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Colocated finite—volume schemes for large—eddy
simulation on unstructured meshes

By S. Benhamadouche 7, K. Mahesh § AND G. Constantinescu

Code_Saturne ® is a finite-volume, unstructured-grid code developed at Electricité De
France (EDF'), which solves the Reynolds-averaged Navier-Stokes equations for incom-
pressible flows. The code has been extensively benchmarked for a variety of industrial
applications. The solver has been extended at EDF' to solve large-eddy simulation equa-
tions, and we found that the numerical methods used in the base RANS code are not
directly applicable to LES. This paper uses Code_Saturne to investigate the performance
of several numerical schemes for LES of different academic and industrial flows. In par-
ticular, the conservation of global kinetic energy and robustness of several numerical
schemes are compared and discussed. Finally, Code_Saturne with non-dissipative numer-
ical methods is validated for the swirling flow in a coaxial geometry corresponding to
the experiments of Sommerfeld & Qiu (1991). Also, the role of the subgrid-scale (SGS)
model is investigated through simulations without a SGS model (coarse DNS), with a
constant Smagorinsky model and with a dynamic Smagorinsky model.

Introduction

The objective of this work is to use an industrial code (Code_Saturne ®) developed at
EDF to perform large-eddy simulation and to test several numerical schemes for LES. We
adopt the point of view that LES requires non-diffusive numerical schemes, and therefore
the numerical method used in the base RANS solver cannot be directly applied to LES.
Recently Mahesh et al. (2001) developed an algorithm for unstructured grids that is dis-
cretely energy-conserving in the absence of time-splitting errors. Good prediction for a
wide range of flows, including that in a Pratt & Whitney gas-turbine combustor, was
reported. Also, an LES version has been developed at EDF with Code_Saturne (Ben-
hamadouche et al. (2002)) and several tests have been done to improve the numerical
schemes (Garibian et al. (2001)).

In this paper, we use Code_Saturne to evaluate the effect of the numerical method on
discrete energy conservation. The effect of discrete time steps on both convection and
pressure-gradient terms is considered. Results from the evaluation are used to decide
upon a suitable scheme for LES using Code_Saturne, which is then applied to LES of the
flow in a coaxial combustor geometry.

This paper is organized as follows. Section 1 describes the numerical schemes that
are evaluated. The convection and pressure-gradient terms are discussed in subsections
1.1 and 1.2 respectively. Section 2 compares the different formulations for the Taylor
problem and for isotropic turbulence. Code_Saturne is used to simulate the flow in a
coaxial combustor geometry in section 3 and the results compared to experiment and
results on the same grid using CDP, the unstructured solver developed by Mahesh et al.
(2001).
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FIGURE 1. General view of a cell face

1. Numerical schemes

Code_Saturne solves the conservative form of the incompressible Navier Stokes equa-
tions (1.1). The code has the capability to use unstructured grids with cells of arbitrary
shape.

86—1; + div(u ® u) = —grad(p) + div | (v + 1) (grad(u) + gradT(u)) (1.1)
div(u) =0 (1.2)

The following discussion focuses on two terms of the Navier-Stokes equations, the
convection term and the pressure-gradient term.

1.1. Convection term

Two convection schemes have been tested. The first one is the default scheme used in
Code_Saturne with RANS models and previous LES. It uses weighted coefficients and
a reconstruction technique which is needed to account for the non-orthogonality which
may occur at a cell face (figure 1). To evaluate the fluxes on the faces of a cell Q;, one
has to compute the value of the velocity components at the center of the face F' (cells
Q; and Q share face F in figure 1), u; p.

JO
Ui, F

10
= i+ T i+ (grad(u:)o-OF (1.3)

1J

The main advantage of this scheme is that it maintains second-order accuracy in space
on irregular Cartesian meshes and takes into account the geometrical non-orthogonality
on unstructured meshes. However, the computation of (grad(u;))o in (1.3) is expensive
if one wants to calculate this term implicitly at each time step.

The second scheme is easier to implement and has some interesting properties. It uses
a symmetric formulation at the face, in which the velocity components at the face center
are given by:

1 1
Ui = iui,l + iui,J (1.4)
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One can show, using discrete mass continuity, that the convection term which results
from the discretization of the corresponding operator and use of (1.4) discretely con-
serves kinetic energy, provided that the transported velocity is estimated at n + % with a
Crank-Nicolson time-advancing scheme. This scheme, when tested for several canonical
flows, shows good robustness. Note that in the algorithms where reconstruction is used
for the convective term it is also used to calculate the quantities needed to estimate the
other operators in the momentum equations (gradient, diffusion, ...). When the sym-
metric formulation for the convection term is used, no reconstruction is done for any
of these fluxes. An intermediate scheme which uses the weighted coefficients (see (1.3)),
but without the extrapolation with the gradient (the term (grad(ui))o.O—F1 in (1.3)), was
found to be unstable and will not be discussed in detail.

1.2. Pressure-gradient term

Two algorithms have been also tested in Code_Saturne to insure the pressure/velocity
coupling. The first algorithm is used by default in the code and employs Rhie & Chow’s
interpolation method. The pressure-velocity coupling is insured via the explicit pressure
gradient at the previous time level in the momentum equations and by a projection
method (SIMPLEC algorithm). The parameter « is set to 1 in (1.5), and grad, and grad
stand respectively for the cell and the face gradient in (1.5) and (1.6). This algorithm
will be called Algl.

u—u "
Ar T —grad, (p") + ... (1.5)
div[At grad;(6p)] = div(u + o At grad,(p") — o At grad;(p")) (1.6)

The second algorithm (used also in CDP) does not take into account the explicit pres-
sure gradient (cell gradient) in the momentum equations (see (1.7)). As the divergence of
the pressure cell gradient may introduce odd-even decoupling on regular cartesian meshes,
that is why this algorithm does not explicitly need the Rhie & Chow interpolation in
the correction step (1.8). Odd-even decoupling will not occur as long as the Laplacian is
coupling the cells (the same one used in the previous algorithm). This algorithm will be
named Alg2.

n

;t o= (1.7)
div[At grad(p"+!)] = div(@Q) (1.8)

Moreover, for the correction step, two approaches are possible to correct the velocity.
If p stands either for dp or p"*! (resulting from the discrete Poisson equation), one has
to correct the velocity field w obtained from the predictor step :
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u"t! =u — At grad(p) (1.9)

To compute grad(p), one can directly use Gauss’ theorem to calculate the pressure
gradient (in this case the correction step is u"™! = u — At grad_p), or a least-squares
method to minimize the difference between estimating the normal gradient of the pressure
at the faces directly and using the pressure gradient at the cell centers. In the latter case,
one has to solve (1.10) locally at each cell, where the unknown is du, S the surface of
the face between the neighbors I and J, and n the normal to the face. In this case, the
velocity is corrected with u"*! =1 — du.

2, <5u(I).n(F) ~ At g—ﬁ(F))SQ =0 (1.10)

2. Inviscid test cases

Several test cases have been considered. Inviscid flows have been chosen to check the
conservation properties for kinetic energy and the robustness of the algorithms. The in-
terest in inviscid flows is also motivated by the fact that high-Reynolds-number turbulent
flows are close to this inviscid limit.

2.1. Simulations on unstructured meshes with Cartesian topology

In the case of uniform Cartesian grids, the two convection schemes give exactly the same
result (because the faces are equidistant from the cell centers and the mesh is orthogonal).
In addition, the two pressure-correction schemes described before are equivalent. Two
test cases have been computed on Cartesian grids: 2D Taylor vortices and Homogeneous
Isotropic Turbulence (HIT).

2.1.1. Taylor vortices

The fluid domain is a square whose side is 2. The mesh contains 32 x 32 elements.
Before analyzing the results obtained with the different algorithms proposed in this work,
it is interesting to look at the performance of the usual algorithm used for RANS calcu-
lations. In this algorithm, the convective terms are evaluated using a blending of 20 %
upwind and 80 % second-order-accurate central differences. This kind of scheme is typi-
cally used in RANS calculations but is not suitable for LES. Indeed, as one can clearly
observe in figure 2, the effect of upwinding is to dramatically increase the numerical
dissipation leading to a sharp decrease of the total kinetic energy. This result is obvi-
ously wrong, because for this inviscid periodic flow the total kinetic energy is supposed
to be constant in time. Therefore, in the following, only fully-centered schemes will be
considered.

Next, Algl and Alg2 are tested. Several time steps have been used and the total kinetic
energy is plotted in figure 3 for a minimum (At = 0.005) and a maximum time step
(At = 0.1). Figure 3 shows that the conservation of kinetic energy in both algorithms
is not exact, due to time-splitting errors. Alg2 is more dissipative than Algl because
the pressure is not included in the momentum equation during the prediction step. It
is interesting to point out that simulations carried out with an explicit version of CDP
showed better results for the conservation properties, comparable to those of Algl. This
is due to the fact that, because the convection term is treated explicitly, it contains the
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FIGURE 2. Taylor vortices - Evolution of kinetic energy with upwinding - At = 0.1 : o,
At =0.05:0, At = 0.01: O, At = 0.005: A

pressure from the previous corrector step, so in a sense the explicit version of CDP is
closer to our Algl. The other observation to be made is that in most LES simulations
of complex flows (e.g. see section 3 and Mahesh et. al (2001)), the nondimensional time
steps at which the calculations are run are considerably smaller than the time steps
considered in these model problems; thus in most of these cases the time-stepping errors
are not important even for Alg2.

Note that absolute conservation cannot be achieved in a colocated arrangement be-
cause of the Laplacian used in the Poisson equation. The mass flow contains the normal
derivative (face gradient) of the corrected pressure (either dp or p™*1!) and the corrected
velocity contains the cell gradient of this pressure. This is the case in both Algl and
Alg2. Figure 4 shows the time derivative of kinetic energy and the decay in energy due
to the pressure gradient term for Alg2, with a very large time step At = 0.1. It shows
that the term which is responsible for the loss in kinetic energy is the convection term,
because the pressure term does not dissipate kinetic energy. Thus, the result of keeping
the pressure gradient in the momentum equation even with the Rhie & Chow interpola-
tion is to improve the conservation of the total kinetic energy. This is confirmed by the
Homogeneous Isotropic Turbulence test case discussed next.

2.1.2. Homogeneous Isotropic Turbulence

A 322 mesh has been used in this case. The initial velocity field is generated using
Comte-Bellot’s experiment (AGARD (1998)). The viscosity is set to zero and the kinetic
energy is computed at each time step. Figure 5 shows the decay of turbulent kinetic
energy (which is the total kinetic energy in this case) using Algl and Alg2 and two
different time steps. One can notice that the same behavior as in the previous test case is
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observed; Alg2 dissipates more energy than Algl. The channel flow (Re, = 180) test case
has been computed with the two algorithms as well. The same behavior was observed.

2.2. Simulations on fully-unstructured meshes

The 2D flow corresponding to the Taylor problem has been simulated on a fully-unstruc-
tured mesh. This mesh is coarse and distorted and is representative of typical meshes
used in industrial applications. In this case, both the effects of the convection scheme
and of the pressure-correction algorithms described above can be tested.

In figures 6 and 7, all the cases have been run with the correction step based on the
cell gradient. The effects of estimating the pressure gradient at cell centers using a least
squares method will be discussed later. The simulations in figure 6 have been carried out
with the reconstruction technique for the convection term - see (1.3). The calculations
appear to be stable with both Algl and Alg2 when a relatively small time step is used.
The numerical diffusion due to the projection step in this case is sufficient to dissipate the
increase in the total kinetic energy. When the time step is decreased by a factor of 20, the
calculations become unstable. This shows that for the inviscid case, the reconstruction
method can entail an unstable computation.

Figure 7 shows the same case with smaller time steps, computed without any re-
construction technique - see eq. 1.4) - when the convection scheme is symmetric. The
calculation is stable and visualization of the velocity field shows that the shape of the
Taylor vortices is conserved in time. This proves that using this algorithm one can get
robustness while maintaining accuracy, which is the main goal we want to achieve in
simulations of complex flow of industrial interests using Code_Saturne. Note that the
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FIGURE 5. Homogemeous Isotropic Turbulence — Evolution of kinetic energy - Algl

(At = 6 x 10*34) : dash, Algl (At = 7.5 x 107%) : cont.,Alg2 (At = 6 x 107%) : dot, Alg2
(At =17.5x107") : dash-dot.

least-squares method used to reconstruct the pressure gradient at cell faces in the cor-
rector step diverges, even when the symmetric formulation to compute the face velocity
is used in the discretization of the convective terms. This seems to contradict the experi-
ence with CDP, which also uses this scheme and has shown good robustness when used
to calculate a wide range of flows in complex geometries at high Reynolds numbers.

3. Turbulent cases — flow in a coaxial combustor geometry

The flow considered here consists of a primary jet issuing out of the core, and a swirling
jet issuing out of an annular section around the core. These two streams of fluid mix as
they enter the main coaxial combustor chamber. The flow is turbulent in both streams,
with the Reynolds numbers around 26,000. As a result of the swirl, the streamlines
diverge rapidly as they enter the main combustor chamber, and a recirculation region is
set up. This is clearly visible in the contours of the instantaneous streamwise velocity
component shown in figure 8. Sommerfeld & Qiu (1991) provide detailed measurements
of this flow, including mean velocity components and their turbulent fluctuations at
several stations inside the main combustor chamber. The inlet conditions are generated as
explained in Pierce & Moin (2001) using a separate LES calculation. The inlet database,
computational flow domain, mesh and the flow conditions are identical to those used in
a simulation using CDP. The mesh in the present calculations contains 1.6 million cells.

The main purpose of this simulation is to show that the algorithms implemented in
Code_Saturne can accurately simulate turbulence in complex configurations, are robust at
high Reynolds numbers on fully unstructured meshes, and have an accuracy comparable
to that of second-order-accurate structured codes and other unstructured solvers, in
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particular CDP, which uses an algorithm similar to Alg2 and a symmetric formulation
to evaluate the face velocity. In addition, sensitivity of the solution to the SGS model
will be examined. Three simulations were performed using Code_Saturne, one in which a
constant Smagorinsky SGS model with C's = 0.08 was used, one in which no SGS model
was used (coarse DNS) and, finally, one using a Smagorinsky SGS model with a coefficient
calculated dynamically (we implemented the model described in Lilly (1992), with local
averaging instead of the averaging in the homogeneous direction usually performed in
structured codes). The algorithm employed in these simulations (Algl) is the one that
uses the Rhie & Chow interpolation and the symmetric formulation for the convection
terms. No reconstruction technique was used.

A parallel version of Code_Saturne has been installed on an Origin 2000 machine and
run on 32 processors to carry out these calculations.

The code was first run for approximately 100 nondimensional time units, defined with
the mean inlet velocity in the core region and the annulus radius. Then statistics were
computed over approximately the next 50 time units. Based on experience using CDP,
these time intervals were found sufficient to eliminate the transients and to obtain con-
verged statistics for this flow. As results using a second-order structured code and CDP
were found to be very close (see Mahesh et al. 2001), we decided to plot only the experi-
mental data, the results obtained with CDP, and the results of the three simulations per-
formed with Code_Saturne. Figures 9, 10, 11, 12, 13 and 14 show, respectively, the mean
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FIGURE 8. Instantaneous axial velocity with the dynamic model in Code_Saturne -
Sommerfeld case

axial velocity, the mean fluctuations in the streamwise direction, the mean azimuthal
velocity, the mean fluctuations in the azimuthal direction, the mean radial velocity, and
the mean fluctuations in the radial direction.

Two-dimensional contour plots of the instantaneous and mean streamwise velocity (not
shown) clearly show that in the simulation using the constant-coefficient Smagorinsky
model the size of the recirculation bubble is not predicted correctly: the reattachment
length of the detached shear layers is about 50% higher than that obtained from the
experimental data or from the results obtained using CDP. This can be also inferred by
comparing the location of the zero-velocity contour from the line plots of the streamwise
velocity shown at different stations inside the main combustor chamber in figure 9. The
other profiles also show a very poor level of quantitative prediction of the experimental
measurements in contrast to the results using CDP.

As the prediction of this flow with CDP was shown to be very successful and the
numerical methods used in the two codes are fairly similar, we suspected that the SGS
model was responsible for the poor level of agreement with the experiment shown by
the first calculation with Code_Saturne. Next we run a simulation without any SGS
model (coarse DNS). This gave much better results, but a small overestimation of the
recirculation zone compared to the experiment can still be observed from the line plots
in figure 9. The other profiles also show a clear improvement in the prediction of the
other velocity components and their turbulent fluctuations.

Finally, a calculation using a dynamic Smagorinsky model was run. Though the results
show good agreement between CDP and this simulation for global quantities such as
the size of the main recirculation region and the reattachment length on the lateral
walls of the combustor, small differences remain when we compare the velocity statistics.
Though some profiles obtained from the calculation with Code_Saturne are closer to the
experimental data, on average CDP does a better job in predicting the flow, especially
for the turbulent fluctuations. The differences between CDP and Code_Saturne results
can be due to the different algorithms (CDP uses Alg2 for the pressure correction) and
to the somewhat different implementation of the dynamic model (explicit filtering).

4. Conclusions

Code_Saturne is an unstructured code, developed at EDF, which has been extensively
validated using RANS models (k — ¢ and RSM models). These turbulence models do
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FIGURE 11. Mean tangential velocity - Sommerfeld case

not require strictly non-dissipative schemes. We extended Code_Saturne to solve the LES
equations and noted that the numerical scheme must be non-dissipative. The use of
non-dissipative schemes for high-Reynolds-number simulations is challenging because of
the robustness problems. The proper way to address these problems is to try to insure
conservation of kinetic energy, in a discrete sense, as accurately as possible. Several
schemes have been tested in the present work, and we have shown that the usual Rhie
& Chow interpolation for the pressure-gradient term is fairly acceptable for complex
applications when only the mean quantities and Reynolds stresses are important. The
convection term is more important; for fully-unstructured meshes, it has been shown that
the use of the symmetric formulation for the convection term is more stable, as one can
prove that the convection terms can be discretized in a way that fully conserves kinetic
energy if the time-splitting errors are negligible. This study converged to a non-dissipative
algorithm which was implemented in Code_Saturne and validated for several canonical
flows as well as more complex turbulent flows. Future work will consist in applying this
algorithm to simulate other complex flows of interest to EDF.
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FIGURE 14. Mean radial fluctuations - Sommerfeld case
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