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Passive scalar mixing in jets in crossflow

Suman Muppidi∗ and Krishnan Mahesh†
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Direct numerical simulations are used to study passive scalar transport and mixing in a

round turbulent jet in a laminar crossflow. The velocity ratio of the jet to that of the crossflow

is 5.7, the Schmidt number of the scalar is 1.49, and the jet–exit Reynolds number is 5000.

The scalar field is used to compute entrainment of the crossflow fluid by the jet. It is shown

that a bulk of this entrainment occurs on the downstream side of the jet. Also, the jet entrains

a lot more than a simple jet even when the CVP is not yet formed and the jet has not yet bent

into the crossflow. The reasons for a transverse jet’s enhanced entrainment can be explained

in terms of the pressure field around the jet. While the pressure gradient on the upstream

side of the jet acts to bend it in the direction of the crossflow, the deformation of the jet’s

downstream side sets up a strong pressure gradient, that drives crossflow fluid toward the jet,

resulting in increased entrainment.

I. Introduction

A jet in crossflow, or a transverse jet, is a flow field where a jet of fluid enters and interacts with a crossflowing
fluid. Practical examples of jets in crossflow include fuel injectors, smokestacks, film cooling on turbine blades
and dilution holes in gas turbine combustors. A comprehensive review of past work on this problem is provided
by Margason (1993). The emphasis has been on the study of the velocity and vorticity fields (Kamotani & Greber
1972, Fearn & Weston 1974, Andreopoulos & Rodi 1985, Fric & Roshko 1994, Krothapalli et al. 1990, Kelso et

al. 1996), study of the scalar field and mixing (Smith & Mungal 1998, Shan & Dimotakis 2000, Su & Mungal
2004) and attempts at modeling the flow field and jet trajectory (Broadwell & Breidenthal 1984, Karagozian
1986, Hasselbrink & Mungal 2001, Muppidi & Mahesh 2005a).

Some of the recent work on jets in crossflow involves numerical simulations. Chochua et al. (2000) performed
RANS calculations and compared their results to experiments (UTRC). Though their simulations predicted the
mean velocities reasonably, their turbulent intensities showed significant differences from those of the experiment.
Yuan et al.(1999) performed LES of a round jet in crossflow and showed reasonable agreement for mean velocities
and turbulent intensities with experimental results of Sherif & Pletcher (1989). Schluter & Schonfeld (2000)
compared the results of their LES with experimental velocity profiles of Andreopoulos & Rodi (1984) and scalar
fields of Smith & Mungal (1998), and obtained reasonable agreement. Velocity and turbulent intensity profiles
from DNS of a turbulent jet in crossflow by Muppidi & Mahesh (2005b) agree well with experimental results of
Su & Mungal (2004).

Su & Mungal (2004) note that even though a number of applications of jets in crossflow involve mixing, the
body of work devoted to mixing of jets in crossflow is relatively small. The results from their experiments were
used to provide a comprehensive view of the scalar field. Some studies credit the counter–rotating vortex pair
(CVP) for the enhanced mixing observed in transverse jets, as compared to regular jets. Smith & Mungal (1998)
show that the scalar centerline decay is faster in the near field as compared to that in the far field. They conclude
that in the near field, the CVP itself does not enhance mixing. By studying the PDFs of scalar concentration,
Shan & Dimotakis (2001) find that an increase in Reynolds number enhances mixing.

The objective of the present paper is to study passive scalar transport and mixing characteristics in a round
turbulent transverse jet, using DNS. The simulations are performed at conditions corresponding to the experiment
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Figure 1. Schematic of the problem.

by Su & Mungal. This paper is organized as follows. The simulation details are presented in section II – the
problem is described in subsection A, and the numerical details are briefly mentioned in subsections B and C.
Section III contains the results of the simulation. Some characteristic features of the scalar field are presented
in subsection A. The scalar field is used to examine how the jet entrains crossflow fluid in section III B, which
also relates the dominant entrainment mechanisms to the pressure field.

II. Simulation details

A brief description of the problem, algorithm, and numerical details are presented in this section. Detailed
description of the algorithm is available in Mahesh et al. (2004), and that of the numerical details for this
problem – computational domain, computational mesh, boundary conditions etc. are available in Muppidi &
Mahesh (2005b).

A. Problem

A schematic of the problem is shown in figure 1. The jet issues perpendicularly from a round pipe into the
crossflow. The crossflow and the jet are in the x–direction and y–direction respectively. The velocity ratio, used
to characterize a jet in crossflow is defined as r = uj/u∞, where uj is the mean jet velocity, and u∞ is the
freestream crossflow velocity. Conditions of the simulation are similar to an experiment by Su & Mungal (2004).
The velocity ratio is 5.7 and the Reynolds number of the flow (Re = ujd/ν) is 5000. The jet is fully turbulent
and the crossflow is laminar (with a boundary layer thickness δ80% = 1.32d at the location of the jet–exit, in the
absence of the jet). In the experiment, the jet fluid is seeded with acetone vapour. This gives a density ratio
ρj/ρ∞ = 1.1, and a Schmidt number Sc= 1.49. In the present simulations, the densities of the jet and crossflow
fluids are taken to be the same, and the passive scalar computation is performed at the same Schmidt number
as in the experiment.

B. Algorithm

The simulations are performed using an algorithm that solves the incompressible Navier–Stokes equations

∂ui

∂t
+

∂uiuj

∂xj

= −
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+ ν
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,
∂ui
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Figure 2. (a) Horizontal slice of the computational mesh shows the elements in the region around the jet–exit and
on the symmetry plane where the profiles are compared. Shown is only a part of the domain. (b) Computational
mesh in the vicinity of the jet–exit shows the elements in greater detail.

on unstructured grids. Here ui, p and ν denote the velocities, pressure and kinematic viscosity respectively. The
density of the fluid is constant, and is absorbed into the pressure. The numerical scheme is described in detail
in Mahesh et al. (2004). The algorithm is a predictor–corrector formulation and emphasizes discrete energy
conservation on unstructured grids. This property makes the computations robust at high Reynolds numbers
without numerical dissipation. The velocity and pressure fields are stored at the control volume centroids, and
are integrated in time implicitly using a Crank–Nicholson scheme.

The passive scalar is computed by solving the advection–diffusion equation

∂C

∂t
+

∂Cuj

∂xj

=
ν

Sc

∂2ui

∂xjxj

, (2)

where C is the concentration of the scalar. The jet fluid has a value of C = 1.0, and the crossflow fluid has
C = 0.0. The spatial derivatives are computed using a predictor–corrector method. First the scalar field is
advanced using a second–order central difference scheme. This predicted scalar field is corrected in regions of
scalar overshoot using a first order upwind scheme. This corrector step ensures that locally, the passive scalar
concentration is bounded (i.e. C ∈ [0,1]), and is based on the work by Herrman at al. (2004). The scalar is
advanced in time explicitly using RK4 scheme in an inner loop.

C. Computational Domain and Boundary Conditions

The computational domain extends 32d × 64d × 64d in the axial, wall-normal and spanwise directions (x, y
and z) respectively, and includes a 2d length of the pipe. Preliminary computations showed that a domain of
this size does not constrain the jet, and the flow does not feel the effects of confinement by the boundary. The
crossflow inflow plane is located 4d upstream of the jet–exit.

The crossflow is modeled as a laminar flow past a flat plate (Schlichting 1968). Based on the analytical
solution to the Blasius boundary layer, a velocity field is specified at the inflow plane of the crossflow such that
in the absence of the jet, the crossflow has the prescribed δ80% at the center of the jet–exit. In order to simulate a
fully turbulent jet, a separate simulation of fully developed turbulent flow in a pipe is performed. The Reynolds
number for this computation, based on the pipe diameter and the mean axial velocity, is 5000. The velocity
field at a cross–section (normal to the pipe axis) from this simulation is stored over a length of time, and input
at the inflow plane of the pipe as the time–dependent boundary condition for the jet in the present simulation.
The crossflow boundary condition is validated by comparing velocities with the similarity solution and the jet
boundary condition is validated by comparing with existing results of Eggels et al. (1994). Both these validations
are shown in Muppidi & Mahesh (2005b). On the exit plane (x/d = 32), a zero–gradient boundary condition is
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Figure 3. Instantaneous contours of passive scalar on the symmetry plane at different time instants after the scalar
has been introduced into the flow.

used for the velocities. On the spanwise boundaries (z/d = ± 32), the velocity field corresponding to the laminar
crossflow is specified. Freestream velocity boundary conditions are specified on the top boundary (y/d = 64).

The computational mesh is unstructured and consists of approximately 11 million hexahedral elements. A
representative slice of the mesh is shown in figure 2(a). As the coordinates indicate, the direction of the crossflow
is from left to the right, and the jet fluid travels into the plane of this figure. The finest elements are found at
the walls of the pipe and of the crossflow. The largest elements are found away from the jet–exit and away from
the wall.

III. Results

The velocity field was compared with profiles of the mean jet trajectory, mean velocity and turbulent intensi-
ties available from the experiment. These comparisons were presented in Muppidi & Mahesh (2005b) and show
a reasonable agreement. In order to account for the density ratio in the experiments, profiles were scaled using

the effective velocity ratio reff =
ρju2

j

ρ∞u2
∞

.
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Figure 4. (a) Time–averaged contours of passive scalar concentration on the symmetry plane. Also shown is the
mean center streamline, indicating the jet trajectory. (b) Schematic of the coordinate system that is aligned with
the jet trajectory.

A. Scalar field

Figure 3 shows the instantaneous contours of passive scalar concentration on the symmetry plane. These figures
correspond to different time instants after the scalar has been introduced along with the jet fluid. Note that the
scalar is introduced only after the velocity field is considered statistically stationary and, hence, these figures
represent the ‘physical’ solution, and not a ‘transient’ stage of the solution.

On the downstream side of the jet, we observe ‘fingers’ or ‘filaments’ of jet fluid reaching into the crossflow
fluid, normal to the jet trajectory. Similar fingers were observed by Shan & Dimotakis (2001) and Su & Mungal
(2004), who suggest that these filaments likely correspond to the wake vortices. Fric & Roshko (1994), however,
show that the wake vortices are observed only when the crossflow fluid is seeded, and not when the jet fluid is
seeded. These filaments exist very close to the symmetry plane, are observed on the symmetry plane and end
view planes, and are virtually non-existent on off–symmetry planes. The present results are in agreement with
that reported by Su & Mungal.

Contours of time–averaged scalar concentration on the symmetry plane are shown in figure 4(a). Also shown
is the center streamline, indicating the mean jet trajectory. Figure shows that the scalar concentration decreases
with increasing distance from the jet–exit. Also, the jet width is larger on the downstream side as compared
to the upstream side of the center streamline. Qualitatively, figures 3(c) and 4(a) are similar to those available
from the experiment.

Jet width can be quantitatively studied by plotting the scalar concentration in the trajectory–normal direc-
tion, in a trajectory based coordinate system. This coordinate system is shown in figure 4(b). At any point
along the jet trajectory, s is the distance from the jet–exit, along the center streamline. n is the coordinate
normal to the trajectory. The s–n plane is the same as the x–y plane, and the z coordinate is the same in
both the coordinate systems. Figure 5(a) shows the variation of the mean scalar concentration with n. The
curves correspond to different downstream distances. At any s, n=0 corresponds to the point where the center
streamline crosses the z–n plane.

At the location s=d, the peak scalar concentration is C0 across almost the entire jet edge. Past the jet edge,
both downstream and upstream, the fluid contains no scalar, and the gradients near the jet edge are sharp. At
the next location, s = 3d, the peak scalar concentration is lower than C0 and corresponds to n = 0. On the
upstream side, there is no scalar present past the leading edge of the jet. On the downstream side, in contrast,
a small amount of scalar is observed up to a distance of about 2.5 d past from the jet centerline. Clearly – if the
jet width were defined based on a cutoff scalar concentration (C/C0 = 0.1, say) – at this location, the jet width

5 of 11

American Institute of Aeronautics and Astronautics Paper 2006-1098



C
/
C

0

n/d

-10-50

0

0.25

0.5

0.75

1

(a)

<
u

s
>

/
u
∞

n/d

-10-50

0

1

2

3

4

5

6

7

(b)

Figure 5. (a) Variation of mean scalar concentration along the trajectory–normal variable n. The profiles correspond
to s = d (red), 3d (green), 6d (blue), 9d (pink), 12d (black) and 15d (yellow). (b) Variation of velocity < us > at the
same locations.

downstream of the center streamline is greater than that upstream. Moving further, this trend continues : peak
C decreases and the jet width on the downstream side increases. By s=12d, the peak scalar concentration is
not that much greater compared to the scalar concentration across the jet width, resulting in a ‘plateau’ shaped
profile.

In the s–n–z coordinate system, fluid velocities can be represented in terms of trajectory–based components
us, un and w by a simple coordinate transformation. Figure 5(b) shows the profiles of time–averaged velocity
us against n. The profiles correspond to the same locations as those in figure 5(a). A few similarities can be
observed by contrasting figures 5(a) and 5(b). At s=d, peak us is observed at the center of the jet. There is a
negative velocity region just upstream of the jet, and past the downstream edge, magnitude of us is very low.
At s=3d, the peak velocity decreases, as the jet fluid decelerates. Unlike at s=d, considerable fluid velocity us is
observed up to about 4d downstream of the jet centerline. Qualitatively, this is very similar to the scalar profile
at s=3d in figure 5(a).

Figure 6 compares profiles of the mean scalar concentration obtained from the present simulation, with that
from the experiment. These profiles correspond to the symmetry plane, and to three vertical locations : y =
0.1rd, 0.5rd, and 1.0rd. The agreement appears reasonable at the first two locations, while there is some deviation
between the simulation and the experiment at y = rd. To obtain these profiles, statistics were compiled over a
16d/u∞ length of time. At the farthest station, the time scales of the flow are significantly smaller as compared
to the first two stations. For example, peak velocity magnitude (um =

√
u2 + v2) decreases by a factor of over

2 between y=0.1rd and y=1.0rd. We believe that the statistics have not converged at the farthest station, and
also that with statistically converged data, the deviation would decrease. More samples are being gathered.

B. Entrainment

Entrainment of the crossflow fluid by the jet fluid is computed using the volume flux across the trajectory–normal
planes. A threshold value for the scalar concentration allows differentiation between the crossflow fluid and the
scalar–containing jet fluid. Figure 7(a) shows the volume flux (normalized by that at the jet–exit) as a function
of the distance from the jet–exit. The figure also shows the Ricou–Spalding correlation (Ricou & Spalding 1961)
for the volume flux in a free jet, which states that entrainment increases linearly with distance from the jet–exit.
Figure 7(a) shows that entrainment in the transverse jet is significantly larger as compared to that in a free jet.
A similar result has been shown by Yuan & Street (1998). Entrainment in a transverse jet is about twice that in
a free jet at a distance 6d and at a distance 9d, it is about three times as much. At the jet–exit, s=0, and Vs =
V0. This, of course, is also true for a regular jet. At a distance d, a free jet’s entrainment is in fact greater than
that of the jet in crossflow. At a distance of 2 diameters downstream, the entrainment appears same for both.
There after, the transverse jet’s entrainment increases acutely.
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Figure 6. Comparison of mean scalar concentration profiles. Lines show results from the present simulation.
Symbols show results from experiment.

1. Entrainment Mechanism

Close to the jet–exit, the jet is vertical and the entrainment characteristics would be expected to be similar to
that of a simple jet, which is indeed seen in figure 7(a). It has been proposed (Yuan & Street 1998) that in the
highly curved part of the jet’s trajectory, entrainment is enhanced on the upstream face of the jet due to the high
angle of incidence between the jet and crossflow velocities. The jet in the present simulations is fairly vertical
until past 5 diameters past the jet–exit. At s = 2d, the angle of the jet trajectory is 88◦ with the streamwise
direction. Even at 4d, the angle is 80.9◦. The angles at 6d, 8d and 10d are 71.5◦, 56.4◦ and 44.5◦ respectively.
The sharp increase in the entrainment, hence, cannot be a consequence of the bending of the jet. To further
study the effectiveness of the upstream side of the jet in entraining crossflow fluid, entrainment on the upstream
and downstream sides of the jet are computed separately. Figure 7(b) shows the percentage contribution of the
downstream side of the jet to the total entrainment. Close to the jet–exit, both the downstream and upstream
sides of the jet contribute about the same to the total entrainment, and in this region, the transverse jet’s
entrainment is roughly same as that of a simple jet, as observed in figure 7(a). Moving further, the contribution
of the downstream side increases significantly. For example, at a distance of 6d from the jet–exit, the upstream
side contributes to only about 10% of the total entrainment. It appears that the increased entrainment past 2d
roughly corresponds to the increased contribution of the downstream side of the jet to the total entrainment.

The CVP has been considered responsible for most of the entrainment observed in the far field. Yuan &
Street (1998) propose that the CVP increases the surface area of the jet, enabling increased entrainment. Smith
& Mungal (1998) indicate that it is the process of CVP formation, and not the CVP itself, that enhances mixing
in the near field. Results from the present simulation show that it takes a few diameters for the jet cross–section
to deform and for the CVP to be fully formed. The increased entrainment in the near–field is not an effect of
the CVP. Figures 7(a) and (b) plot the entrainment rates up to a distance of s=10d (x ∼ 3d & y ∼ 9.2d) and
are not sufficient to comment upon the role of the CVP in affecting entrainment characteristics in the far–field.

The question remains : what does enhance entrainment in a transverse jet ? Figure 7(c) shows the time–
averaged streamlines on the symmetry plane. Streamlines emanating from the leading and trailing edges of the
jet–exit indicate the jet boundary. Other streamlines indicate the motion of the crossflow fluid. Streamlines
entering the domain from the crossflow boundary, upstream of the jet, appear to bend in the direction of the
jet fluid – and almost merge with the leading edge boundary of the jet. These streamlines must account for the
upstream side entrainment of the jet. In addition, the jet entrains fluid on the downstream side, and the source of
this entrainment is the node observed in the vicinity of the coordinate x ∼ 2.5 d, y ∼ 1.8 d. The presence of this
node has been well–documented (e.g. Kelso et al. 1996). The local flow field acts as a source in the symmetry
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Figure 7. (a) Volume flux of the scalar carrying fluid plotted along the length of the jet. shows Ricou–
Spalding correlation for entrainment in a simple jet. (b) Percentage contribution of the downstream side of the jet,
to the total entrainment, plotted as a function of the jet length. (c) Mean streamlines on the symmetry plane.

plane (note the streamlines fanning out across the plane) and a sink in the horizontal plane (the streamlines pass
around the jet and converge toward this node). Due to this dual behavior, this point is sometimes termed the
‘saddle-node’. The intensity of this (downstream side) entrainment is high, as can be seen by the steep angle of
the streamlines toward the jet’s downstream boundary.

Entrainment by free jets is commonly attributed to the coherent motions at the edges of the jet. In the
case of transverse jets, the flow field causes more crossflow fluid to come into contact with the jet fluid on the
downstream side. This, in turn, results in the downstream side of the jet entraining more fluid than the upstream
side, causing much higher entrainment than observed in a regular jet. An explanation of this phenomenon, in
terms of the pressure field downstream of the jet, follows.

2. Entrainment explained in terms of the downstream pressure field

Figure 8(a) shows the contours of mean pressure on the symmetry plane along with a few characteristic in–plane
streamlines (shown in green). The highest pressure on this plane is observed near the upstream edge of the
jet, beginning close to the jet–exit/wall and extending until the jet noticeably bends. The lowest pressure is
observed near the downstream edge of the jet (at about y ∼ 5d). Moving in the x–direction, the pressure begins
to increase past the downstream edge. The vectors in figure 8(a) show the quantity −∇p on the symmetry plane.
The direction of the vectors downstream of the jet shows that the pressure gradient drives crossflow fluid toward
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Figure 8. (a) Contours of pressure on the symmetry plane along with in–plane streamlines (in green). The black
vectors indicate the quantity −∇p on the symmetry plane. (b) Jet cross–section at s=d. Contours of scalar along
with in–plane velocity vectors. (c) Jet cross–section at s = 4d, scalar contours, in–plane velocity vectors, and (d)
Jet cross–section at s = 7d, scalar contours, in–plane velocity vectors.

the jet. The magnitude of these pressure gradients is significant, as evident from the length of the vectors. This
pressure field causes large amounts of crossflow fluid to come into contact with the jet fluid, enabling it to be
entrained. The presence of the saddle–node, acting as a source, in this region of high pressure gradients further
enhances crossflow entrainment on the downstream side.

Figures 8(b) – 8(d) show the jet cross–section on the trajectory–normal plane. Contours of time–averaged
scalar concentration are shown, along with in–plane velocity vectors. The three cross–sections correspond to
downstream distances of d, 4d and 7d respectively. The jet is barely deformed at s = d and though the jet
cross–section is deformed at s = 4d, the CVP is not completely formed. The velocity vectors show the motion
of crossflow fluid, downstream of the jet’s trailing edge, toward the trailing edge – indicating entrainment on the
downstream side.

There is a need to differentiate between the −∇p vectors near the leading edge of the jet (pointing in the
+ve x, +ve y direction) and those downstream of the jet’s trailing edge (pointing in the -ve x, +ve y direction).
The high pressure region upstream of the jet’s leading edge occurs very close to the leading edge and follows
it. Very few vectors of considerable magnitude originate in the freestream crossflow fluid. Hence, the pressure
gradient in this region does not affect the upstream entrainment. On the downstream side, however, the high
pressure region and the resulting pressure gradients are observed at a distance from the jet’s trailing edge (as far
as about 4d away, at s ∼ 6d) and more than a few vectors of considerable magnitude are observed to originate in
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Figure 9. Schematic of the near–field of the jet.

the downstream crossflow fluid. Hence, the pressure field upstream of the jet acts to bend the jet in the direction
of the crossflow while the pressure gradient downstream of the jet acts to enhance entrainment.

Figure 9 shows a schematic of the jet in the near–field of the jet–exit. The crossflow is in the x–direction and
the direction of the jet is along the y–axis. Cross–sections of the jet at three distances from the wall are shown,
corresponding to planes A–A′, B–B′ and C–C ′. Section A–A′ is very close to the jet–exit and section C–C ′ is the
point where after the jet begins to bend significantly into the crossflow. At A–A′, the jet cross–section is roughly
circular, and corresponds to figure 8(b) from the simulation. The jet fluid has a high velocity (as compared to
u∞) and momentum, and the crossflow fluid sees it as an obstacle. Crossflow fluid (on the symmetry plane)
decelerates just upstream of the jet, and there is a high pressure region as observed in figure 8(a). The figure also
shows a high pressure region just downstream of the trailing edge. The jet fluid has no velocity in the x–direction
and is subject to an acceleration in that direction, due to the crossflow fluid. Muppidi & Mahesh (2005c) showed,
using a model problem, that the opposing directions of the pressure gradient and the acceleration on the trailing
edge of the jet cause the trailing edge to move closer to the leading edge, deforming the jet from a circular
cross–section to a kidney–shaped cross–section. Sections B–B ′ and C–C ′ in figure 9 show stages of deformation
of the jet cross–section. This change in cross–section is also evident in figures 8(c) and (d). As the jet evolves
(between A–A′ and C–C ′), note that the leading edge accelerates, and moves, in the direction of the crossflow,
while the trailing edge moves closer to the leading edge. This deformation of the jet causes the trailing edge
pressure to decrease. Crossflow fluid downstream of the trailing edge, however, has a higher pressure and this
pressure gradient drives crossflow fluid toward the trailing edge, enhancing entrainment on the downstream side.

IV. Summary

Direct numerical simulation of passive scalar transport in a turbulent transverse jet is performed. The
conditions of the simulation correspond to a recent experiment. The scalar field from the simulation appears
qualitatively similar to the experimental results. Quantitative comparison of the mean scalar concentration
profiles agree well in the near field while a difference is observed at greater distances from the jet–exit. This is
a result of slower time scales in the far field and lack of statistical convergence in the present results. Increased
mixing in the near–field of a jet in crossflow can be related to its enhanced entrainment as compared to a regular
jet. It is observed that entrainment is significantly higher on the downstream side of the jet as compared to
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the upstream side. The pressure gradient near the trailing edge of the jet–exit opposes the acceleration of the
jet in the direction of the crossflow. This causes the cross–section to deform and the trailing edge pressure
to decrease with increasing distance from the jet–exit. The resulting strong pressure gradient, along with the
three dimensionality of the flow field, drives downstream crossflow fluid toward the jet, causing the increased
entrainment, as observed.
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