decay and (b) energy spectra
at t/te = 4.0 for the isotropic turbulence with Reλ = 100 and 323 hexahedral grid. Symbol, computation w/o shock
capturing; dashed, Harten-Yee switch with κ = 0.1; solid, new composite switch with κ = 0.1.
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Figure 14. LES with DSM and one-equation model for the decaying isotropic turbulence11 at 323 resolution. (a)
Resolved and SGS kinetic energy; (b) energy spectra.

where |S| = √
2SijSij and S∗ij = Sij − 1/3Skkδij . Model coefficients Cs, CI and PrT are determined by the

Germano identity. For example,

CS∆2 =
1
2

〈
L∗ijM

∗
ji

〉
〈
M∗

ijM
∗
ji

〉 ,

Lij =
̂(

ρui · ρuj

ρ

)
− ρ̂ui · ρ̂uj

ρ̂
, (40)

M∗
ij =

̂
ρ

∣∣∣S̃
∣∣∣ S̃∗ij − ρ̂

(
∆̂
∆

)2 ∣̂∣∣S̃
∣∣∣ ̂̃S∗ij ,

where, 〈·〉 denotes spatial average over homogeneous direction(s) and caret denotes the test filtering. For
unstructured gird, however, the detection of homogeneous direction is not straightforward. Thus, in the
present study, this average is replaced by the filtering with a compact support, which is identical to the test
filtering. Test filtering is defined by the linear interpolation from face values of a control volume, which is
again the interpolation from two adjacent cell center values:

φ̂ =
1

Nface

∑

no of face

φf =
1

2Nface

∑

no of face

(φicv1 + φicv2), (41)

where Nface is the number of faces for a given control volume. It is easy to show that (41) reduces to a
discrete tophat filter for a structured hexahedral grid.

In addition to filtering and averaging, there some more fundamental issues in using DSM on unstructured
grids. In incompressible flows, the subgrid kinetic energy is absorbed in the pressure. However, compressible
flows require explicit modeling of the subgrid kinetic energy. As a result, we consider one-equation SGS
model as an alternative to DSM that uses the transport equation of SGS kinetic energy ρk = 1

2 (ũiui− ũiũi).
The exact transport equation of SGS kinetic energy takes the form

∂ρk

∂t
= − ∂

∂xj
(ujρk) +

∂

∂xj

[
1
2

(ρuiuiũj − ρuiuiuj) +
µ

3

(
uj

∂ul

∂xl
− ũj

∂ũl

∂xl

)
+ pũj − puj

]

+
∂

∂xj
(ũiτij)− τijS̃ij +

∂

∂xj

(
µ

∂k

∂xj

)
− µ

(
∂ui

∂xj

∂ui

∂xj
− ∂ũi

∂xj

∂ũi

∂xj

)
(42)

−µ

3

[(
∂ul

∂xl

)2

−
(

∂ũl

∂xl

)2
]

+ p
∂ul

∂xl
− p

∂ũl

∂xl
,

where terms on the r.h.s. are convection, transport (triple correlation + dilatational diffusion + pressure
diffusion), SGS diffusion, SGS dissipation, viscous diffusion, turbulent dissipation, dilatational dissipation,
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Figure 15. Effect of reconstruction scheme on (a) the energy spectra and (b) decay of resolved and SGS kinetic energy
of the decaying isotropic turbulence on a 323 hexahedral grid. Symbols, Comte-Bellot & Corrsin;11 dashed, symmetric
average; solid, (M)LSQ. Here, k-equation model is considered.

and pressure-dilatation terms, respectively. Note that all dilatation-related terms are inherent in compressible
flows. A general model for Eq. (42) can be written as

Dρk

Dt
=

∂fj

∂xj
+

∂

∂xj
(ũiτij)− τijS̃ij +

∂

∂xj

(
µ

∂k

∂xj

)
− εs − εc + Π, (43)

where fj , εs, εc, and Π denote models for transport, solenoidal dissipation, dilatational dissipation and
pressure-dilatation, respectively. We consider the following models

fj = Cfρ∆
√

k
∂k

∂xj
, (44)

εs = Cεsρk3/2∆−1, (45)
εc = CεcM

2
t ρk3/2∆−1 (46)

Π = CΠM2
t

(
4
3
ρk

∂ũl

∂xl
+ τijS̃ij

)
, (47)

where Mt =
√

2k/a is SGS turbulent Mach number, and Cf , Cεs, Cεc, and CΠ are closure coefficients. The
above models mostly originate from RANS models for turbulence kinetic energy. Models for fj and εs are
similar to corresponding terms in incompressible model,15 and models for dilatational dissipation εc and
pressure-dilatation Π are from Sarkar et al.16 and El Baz,17 respectively. Therefore, Eqs. (43)-(47) can be
also used as the one-equation model for RANS with a proper choice of closure coefficients.

In LES, unlike RANS, the model coefficients do not need to be specified a priori. Basically, we adopt
the Germano identity to (44)-(47) to get those coefficients. Since all terms to be modeled take the form

of a = αβ − α β, Germano identity L = α̂ β − α̂ β̂ always holds for a and its test-level representation
A = α̂β − α̂ β̂. Since all models (44)-(47) take the form of aM = C ·m, the coefficient C is determined by
the minimization of the error

E = L−AM − aM = L− C(M − m̂) (48)

in the least-square sense. By this procedure, for example, Cf is determined by
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Figure 16. Effect of reconstruction scheme on (a) the energy spectr32ˆ{3} hexaa and (b) decay of resolved and SGS
kinetic energy of the decaying isotropic turbulence on a tetrahedral grid shown in (c). Symbols, Comte-Bellot &
Corrsin;11 dashed, symmetric average; solid, (M)LSQ. Here, k-equation model is considered.

Cf =

〈
(Xj − Ŷj)Zj

〉
〈
(Xj − Ŷj)(Xj − Ŷj)

〉 ,

Xj = ∆̂ρ̂
√

K∂jK, Yj = ∆ρ
√

k∂jk, (49)

Zj = ̂̃uj( ̂p + ρk + ρũiũi/2)− ̂ũj(p + ρk + ρũiũi/2),

where K = k̂+ 1
2 ũiũi is sub-test scale kinetic energy. Cεc and CΠ are determined similarly. Although there is

a similar dynamic procedure for Cεs, it is highly erroneous since the term in the Germano identity composed
of resolved scale viscous dissipation is vanishingly small, as noted by Ghosal et al.15 Instead, constant value
Cεs = 1.0 is used in the present study.

Note that for a quasi-incompressible flow where SGS dilatational terms are negligible, Eqs. (43)-(47)
reduces to

Dρk

Dt
= −τijS̃ij − Cερk3/2∆−1 +

∂

∂xj
(ũiτij) +

∂

∂xj

(
Cf∆ρ

√
k

∂k

∂xj

)
+

∂

∂xj

(
µ

Re

∂k

∂xj

)
. (50)

This is the same as k-equation model due to Ghosal et al.15 except that the third term on the RHS,
SGS transport term, has been ignored in Ghosal et al.’s paper following the convention of RANS. However,
recent a priori test18 revealed that this term is as large as SGS dissipation and thus plays significant role in
redistribution of SGS kinetic energy.

The modeled SGS stress now takes the form

τij − 2
3
kδij = −2C∆ρ

√
kS̃ij . (51)

Here, C is again determined through the dynamic procedure mentioned above.
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Figure 17. Iso-contours of u
′
/u
′
0 = 0.5 at tU0/M = 171 from LES with hexahedral (upper) and tetrahedral (lower) grids

using symmetric average (left) and (M)LSQ (right).

The performances of DSM and proposed dynamic k-equation model are tested on Comte-Bellot & Corrsin
(CBC)11 isotropic turbulence at 323resolution of uniform hexahedral grid (Fig. 14). For one-equation model,
a uniform value is given as the initial SGS kinetic energy such that total value matches the experimental
data. As shown in Fig. 14, the results from one-equation model is quite encouraging that both resolved
and SGS kinetic energy as well as energy spectra are accurately predicted. Whereas, the Yoshizawa model14

(38) shows large discrepancy in the initial stage and DSM shows lack of SGS dissipation possibly due to
non-sharpness of shape of test filter in the wavespace that leads to smaller model coefficient than that from
cutoff filter.19

Figs. 15 shows the effect reconstruction schemes on the energy spectra and time evolution of resolved
and SGS kinetic energy. Here, k-equation model is considered. Spectra from symmetric average overpredicts
energy at intermediate wavenumbers and thus overpredicts resolved kinetic energy. The shape of spectrum
and overpredicton of resolved kinetic energy agrees very well with EDQNM prediction on second order
schemes and spectral simulation with modified wavenumbers.12 The same computation is performed on a
tetrahedral grid at comparable resolution (see Fig. 16(c) for the grid), and results are shown in Fig. 16.
The relationship between symmetric average and MLSQ is the same for tetrahedral grid, and MLSQ gives
better prediction for resolved kinetic energy. It should be also mentioned that here we considered only
quasi-incompressible isotropic turbulence so that we were unable to assess proposed models for dilatational
dissipation (Eq. (46)) and pressure-dilatation (Eq. (47)) properly: they are smaller than other terms by
orders of magnitude. The validation of those models and the effect of adding SGS transport term are subjects
of future research.

VI. Conclusion

This paper deals with some important numerical and modeling issues that arise from using non-dissipative,
cell-centered FVM for LES of compressible flows on unstructured grid, which are the accuracy and stability
of flux interpolation scheme, shock capturing strategy and the implementation of SGS model. To enhance
the accuracy of flux reconstruction, a new scheme with added first derivative term from each cell center is
considered, whose accuracy is determined by that of gradient at cell center. First, the least-square based
method is applied to get the gradient. This scheme enhances the accuracy of the scheme for hexahedral
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grid, but a severe instability is observed for tetrahedral grid. Thus, modification to this scheme is proposed
using the gradient theorem and the symmetric average. The proposed scheme is shown to be stable for all
test problems considered, while preserving the accuracy of the least-square reconstruction. For viscous flux,
an efficient method is proposed which guarantees compact stencil discretization in the incompressible limit.
As a shock-capturing method, a characteristic based filter7 is reformulated and implemented as a suitable
form for the current cell centered FVM. Toward this end, two parallel faces are introduced at each face,
and this approach is successful even for tetrahedral and triangular grids where parallel faces are less clear
than hexahedral grid. However, characteristic based filter is shown to be overly dissipative for turbulence
simulation, killing under-resolved turbulence fluctuations. As a remedy, another switch which detects the
local divergence and vorticity1 is multiplied to the characteristic filter. Finally, the filtering and averaging
issues in implementing dynamic Smagorinsky model on unstructured grid is discussed. As an alternative,
one-equation model using subgrid scale kinetic energy transport equation is proposed, and shown to achieve
better results for a decaying isotropic turbulence than those from DSM.
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