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Many active flow control strategies have been developed to mitigate flow separation and
improve aerodynamic performance. Most studies have focused on optimizing the control
action for a given actuator configuration; however, actuator placement is intimately tied to
achievable performance. In this paper, we formulate a systematic approach for determining
the optimal actuator location for separation control from numerical and experimental fluids
data for both stable and unstable systems. High-fidelity numerical fluids simulations have
been performed to compute the lift and separation-angle responses to a pulse of localized
body-force actuation applied at six distinct locations on the upper surface of the airfoil.
These pulse response data are then used to determine the actuator location among the
set that can drive the system output to an arbitrary value with the minimum amount of
input energy. The results of this study indicate that the optimal actuator locations for
controlling lift and separation angle are not identical.

I. Introduction

Flow separation leads to degraded performance in many engineering systems, through reduced lift, in-
creased drag, and decreased efficiency. In an effort to alleviate the effects of flow separation on aerodynamic
performance, various active flow control strategies have garnered considerable attention in the recent past.
In particular, open-loop flow control strategies based on various actuator technologies—e.g., plasma actua-
tors [1, 2] and synthetic jets [3–9]—have been shown to favorably alter separated flows, and in some cases
to even cause flow reattachment.

Several studies have endeavored to understand the nonlinear dynamics associated with a fluid flow in
an attempt to be able to formulate more effective control strategies [10, 11]. Further studies have focused
on identifying a global description of the dynamics of the system using techniques such as Dynamic Mode
Decomposition (DMD) [6–8, 12, 13]. These studies reported improved open-loop controller designs, based on
zero-net-mass-flux actuation, by forcing at specific frequencies associated with dynamically important modes
of the flow. While these studies provide foundations for methods that reduce flow separation, the actuator
positions considered were fixed and may not necessarily translate to the optimal performance achievable in
terms of separation control. In flow control applications, the placement of control devices is often guided
by several factors, including separation point location and free-stream conditions. Several studies suggest
placing the controller in locations that are intuitively optimal [3, 14].

For steady flows, the location of flow separation from a no-slip wall is identified exactly by Prandtl’s
condition for separation in the Eularian frame through a point of zero skin friction and a negative friction
gradient in the wall-tangential direction. Flow separation from a no-slip wall can also be understood by
fluid tracers breaking away from a wall. It was shown in [15] that the dynamics of unsteady flow separation
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are better analyzed in a Lagrangian frame, wherein the Lagrangian separation point is fixed for a periodic
flow. In [15], it was further shown that particles near a separation point are drawn towards an unstable
manifold—i.e., an attracting material line that constitutes the separation line. Such attractors can also
be identified in the flow field away from the boundary by extracting ridges in the Finite-Time Lyapunov
Exponent (FTLE) field. The FTLE field identifies the local contraction or expansion of the field over a
finite time. A material line or Lagrangian Structure can then be found to exist wherever the contraction is
maximum (i.e. a ridge) [16, 17].

While some of these strategies have leveraged knowledge of the unsteady flow physics to limit flow
separation [1–14], the influence of actuator and sensor placement on separation control has remained relatively
unexplored. In [18], it was shown that using pressure and skin-friction data, a time dependent quantity known
as the separation angle could be computed. This was done for a set of six candidate actuator locations. A
linear approximation of the separation line can then be computed by utilizing the separation angle and the
separation point. It was further demonstrated that an increase in separation angle leads the material line to
become concave, for any location upstream of the separation point. In turn, the concavity of the material
line results in flow reattachment. In contrast, a decrease in separation angle results in an increase in the
separation region. The increase in separation angle coincided with an increase in lift and a reduction in drag.
Thus, a pulse location yielding a greater increase in lift corresponded to a greater degree of reattachment,
providing guidance on the optimal actuator location for separation control.

The positioning of actuators forms an important basis for the evaluation of performance in a control
system. In most scenarios, using all available actuators and sensors, generally, yields the highest perfor-
mance for a given system. However, such an arrangement may not be feasible in practice due to physical,
computational, and/or economic constraints [19]. Therefore, the selection of a subset of these actuator lo-
cations through a set of systematic criteria may assist in identifying the actuator location with the highest
performance index. In [20], the effect of white noise disturbance for various actuator and sensor configu-
rations were investigated in the context of optimal actuator and sensor placement. It was shown that the
optimal actuator and sensor configuration of the Ginzburg-Landau system minimized the actuator effort and
perturbation magnitude in an H2 sense. In [21], a branch-and bound procedure was presented for optimal
actuator placement with constraints on the number of actuators. The rich literature in this field provides
motivation to undertake a similar study for separation control and obtain maximum achievable performance
by leveraging traditional techniques in separation control. Of course, the definition of optimality would
depend on the objective of the formulation and a relevant measure would have to be decided accordingly.

In this paper, we consider the notion of optimal actuator selection for airfoil separation control. Pulse
response data for lift and separation angle in response to a pulse of localized body-force actuation at six
individual locations are computed from high-fidelity numerical simulations [18]. A NACA 65(1)-412 airfoil
is considered for these simulations and can be seen in Figure 1. We obtain system models, for each of the
actuator locations, by employing the Eigensystem Realization Algorithm (ERA), which can be applied on
data obtained from both experiments as well as numerical simulations. The optimality of actuator locations
among these six candidate locations is determined using a measure related to the minimum input energy
required to drive the system to a desired output. The system models obtained by ERA, in this case, exhibit
slightly unstable behavior. Therefore, the formulation that we propose takes this kind of behavior into
account while determining the optimality of actuator locations.

The organization of this paper is as follows: In Section II, we present the methodology for determining
optimality among candidate locations and how such strategies generalize for alternative systems classes.
Results are presented in Section III. In Section IV, a brief discussion pertaining to the results is presented.
Finally, conclusions are presented in Section V.

II. Methodology

A minimum control energy criterion for optimal actuator selection is introduced in Section II.A. We then
provide a description of how this procedure can be extended for stable/unstable systems alike in Section II.B.
The formulation of the procedure up to this point can be used readily to determine the optimal actuator
location if all necessary system realizations are available; however, this is not the case in the present study. In
Section II.C, we describe how to compute the necessary system realizations from empirical data, thus enabling
the method to be easily applied in the context of either numerical simulations or physical experiments to
determine the optimal actuator location.
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Figure 1: NACA 65(1)-412 airfoil. The positions x/c = {.1, .2, .3, .4, .5, .6}, on the upper surface of the airfoil
correspond to the various actuator locations. These are indicated by the red arrows.

II.A. Minimum control energy as a measure for optimal actuator selection

Our goal here is to determine the actuator location, among a given set of locations, that minimizes the
control effort needed to drive a quantity of interest (e.g., lift or separation angle) to an arbitrary value.
Further, if we can determine the optimal control for each individual actuator location, then we can simply
compare these minimal energies and select the least among this set. To address this larger problem, we begin
by considering the minimal control energy problem for a single given flow control configuration, as described
next.

For a given set of actuators and sensors, we can define the flow control configuration by a finite-dimensional
state-space realization G = (A,B,C):

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),
(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the input vector, and y(t) ∈ Rq is the output vector.
Next, recognize that a control law that alters lift/separation angle with minimum control effort is closely
related to the problem of driving the system state to an arbitrary point in state-space using minimum control
energy [22]; thus, we now seek the control input u(t) that drives the system from the origin to an arbitrary
point in state-space with minimal control energy over an infinite time-horizon. The optimal control problem
described here can be solved by standard methods and is commonly referred to as the minimum control
energy problem [22]:

minimize J =

∫ ∞
0

uT(τ)u(τ)dτ

subject to ẋ(t) = Ax(t) +Bu(t)

x(0) = 0

x(∞) = xf ,

(2)

which admits a solution if the system is controllable (equivalently, reachable). The minimal input energy
associated with the optimal control is given by,

Jopt = xTfW
−1
c xf , (3)

where the controllability Gramian

Wc :=

∫ ∞
0

eAτBBTeA
Tτdτ (4)
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is the stabilizing solution to the Lyapunov equation,

AWc +WcA
T +BBT = 0 (5)

To determine the actuator location that yields the minimum control energy, we can simply compare
the relative sizes of Wc corresponding to the dynamics of each actuator location—a larger Wc being more
controllable and requiring less input energy to control (all else equal). Note that the controllability Gramian
Wc is not invariant under similarity transformation; thus, care must be taken when formulating measures of
optimality directly based on Wc. Some suitable choices that are invariant under similarity transformation
are, e.g., det(Wc), trace(Wc).

Although finite time-horizons can be considered here, we choose to focus on the infinite time-horizon case
in order to maintain objectivity in the optimality measure; the solution to the finite time-horizon problem
is dependent on the final time, which is undesirable because the final time can always be chosen to influence
the outcome of the optimality measure.

To gain an intuition for the optimal solution, we can view the quadratic form in (3) as defining an ellipse
that contains all points in state-space that can be reached from the origin using no greater than unit input
energy, X = {xf ∈ Rn |xTfW−1c xf ≤ 1}. The most controllable directions in state-space require the least
control energy to traverse and are associated with the eigendirections associated with the largest eigenvalues
of Wc; the least controllable directions in state-space require the most control energy to traverse and are
associated with the eigendirections associated with the smallest eigenvalues of Wc.

As was outlined in the beginning of this subsection, our goal here is to have maximum controllability in
terms of the lift/separation angle. Although, Wc provides intuition about the most controllable states, in
practice, the quantity of interest may not directly correspond to these states; instead, it may correspond to
a linear combination of these states. Hence, rather than considering the state controllability Gramian Wc

directly, we can instead work with a suitably weighted version of Wc,

Woc :=

∫ ∞
0

CeAτBBTeA
TτCTdτ (6)

= CWcC
T, (7)

which is simply the output controllability Gramian [23]. In some sense, output controllability is a more
natural measure of optimality because it is invariant under similarity transformations, and thus constitutes
a system property that is coordinate independent. This choice is particularly appealing because measures
based on Woc admit numerous other interpretations, beyond those afforded by the minimum control energy
perspective introduced above. For instance, the output controllability Gramian is directly related to the
H2-norm of a stable LTI system as,

‖g(t)‖2 =

√(∫ ∞
0

trace(gT(t)g(t))dt

)
=
√

trace(Woc) (8)

where g(t) := CeAtB is the impulse response matrix. Further, we can arrive at a frequency-domain inter-
pretation of this measure by invoking Parseval’s theorem [24],

‖g(t)‖2 = ‖G(s)‖2 :=

√
1

2π

∫ ∞
−∞

trace(GT(−jω)G(jω))dω (9)

=

√
1

2π

∫ ∞
−∞

∑
k`

|Gk`(jω)|2dω (10)

where Gk`(s) denotes the transfer function from the `-th input to the k-th output. Hence, the H2-norm
can be interpreted as the average system gain over all forcing frequencies. Consistent with the minimum
control energy interpretation, this indicates that a system with a larger H2-norm will tend to yield a larger
output for the same input signal. The H2-norm also admits a stochastic interpretation from the lens of
Linear Quadratic Gaussian control [24]: all else equal, a system with a larger H2-norm will yield a larger
output power in response to unit intensity white noise inputs. Based on all these interpretations, it should
be evident that output controllability and the H2-norm can provide an indication of the effectiveness of an
actuator location in influencing the system output with an arbitrary input.
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II.B. Generalizibilty to unstable systems

At this point, it is worth discussing generalizations of the above optimality measure to unstable systems,
since we are interested in comparing actuator locations for general systems, which may or may not be sta-
ble. Of course, in the context of unstable systems, neither the state controllability Gramian nor the output
controllability Gramian will be bounded; thus, it seems that these optimality measures are ill-suited for
comparing general flow control configurations that may exhibit unstable dynamics. However, by taking a
frequency-domain perspective of the state controllability Gramian, we can arrive at a generalized controlla-
bility Gramian P that is bounded for unstable systems [25]:

P =
1

2π

∫ ∞
−∞

(jωI −A)
−1
BBT

(
−jωI −AT

)−1
dω (11)

The generalized controllability Gramian is also related to the minimum control energy problem, as shown
in Theorem 5 of [25]. Specifically, when the system under consideration is controllable, xToP

−1xo =
inf{‖u‖22 |x(0) = xo, x(−∞) = 0, x(∞) = 0}. As with Wc, a larger P indicates that less control en-
ergy is required to drive the state to the origin (i.e., the system is “more controllable”). In other words,
the generalized controllability Gramian P has an equivalent interpretation as the conventional controlla-
bility Gramian Wc, but extends the interpretation to the context of unstable systems. Indeed, when the
system under consideration is stable, the generalized controllability Gramian is equivalent to the standard
controllability Gramian (i.e., P = Wc).

Conveniently, for a stabilizable and detectable system, the generalized controllability Gramian P can
be computed directly from a state-space realization of the system. The procedure follows directly from
Theorem 2 in Zhou et al. [25], which amounts to solving for the stabilizing solution X to the algebraic
Riccati equation,

XA+ATX −XBBTX = 0 (12)

followed by a computation of the generalized controllability Gramian P as the solution to the Lyapunov
equation,

(A+BF )P + P (A+BF )T +BBT = 0, (13)

where F = −BTX. For stable systems, X = 0 and, therefore, P = Wc.
For the purpose of determining a measure of optimality for actuator placement, here we will define the

the generalized H2-norm (denoted H2′) in analogy with Eq. (8), but now using the notion of generalized
output controllability CPCT instead of the conventional output controllability CWcC

T:

‖G‖2′ =
√

trace(CPCT) (14)

In the remainder of this paper, ‖G‖2′ will be used as a measure for determining the optimal actuator
location among a set of candidate actuator locations. In our case, this measure is computed for all the
candidate locations using the minimal realization obtained from pulse response data, as will be described in
the next subsection.

II.C. Minimal realizations from pulse response data

An imperative step in determining optimality among the candidate set of actuator locations is obtaining
mathematical models for such configurations. Once such system models are obtained, analyses corresponding
to optimality can be conducted. The field of system identification deals with obtaining mathematical models
for a system based on data observations obtained from the system. In general, such data is usually sampled
at discrete instants of time in a large variety of applications. Hence, discrete-time system models show higher
suitability for system identification methods. Identified models can subsequently be used further for analysis
and control. Here, we describe one such method for determining a minimal realization of a system from
empirical data.

Consider the discrete-time state-space representation of our system of interest:

x(k + 1) = Âx(k) + B̂u(k)

y(k) = Ĉx(k) + D̂u(k)
(15)
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where x(k) ∈ Rn is the state vector, u(k) ∈ Rp is the input vector, and y(k) ∈ Rq is the output vector at
time index k and Â, B̂, Ĉ, and D̂ are the discrete-time state-space matrices. The pulse response yields the
system Markov parameters:

h0 = D̂ (16)

hk = ĈÂk−1B̂ (17)

where hk ∈ Rq×p. Here, we assume the direct feedthrough term D̂ = h0 = 0. For each candidate actuator
location, we appeal to the eigensystem realization algorithm (ERA) [26] to compute a minimal realization of
the system Ĝ = (Â, B̂, Ĉ) directly from these Markov parameters. To do so, we define two Hankel matrices
composed of the Markov parameters,

H0 =


h1 h2 · · · hno

h2 h3 · · · hno+1

...
...

. . .
...

hnc hnc+1 · · · hnc+no .

 , H1 =


h2 h3 · · · hno+1

h3 h4 · · · hno+2

...
...

. . .
...

hnc+1 hnc+2 · · · hnc+no+1.

 (18)

Next, compute the Singular Value Decomposition (SVD) of H0 = UΣV ∗, then store the r largest singular
values in a matrix Σr and the corresponding left- and right-singular vectors in the matrices Ur and Vr,
respectively. Finally, a minimal realization (Â, B̂, Ĉ) can be computed as,

Â := Σ
− 1

2
r U∗rH1VrΣ

− 1
2

r (19)

B̂ := First p columns of Σ
1
2
r V
∗
r (20)

Ĉ := First q rows of UrΣ
1
2
r (21)

A complete description of ERA can be found in [26]. The resulting discrete-time state-space realizations
computed by ERA may then be converted to continuous-time realizations—in the form of (1)—by means of
Tustin’s approximation [27]. As was shown in the previous subsection, the optimality measure associated
with each actuator location can then be computed directly from this ERA-based minimal realization.

Our choice of utilizing pulse response data for system identification is quite natural since Markov pa-
rameters have the property of being unique for a given system and are often referred to as the “signature”
of the system model [28]. In the event that other forms of input-output data are available through simula-
tions/experiments, methods such as Observer/Kalman filter Identification (OKID) may be used to extend
the applicability of ERA to general input-output response data [29]. We note that ERA introduces some
elements of subjectivity to the optimal selection process, since various ERA algorithm parameters, such as
r can be chosen to alter the specific realization; however, additional precautions can be taken to ensure that
the realization at hand is sufficiently insensitive to these algorithmic parameters and that multiple ERA
realizations based on the same pulse response data yield consistent optimal actuator rankings. Indeed, this
will be the case for all of the results that are reported here, as will be described in the subsequent sections.

We further note that ERA is applicable for both stable and unstable systems [30]. For the data-sets
that we will consider here, the system response appears to be mildly unstable. In principle, it is possible to
compute the output controllability Gramian by direct integration of pulse response data; however, performing
a direct integration of pulse response data for unstable systems (or of unconverged responses in general) over
an infinite time-horizon is not possible. (Again, we could compute measures based on finite time-horizons,
but doing so would come at the undesirable cost of losing objectivity due to sensitivities associated with the
choice of terminal time, as discussed earlier.) This was part of the motivation for generalizing the optimality
measure in the previous subsection to accommodate both stable and unstable systems.

III. Results

We apply the approach described in section II to the pulse response data from the numerical simulations
described in [18] for both lift as well as for separation angle response data. The fluid flow simulations for
the baseline case as well as for the case of pulse body-force actuation applied at actuator location x/c = .4
can be seen in Figures 2 and 3, respectively.

6 of 16

American Institute of Aeronautics and Astronautics Paper 2018-3692



For each actuator location, an ERA model of order r is realized (see Figures 5 and 8). Here, r is chosen to
be that order which gives the best match in terms of the original data obtained from numerical simulations.
As previously indicated, a number of these realizations exhibit unstable dynamics. Indeed, in many cases,
some of the discrete-time system poles are outside of the unit circle (see Figures 4 and 7). We, thus, utilize
the generalization of the controllability Gramian for unstable systems as is described in Section II.B. We
note that the unstable realizations may be due to the nature of the response data, which seems to have not
fully returned to a steady-state. Tables 1 and 2 are associated with generalized H2-norms and indicate the
degree of controllability among the various candidate locations. The ordering of locations indicates their
relative rank in terms of optimality for a given output variable.

The minimality and order of ERA-based realizations were sanitized of any potential numerical artifi-
cialities by accounting for pole-zero cancellations based on a range of tolerances from O(10−5) to O(10−7).
These tolerance values indicate the proximity of poles and zeros necessary to facilitate pole-zero cancellation.
It was found that decreasing the tolerance any further resulted in realizations that were non-minimal. For
the sake of representation, we use figures and tables associated with the tolerance value of O(10−7) in the
subsequent sections (Figures 4 through 9 and Tables 1 through 2).

Figure 2: NACA 65(1)-412, α = 4◦, Rec = 20, 000, Vorticity field at U∞t/c = 0.60 for the baseline case.

(a) U1t/c = 1.4

(b) U1t/c = 2.0

(c) U1t/c = 2.4

Figure 1: NACA 65(1)-412, ↵ = 4�, Rec = 20, 000, Vorticity field at t= 0.60 for the baseline
Case

2

Figure 3: NACA 65(1)-412, α = 4◦, Rec = 20, 000, Vorticity field at (a) U∞t/c = 1.4, (b) U∞t/c = 2.0 and
(c) U∞t/c = 2.4 for the case with a pulse actuation at x/c = 0.4.
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III.A. Optimal actuator placement for lift response data

Based on the H2′ -norm, the optimal actuator location for lift control is x/c = 0.2. This location has
the highest controllability among all six candidate locations. The optimality study considered a variety of
pole-zero overlapping tolerance values as has been described above. The optimal actuator position is largely
constant although minor variations in relative ranking of other actuators is observed. Some of the eigenvalues
of the discrete-time realizations obtained are outside the unit circle for all locations, thereby confirming that
the identified systems are indeed unstable. This can be seen in Figure 4. As can be seen in Figure 5, the high
order for the obtained minimal realizations, in all likeliness indicates that the system may have some degree
of non-linearity in it, which is captured by a large number of states. The peak frequency for all actuator
locations is fc/U∞ = 6.12, as can be seen in Figure 6 and corresponds to the wake frequency. Thus, it
appears that among all actuator locations, x/c = 0.2 is able to induce a resonance by coupling with the flow
dynamics at this forcing frequency. However, some of the frequency response intuition here may have to be
reconsidered in a “non-standard” manner, since the system dynamics are unstable.

x/c ‖G‖2′
.2 51.79

.6 31.31

.1 17.41

.5 15.81

.4 15.41

.3 13.41

Table 1: Optimality of actuator locations based on “generalized H2-norm”, sorted from most to least optimal
for tolerance value of O(10−7) used in minimal realization for lift response data.
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(a) Actuator at x/c = .1
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(b) Actuator at x/c = .2
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(c) Actuator at x/c = .3
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(d) Actuator at x/c = .4
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(e) Actuator at x/c = .5
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0.1

0.2

0.3

0.4

(f) Actuator at x/c = .6

Figure 4: System poles of (discrete-time) minimal realization computed from lift pulse response data for
each actuator location using ERA. Some poles are outside the unit circle for all locations.
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(a) Actuator at x/c = .1
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(b) Actuator at x/c = .2
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(c) Actuator at x/c = .3
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(d) Actuator at x/c = .4

0 5 10
0.3

0.4

0.5

0.6

0.7
r = 67

CFD
ERA

(e) Actuator at x/c = .5
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(f) Actuator at x/c = .6

Figure 5: Lift coefficient pulse response data at each actuator location. Each realization is minimal with
order r.
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(b) Actuator at x/c = .2
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(c) Actuator at x/c = .3
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(f) Actuator at x/c = .6

Figure 6: Bode magnitude plot for minimal realization at each actuator location for lift response data.
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III.B. Optimal actuator placement for separation angle response data

A similar exercise as described above is also undertaken for the separation angle pulse response data. Based
on the H2′ -norm, the optimal actuator location for separation angle control is x/c = 0.3 (see Table 2). This
location has a degree of controllability which is significantly larger than other locations. The related norm
for this actuator location is an order above the next optimal location. This is also reflected in the very high
peak at this location, as seen in Figure 8, when compared to the other candidate locations. It is worth noting
here, that the next optimal location, i.e, x/c = 0.5, in this case is located at the separation point itself as
described in [18].

The results presented here provide two interesting observations. First, the order of the minimal real-
izations obtained for the separation angle response is an order above the realizations associated with lift
response for all actuator locations. This probably indicates a greater degree of non-linearity associated with
separation angle than with lift. Another consequence of this phenomenon can be seen in Table 2. The
generalized H2-norm associated with each of the locations is greater than their lift counterparts. This is
especially prominent for the most optimal locations in the separation angle case.

x/c ‖G‖2′
.3 1.63× 107

.5 3.99× 104

.4 1059.57

.1 243.24

.6 91.95

.2 76.74

Table 2: Optimality of actuator locations based on “generalized H2-norm”, sorted from most to least optimal
for tolerance value of O(10−7) used in minimal realization for separation angle response data.
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Figure 7: System poles of (discrete-time) minimal realization computed from separation angle pulse response
data for each actuator location using ERA. Some poles are outside the unit circle for all locations.
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Figure 8: Separation angle pulse response data at each actuator location. Each realization is minimal with
order r.
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Figure 9: Bode magnitude plot for minimal realization at each actuator location for the separation angle
response.
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IV. Discussion

The results presented here confirm that the optimality of a candidate location is dependent on the
output variable being considered. The optimal location for separation angle control is found to be x/c = 0.3;
whereas, for lift control the optimal location is found to be x/c = 0.2. The results from the optimality
study of the separation angle response indicate that the optimal location for separation angle control would
provide significantly more controllability compared to the other candidate locations; in contrast, the optimal
location for lift control does not exhibit as pronounced a difference in controllability as the other locations.
It was shown in [18] that an increase in the separation angle led to flow reattachment and corresponded to
an increase in lift. The results presented in this work indicate that for separation control, the control of
separation angle may be given higher priority than the control of lift.

It is well known that flow separation occurs when the boundary layer flow cannot withstand an adverse
pressure gradient. The optimal control locations for the lift coefficient and separation angle at x/c = 0.2 and
x/c = 0.3, respectively, are at a location just downstream of the pressure coefficient minimum at which point
the laminar boundary layer becomes increasingly unstable as it works against the adverse pressure gradient.
This can be seen in Figure 10. In this respect, the flow is most efficiently controllable at the point of initial
instability in the laminar boundary layer.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5

Lower
Upper

Figure 10: Pressure coefficients for the upper and lower surface of the airfoil for the baseline flow just before
pulse actuation is applied. This corroborates the findings of the optimality study as the optimal locations
are, indeed, more sensitive to the initial instability in the laminar boundary layer and are able to influence
the flow more directly.

In a large variety of applications, intuition from the physical flow is used to guide active control design
methods. However, there is seldom a systematic comparison of the performance attained at different actuator
locations. This study extends the approach in [18] by also quantifying the degree of controllability afforded
by each location. Although, most studies indicate that forcing at the separation point has the greatest
impact in reducing flow separation, the results presented here provide a new perspective in determining the
optimal location for separation control.

V. Conclusion

In this work, we investigated the optimal actuator selection problem for airfoil separation control. Pulse
response data for lift and separation angle in response to a localized body force actuation were used to
determine the optimal location among the candidate set of six locations. The optimality measure utilized
here is related to the minimum energy required to drive the system output to an arbitrary value. Minimal
realizations computed from pulse response data were found to exhibit unstable behavior. Therefore, we
proposed a formulation of the optimal actuator selection problem to accommodate stable and unstable
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systems alike. For the optimality procedure to be insensitive to algorithmic parameters, several precautions
were presented. This resulted in a consistent yield in terms of the rankings of the various actuator locations.
For the NACA 65(1)-412 airfoil, it was found that the location x/c = 0.2 was optimal for the control of lift,
whereas the location x/c = 0.3 was found to be optimal for the control of separation angle.

This study provides a quantification on the difference in performance that can be expected from actuation
at different locations along the airfoil. This can be particularly useful in situations wherein actuation is
difficult at the preferred location due to constraints imposed on the system. The results presented here
serve as a reference for development of active control methods which would aim to reduce flow separation
through optimal placement of actuators. An analysis of how spatial structures in the flow are affected by
the actuation would also provide useful insight for the development of controllers. These considerations are
currently under investigation and will be presented in future work.
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