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This paper presents a guidance and control framework for hypersonic glide vehicles (HGVs)
in atmospheric re-entry missions, wherein the guidance is designed in conjunction with the
flight controls to synergistically integrate mission requirements with capabilities of the airframe,
resulting in a comprehensive design and analysis architecture. Three-dimensional motion
of the vehicle—executing a constant dynamic pressure glide subject to quasi-equilibrium
conditions—is considered under the assumption that bank angle can be modulated directly. The
proposed guidance subsystem computes trajectories that enable gliding at a specified dynamic
pressure despite perturbations caused by initialization errors and/or external disturbances
during flight. Inclusion of bank angle extends the feasible trajectory design space, thereby
promoting flexibility of operation and providing the option to include additional mission-related
requirements. The trajectory computation is online and inherently coupled with the flight
controller which synthesizes the control inputs—stabilator deflection and bank angle—for
trajectory tracking using a linear time-varying model predictive control design that embeds
box constraints on the control input magnitudes. Closed-loop simulations of a generic HGV
are used to demonstrate robust tracking of trajectories subject to plant-model mismatch and
initialization errors. Load factors and heat fluxes are analyzed along simulated closed-loop
trajectories, with the former converging to a constant value after transient oscillations initially
and the latter showcasing an approximately monotonic decrease throughout.

I. Introduction

Autonomous and semi-autonomous flight technology suitable for hypersonic gliding and air-breathing vehicles
have gained significant attention in recent times due to a plethora of civilian and military applications. Research
efforts have largely been focused on developing trajectory generation (i.e., guidance [1]]) and flight control architectures
capable of guaranteeing vehicle and/or mission performance subject to modeling and parametric uncertainties [2H10],
external disturbances [11H13]], measurement inaccuracies [4} [7, [14], trajectory initialization errors [2} 3} 6], airframe
and operational constraints [[15H27], and more. Recent advances in multi-disciplinary design analysis and optimization
(MDAO) promise to greatly aid hypersonic system development by providing tools that can effectively capture multi-
physics and multi-disciplinary phenomena inherent to hypersonic flight and allow for various couplings between
subsystems to be efficiently captured in a system-level optimization framework [28H30]].

The current study broadly focuses on the coupling between trajectory generation/optimization and control synthesis,
which can be regarded as a sub-problem within an extensive, system-wide MDAO. The capability to rapidly gener-
ate/simulate moderate-to-high fidelity hypersonic trajectories and associated flight controls is useful as it allows for
design optimization with appropriate aero-thermal, structural and control constraints, which reflect physical limitations
of the airframe subject to hypersonic flight conditions. To this end, one could consider a two-loop architecture
comprising a guidance subsystem in the outer-loop and a control subsystem or controller in the inner-loop [31]]. The
guidance subsystem generates trajectories while remaining agnostic to the inner-loop control design. The controller
then synthesizes flight controls required to fly those trajectories. Foundational principles behind these architectures are
similar to the separation principle invoked for estimation-based feedback control designs [32] and typically involve
time-scale separation arguments. As a result of the inherent decoupling, it is possible for the guidance subsystem to
compute a trajectory that is infeasible to track using the available flight controls. Even if feasible, performance of the
overall architecture could be unsatisfactory, possibly leading to instability in worst-case scenarios.
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Constructing a comprehensive architecture explicitly accounting for the coupling between trajectory and flight
controls, often termed an integrated guidance and control (IGC) framework, holds the potential to remedy these
above-mentioned issues [31]]. The overarching objective of this research is to develop IGC frameworks for hypersonic
glide vehicles (HGVs) in lifting re-entry missions.

A. Background

Re-entry guidance methods in the existing literature are largely based on simplified three-dimensional motion models
of the vehicle and emphasize on designing bank angle commands to track specified flight profiles (e.g., angle of attack
or altitude) or optimize a mission objective (e.g., range) [16} 20, 33]. For lifting bodies, the flight path angle profile can
often be computed using the equilibrium or quasi-equilibrium glide constraint [[16}20}33]]. Also, feedback/compensation
techniques can be introduced to accomplish certain mission objectives. For example, in Ref. [16], a compensation
term based on the altitude rate tracking error is included into the commanded bank angle generator. Additionally,
the reference altitude rate is shaped to alleviate ‘phugoid’-like oscillations that may violate vehicle load constraints.
Moreover, the bank angle profiles computed by these guidance laws might be non-smooth and/or discontinuous thus
making tracking difficult for a controller. There are a small subset of guidance designs solely focused on the longitudinal
motion of the vehicle [34H36]. One such design is given in Ref. [35]], which involves computing a quasi-equilibrium
glide trajectory in terms of flight path angle to operate at the maximum lift-to-drag ratio of the vehicle. The resulting
trajectories exhibit poorly damped ‘phugoid’-like oscillations. To address this, an angle of attack profile has been
designed in Ref. [35] using the flight path angle error—which equals the deviation from a flight path angle profile
corresponding to maximum lift-to-drag ratio—as a feedback term multiplied by a scalar gain. The numerical results in
Ref. [35] indicate that a higher gain not only reduces the oscillations but also reduces the maximum heating rate and
dynamic pressure, both of which are favorable for hypersonic flight.

When it comes to joint guidance and control architectures for HGVs, the state-of-the-art seems disjointed principally
due to the independent development of guidance and control techniques without much consideration for synergy and
integration. While the open existing literature provides a diverse set of guidance frameworks and algorithms suitable
for HGVs in entry or re-entry missions, the body of literature on control frameworks for HGVs seem limited (see, for
example, Refs. [10l[15]). Existing designs for hypersonic flight control are largely geared towards powered flight
[4) 15018} 137]] suitable for air-breathing cruise missions and cannot be trivially modified for gliding flight since thrust or
fuel-to-air ratio is an integral part of these designs. In other words, thrust cannot simply be set to zero in these designs
for gliding as that might render the closed-loop vehicle dynamics unstable. Furthermore, flight controls are largely
based on the longitudinal motion of the vehicle, possibly under the assumption that the uncontrolled out-of-plane (i.e.,
lateral/directional) motion is stable or stabilizable, which might not hold in practice. All of these facets render majority
of the existing control frameworks difficult to adapt for hypersonic re-entry missions and challenging to integrate with
existing guidance techniques.

Although IGC architectures for HGVs could address the technical challenges outlined in the above discussion,
availability of such methods remain limited in the open existing literature. Most of the existing frameworks for IGC
(similar to the above-mentioned trend observed for existing hypersonic flight control designs) are geared towards
hypersonic vehicles capable of powered flight [3} 20, 38-44]. Among these, earlier studies (see, for example, Refs.
[3 1204138, 139]]) focused on linearization-based techniques that could lead to unsatisfactory tracking performance and
non-zero tracking errors, as indicated by the simulation results reported in Refs. [3| 38]]. More recent works on
hypersonic IGC can be found in Refs. [40-44], which often utilize principles of backstepping, dynamic surface control
and finite-time stability. For example, Ref. [44] has recently introduced an IGC formulation where fuel-to-air ratio and
elevator deflection are the control variables. The overall objective of the study in Ref. [44] is to drive velocity and
altitude of the vehicle to their respective reference values while satisfying constraints on the fuel-to-air ratio magnitude.
The guidance subsystem designs trajectories by incorporating these constraints and an adaptive backstepping approach
is then applied for computing the control inputs for tracking. The simulation results in Ref. [44] show that although the
constraints on the fuel-to-air ratio are satisfied, the controller initially commands a large elevator deflection (see Fig. 6 in
Ref. [44]) as a large pitching moment—which is modeled as a linear function of the elevator deflection—is required for
tracking. Adjusting numerical values of the control parameters might resolve this issue, but a more judicious approach
would involve constraining the elevator deflections to be within physically allowable limits of the airframe. Unlike
these above-mentioned studies on powered flight, an IGC framework for a generic HGV airframe/geometry has recently
been proposed in Ref. [27]]. The key contribution of that work lies in enabling IGC for a variety of hypersonic glide
trajectories wherein the aerodynamic loads on the HGV are computed using high-fidelity computational fluid dynamics
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simulations that account for the effects of control surface (i.e., stabilator) deflections. Furthermore, the flight controller
in Ref. [27] is based on the principles of linear time-varying (LTV) model predictive control (MPC), and constraints on
the HGV stabilator deflection are incorporated into the control synthesis.

B. Contribution

We propose a methodology for IGC of HGVs in re-entry missions executing a constant dynamic pressure glide
under vertical quasi-steady equilibrium conditions. A simplified three-dimensional motion of a generic HGV
geometry/airframe—introduced in Ref. [27]—with an emphasis on the longitudinal motion is adopted, wherein the
aerodynamic loads are computed via modified Newtonian aerodynamics [45]. We consider stabilator deflection as the
principal control input and treat the cosine of bank angle, which modulates the lift magnitude, as a second (pseudo)
control. This is in contrast to the IGC methodology in Ref. [27] where stabilator deflection is the sole control input. The
proposed guidance subsystem generalizes the method in Ref. [34]] to capture the effects of stabilator deflection and angle
of attack on the pitch rotational dynamics (more specifically, the pitching moment equilibrium or trim) of the vehicle.
Inclusion of bank angle provides flexibility in satisfying the lift requirement for quasi-steady equilibrium and extends
applicability of the guidance design which outputs reference signals in angle of attack, flight path angle, stabilator
deflection, and cosine of bank angle for a given pair of altitude and speed of the HGV. The reference flight path angle is
designed such that the error in dynamic pressure exponentially converges to zero, thereby enabling trajectories subject
to initialization errors and disturbances to track the reference dynamic pressure. The LTV-MPC framework in Ref. [27]]
is adapted here to compute the commanded stabilator deflections and bank angles for tracking the reference signals
generated by the guidance subsystem. This is achieved by solving a strictly convex quadratic program, which embeds
box constraints on the deflection and bank angle magnitudes, at every sampling instant. Closed-loop simulations show
that the proposed IGC framework successfully meets mission objectives despite non-zero trajectory initialization errors.
Moreover, these simulation results demonstrate nominal robustness of the MPC design against plant-model mismatch
(46l 47].

C. Organization

The remainder of the paper proceeds as follows: The preliminaries and problem formulation are detailed in Section
[ Section [[]describes the proposed guidance design for constant dynamic pressure gliding and the LTV-MPC design
for tracking is outlined in Section [[V] Numerical results for a generic HGV geometry are included in Section [V} Finally,
the concluding remarks are summarized in Section[VI]

II. Preliminaries
Basics of the problem formulation for the proposed IGC framework are provided in this section. This includes a
simplified three-dimensional model of HGV motion and a modified Newtonian aerodynamics approach of calculating
the aerodynamic forces and moments acting on the chosen HGV geometry.

A. HGV Motion Model

The simplified three-dimensional motion model described in Refs. [15 (1819} 48] is adopted for the current study.
However, we have incorporated the HGV pitch rotational dynamics into the aforementioned model. Thus, the vehicle
kinematics are given by

Xd =Vcosycosy
Xc =Vcosysiny @))
h=Vsiny
and the associated dynamics are described using the following set of ordinary differential equations
V= D g(h,V,y)siny
mg

Lcoso N g(h,V,vy)

a=q " v cosy
. Lcoso g(hV,y)
= - 2
mV v oSy (2)



Downloaded by University of Minnesota on July 17, 2025 | http://arc.aiaa.org | DOI: 10.2514/6.2025-3550

Here, y4 and y. are the downrange and cross-range respectively, £ is the altitude, V is the flight speed, « is the angle of
attack, vy is the flight path angle, ¢ is the pitch rate, o is the bank angle, ¥ is the heading angle, m, is the HGV mass,
and Iy, is the moment of inertia about the HGV pitch axis. The aerodynamic loads—Iift L, drag D and pitch moment
My—are computed using modified Newtonian aerodynamics [45] under the assumption that the force and moment
coefficients are primarily functions of the angle of attack @ and stabilator deflection angle 6 (see Section[[I.B). Also, the
term g(h,V,vy) denotes acceleration due to gravity which accounts for the centripetal effects of a spherical Earth of
radius Rg and is modeled as [48]

UE V2 cos?y
(Re+h)*>  (Rg+h)

where ug is the gravitational constant for Earth. Further, we assume an exponential atmospheric density model given by

g(h,V,y) = (3)

p(h) = poexp(—anh) )

where po = 1.225 kg/m? and a;, = 0.14/ km. To simplify notations, we define ¢, := cos(c), and rewrite the
longitudinal dynamics in Eq. (Z) in a compact form as

x =f(x,u) &)

where x € R* and u € R? respectively denote the state and control input vectors, f : R* x R — R* is the nonlinear
function describing longitudinal dynamics, and these are given by

14 —2 —g(h,V,y)siny
_ Leg | ghVy)
\4

a 0 q cosy
X = , U= [ l s f(X7 ll) = Lcr(n,-av g(h,V,y)

Y Co - vV

q

ey cosy

Y

IV
Therefore, the cosine of bank angle ¢ is regarded as a (pseudo) control variable along with the stabilator deflection ¢.
While the longitudinal dynamics summarized above are used for designing the proposed IGC framework (see Sections
[[V), the effects of commanded bank angle on the lateral/directional motion have been captured through the heading
angle variation described in Eq. (). The heading angle variation, in turn, influences the kinematics in Eq. (I). These
aspects of HGV motion have been included in the simulations (see Section[V).

B. HGV Aerodynamics and Geometry
Modified Newtonian aerodynamics theory [45, 49] is used to generate lift, drag, and pitching moment loads for a
given « and 0. The pressure coeflicient C,, is defined as

P~ P

Cp =
1peV2

where p and p. respectively denote the surface pressure and free-stream static pressure, p., denotes the free-stream
density and V., stands for the free-stream airspeed. Newtonian aerodynamics assumes that all of the momentum of a
fluid stagnates in the normal direction of an exposed surface. Any surface that is not directly exposed to the flow only
has a static pressure load applied. The result is that the pressure coeflicient for the ith surface can be computed as an
inner product between the surface’s normal direction and the freestream flow direction using the following formula:

Cpi = Cpy Vi (6)

where V. is a vector that describes the direction of the free-stream flow, 1; is a unit vector that describes the normal
direction of the ith surface, and Cp,, = 2 for traditional Newtonian aerodynamics [43]. However, for modified Newtonian
aerodynamics, Cp, is the pressure coefficient at a stagnation point behind a normal shock and depends on the Mach
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number and specific heat ratio [45] Section 3.3]. As the Mach number approaches infinity, C,, can be calculated via the
Rayleigh Pitot pressure formula for a given gas:

/(yg=1)
4 + 1))
c,,ﬁ( )((yg ))

vg+1 4y,

where vy, is the ratio of specific heats. Substituting y, = 1.4 for air in the above formula, the C},, for modified Newtonian
aerodynamics is set to 1.839. Once the pressure coefficient is calculated for all of the surfaces around the vehicle, the
resulting loads can be computed by summing the individual forces generated by those surfaces.

(a) (b)

Fig. 1 Geometry of the HGV [27].

S |

Fig.2 HGYV pressure coefficient distribution using modified Newtonian aerodynamics for (o, 6) = (60, —10) deg.

This study focuses on the generic HGV geometry shown in Fig. [I] which has been recently developed at the
University of Minnesota, Twin Cities [27]. The vehicle has two stabilators (i.e., the fins shown in Fig. |I|) which
are assumed be cojoined such that the corresponding angular deflections are the same about the vehicle’s horizontal
(front-to-aft) body axis. The relevant parameters for this vehicle geometry are

mg = 1000 kg, I, = 247 kgm?, ¢=3.6m, § = 4.4 m?

where ¢ and S stand for mean aerodynamic chord and reference area, respectively. The C,, distribution for the underside
of the HGV is shown in Fig. [2|for (a, ) = (60, —10) deg, which approximately corresponds to the maximum lift
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configuration. This C,, distribution was computed using modified Newtonian aerodynamics for 160,000 triangulated
surfaces. As shown in Fig. 2] the aerodynamic load is generated primarily by the underside of the nose. Thus, by
summing the resulting pressure distributions for a set of (a, ¢) pairs, a database of aerodynamic coefficients has been
generated for the aforementioned HGV geometry. These aerodynamic quantities are plotted in Fig. [3] We consider
6 € [-15, 15] deg for the database as those are the physical limits of the stabilator deflection for the airframe [27]. We
define trim as ¢ = 0 or M, = 0O for the HGV. The red lines in Fig. El denote Cy,, = 0 contours, highlighting the (e, )
pairs for which the vehicle is at trim. We refer to these contours as “trim contours” which can be modified by shifting
the center of gravity (CG) location of the vehicle.

90
0.02
75 2
60 0.01
1
45 0
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[}
Z 30 -0.01 0
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0 -1
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Fig.3 HGYV aerodynamic load coefficients and lift-to-drag ratio using modified Newtonian aerodynamics for
a € [-30,90] deg and 6 € [—15, 15] deg. The range of stabilator deflections § here correspond to the physical
limits of the HGV geometry [27]. The red lines are the trim contours satisfying Cpm, =00rqg=0.

III. HGV Guidance Synthesis
This section elaborates guidance computations for a constant dynamic pressure, quasi-steady equilibrium glide
trajectory. We suitably adapt the framework presented in Ref. [34]] to incorporate pitch rotational dynamics and its
coupling with («, §) for the generic HGV geometry considered in this paper. Computed trajectories simultaneously
satisfy trim (defined by ¢ = 0 or M, = 0) and lift requirements for quasi-steady equilibrium. The cosine of bank angle
¢ provides flexibility in satisfying the latter, which opens up the possibility of incorporating additional mission-related
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criteria in the trajectory design. Moreover, the flight path angle design includes a term that drives the error in dynamic
pressure (i.e., the offset from reference dynamic pressure) exponentially to zero. This feature not only allows a reference
dynamic pressure to be specified and tracked, but also enables computation and optimization of trajectories capable of
handling initialization errors, disturbances during flight etc. The following result summarizes the proposed guidance
design in a generic setting as well as the regulatory assumptions associated with it.

Theorem 1 Assume that the acceleration due to gravity takes a constant value denoted by g, the atmospheric density
p is a function of altitude h, and the flight path angle 'y abides by the small angle approximation so that siny =~ y and
cosy =~ 1. Let the flight path angle of the HGV be specified through

1 1 A
y:(l V2 dp) _(L%)ere(yh)godv @

" 2gop(h) dh

where e, is a positive weight and Ap g = pq — pa, is the offset in dynamic pressure p g4 from its constant reference value
Dd,- Also, let the lift force and bank angle satisfy the constraint Lc » = mago. Then, Apg = —e,Apgq, that is, the offset
exponentially decreases to zero and the HGV flies a constant dynamic pressure glide trajectory under quasi-steady
equilibrium conditions.

Proof: Assume that the acceleration due to gravity is constant, denoted by go, and consider the specific energy
& = h+0.5V2. Tts time derivative can be expressed as
. . VvV DV
E=h+ —=-
80 mgago

®)

where the last equality is obtained using / and V from the governing kinematics in Eq. (T)) and dynamics in Eq. (2)),
respectively. For a small y, the quasi-steady equilibrium glide condition, which requires y = 0 [16, 35], leads to
Lc, = mgugo as cosy ~ 1. Combining the & expression in Eq. (§), the glide condition Lc, = m,go and the small
angle approximation for y, time derivative of downrange becomes

Em, EL
/\'/d:Vcosw:—%coszﬁ:— DC(Tcoszﬁ.
Thus, an infinitesimal change in the downrange can be expressed as
L L Vv
dyg = 2o SOV e Lo cosy (dh + —dV) . ©)
D D 80

Now, differentiating the dynamic pressure p; = 0.5p(h)V? with respect to time and setting the derivative equal to
zero—such that the HGV glides at a constant dynamic pressure—yields

P p(WVV +0.5p(h)V?

. dp .
hVV +0.5V> L)
p(W)VV + T
0

and therefore )

Vv Vv dp

—dV = ———dh. (10)
8o 2gop(h) dh

Combining Egs. (9) and (I0), we obtain

dva _ Lcgcosy V:  dp
dh D 2g0p(h) dh )"
Now, utilizing the governing kinematics in Eq. (I) for a small y, we have %f = CO;‘”. Equating these two expressions
of % and solving for vy yields
(Leo/D)”!

(1 _ V_zd_P)
2gop(h) dh
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This is similar to the expression provided in Ref. [34]]. We intend to modify this design such that the error or offset in
dynamic pressure Apy = pg — pq, converges to zero, and the vehicle tracks the specified, constant dynamic pressure
Dd,- To this end, the time derivative of Ap, satisfies

ApPa = pa =p(W)VV +0.5p(h)V? =

p(h)VD
m

a

V2 dp)

- p(W)Vy (go “ 0 dh

Then, choosing the flight path angle as in Eq. results in

. D D
Apa = p(h)Vgo (L_ - —) —eyApq
Co  MEo
where the first term on the right hand side is equal to zero due to the quasi-steady equilibrium glide condition
Lcs = mggo. Therefore, we have Ap, = —e, Apq4, which completes the proof. ]

Remark 1 7o simplify the analysis involving specific energy, Theorem/[l|is stated for a constant acceleration due to
gravity by suppressing its variation with altitude, flight speed and flight path angle as modeled in Eq. (3). Incorporating
these effects into the analysis is beyond the scope of the current study in this paper and will be investigated in our future
work. However, the proposed guidance synthesis (see Algorithm[I)) combines Theorem[I|with the acceleration due to
gravity model in Eq. (3)) using a heuristic strategy that works well for the trajectories analyzed in this study (see Section
V). The lift constraint for quasi-equilibrium glide in Theorem[I| can eliminate large phugoid-like oscillations in the
altitude along re-entry trajectories [16, 120, 121, 35|]. In this work, it is treated as a ‘soft constraint’—consistent with
existing literature on hypersonic re-entry guidance [|16} 21} |34, 35|][—such that v =~ 0 is allowed along the trajectories
(see the simulation results in Section|V). Finally, the proposed flight path angle design for an exponential atmospheric
density model as in Eq. (@) becomes

1 1 A
") | () ot (o

280

which is obtained by substituting % = —app(h) into Eq. (7).

Note that a larger e,, would speed up convergence to the reference dynamic pressure but it should be chosen appropriately
such that y remains (approximately) a small angle throughout the flight, which would approximately maximize downrange
[35]]. Although the guidance law for flight path angle in Eq. (TT)) (or Eq. (7)) is derived under a constant acceleration due
to gravity assumption, we can relax this assumption and employ the law for g(h,V,y = 0) where g(h,V,y) is as shown
in Eq. (). Thus, the HGV needs to operate such that Lc, = m,g(h,V,y = 0) for quasi-steady equilibrium glide. This
requirement could be satisfied with some ¢, < 1 if the HGV generates sufficient lift such that L > m,g(h,V,y =0). If
the lift force isn’t allowed to be modulated through ¢, quasi-steady equilibrium would require L = m,g(h,V,y = 0)
which limits the feasible trajectory design space. Therefore, the term ¢ provides flexibility in trajectory design as the
feasible design space satisfying L > m,g(h,V,y = 0) should, in general, be larger compared to the more restrictive
L =mgg(h,V,y = 0) constraint. This, in principle, allows for additional mission-related criteria to be incorporated
in the trajectory design. We also want trajectories satisfying trim, i.e., ¢§ = 0 or M, = 0. Thus, the computed glide
trajectories need to satisfy the requirements of trim and quasi-steady equilibrium simultaneously. This generally involves
searching over the design space, defined in terms of HGV states, control inputs, and geometry/airframe parameters (e.g.,
center of gravity or CG location, stabilator sizing, wing loading etc.), for feasible points satisfying both the requirements.
Specifically, GC location of the vehicle plays a crucial role in determining if such feasible points exist for a given HGV
airframe/geometry [36]. An exhaustive analysis to optimize the airframe/geometry parameters for mission-related
requirements is possible but beyond the scope of current study.

In this work, it is assumed that the generic HGV geometry under consideration (see Section [[I.B) admits at least
one feasible set of parameters such that the simultaneous quasi-equilibrium and trim requirements are met when
operating close to the reference dynamic pressure. Also, as stated in Section [T, we consider the aerodynamic force
(lift and drag) and moment coefficients as functions of angle of attack @ and stabilator deflection ¢ only. We focus on
designing the HGV states (y, @) and the control variables (6, ¢-) in the proposed guidance synthesis whose feasibility
is formalized—by essentially summarizing the above-mentioned aspects—in the following assumption.
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Assumption 1 The HGV geometry/airframe parameters and reference dynamic pressure are chosen such that the set
F={(a,6,co): My=0,Lcy =mag(h,V,y=0),(d,cp) € U}y cR?

with g(h,V,vy) as in Eq. @) is non-empty along vehicle trajectories satisfying (h,V) € [Amins Aimax] X [Vinin, Vimax] for
some hpax > hmin and Vipax > Viin. Here, U C R2 denotes the set of admissible control inputs.

Assumption |1| underlines the importance of selecting the reference dynamic pressure in accordance with both the
mission requirements and the aerodynamic capabilities of the airframe. The choice of reference dynamic pressure
would be coupled with the range of lift coefficients satisfying trim and the admissible range of ¢, through the lift
constraint for quasi-equilibrium gliding. Also, the values of Zmax, Amin, Vimax, Vmin Would depend on the choice of
reference dynamic pressure, while feasibility for (4, V) € [Amin, Bmax] X [Vinin, Vmax] Would be important to account for
trajectory dispersions.

Algorithm 1: HGV Guidance Synthesis

1 Input: HGV airframe/geometry parameters and reference dynamic pressure satisfying Assumption set of
admissible controls U, altitude / and flight speed V such that (4, V) € [hnin, Amax] X [Vinin» Vimax], and e, > 0.

2 Calculate the acceleration due to gravity g(h, V,y = 0) by setting y = 0 in Eq. (3).

3 Compute the set F = {(«,6,cs) : My =0, Lcy =mag(h,V,y =0),(d,cs) € U}

4 Select a tuple (@, d, c) € F according to some criteria.

5

6

Compute flight path angle y using Eq. (7) or Eq. (T1).
Output: y,a,0,cs

The proposed guidance synthesis is summarized in Algorithm [I|by embedding the conditions outlined in Assumption
For a given altitude and flight speed pair (#, V), the synthesis results in (y, @, §, ¢ ) for the associated glide trajectory.
Since the set F is non-empty under Assumption [I| (@, d,cs) € F on line 4 in Algorithm [I| could be obtained by
optimizing a mission-related objective or criteria. The reader is referred to Section[V]for the particular strategy adopted
in the current study for selecting the (@, d, c) tuple. Denoting the output of Algorithm|l|as (y,, @, d,, ¢, ), the
reference signals for tracking control can be specified as x, = (V, a;, y,,0) and u, = (6, ¢, ), where the subscript
‘r’ means ‘reference’. Note that the reference pitch rate is zero, which could be replaced with a non-zero reference
using trajectory information over some time window. As these reference signals are computed online for (4, V) pairs
along the HGV closed-loop trajectory, the controlle—which is tasked with tracking the reference signals—is inherently
linked with it. The tracking control design used in this study is described next.

IV. LTV-MPC Design for Tracking: IGC of HGVs
The tracking control design—based on the principles LTV-MPC—is outlined in this section. The core methodology
is adopted from Refs. [50, 51]] with appropriate modifications to obtain a full-state feedback design for a time-varying
system. Note that this design is also provided in Ref. [27] and included here for completeness. The LTV-MPC approach
involves linearizing the longitudinal dynamics in Eq. (3]) about a time-varying reference trajectory x, (¢) and reference
control inputs u, (r)—obtained through the guidance synthesis (see Section [[l[)—for the entire duration of the mission.
We start by performing a Taylor series expansion of the nonlinear function about (x,(¢), u,(¢)), which leads to

%(1) = £ (%, (1) u, (1) + = (x(1) = % (1) + 2%

1) —u. (1) +w(z 12
0x (x,u)=(x,(t),u,(2)) 6u|(xvu)=(xr(’)vur(1))(u( ) ur( )) W( ) ( )

where all the higher order terms are absorbed in w(z) := w(x(¢), X, (1), u(¢), u,(¢)) and it can be treated as a time-varying
disturbance. We introduce the following definitions to simplify notations in the ensuing analysis

of of
Ax(1) :=x(¢) — x, (1), Au(?) :=u(t) —u, (1), A(t) = — , B(t) = — .
X(1) = x(1) =%, (1), Aw(e) = ulr) —u. (1), AW OX | (x,w)=(x, (t),u, (1)) @ Jul(x,u)=(x(t),u,(¢))
Now, the linearized dynamics in Eq. @ can be equivalently expressed as
Ax = A(t)Ax + B(t)Au + w(z). (13)
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Note that the linear time-varying system in Eq. (I3)) governs HGV longitudinal dynamics in a neighborhood of the
time-varying reference trajectory and control inputs. The system in Eq. (I3) can be discretized (e.g., using Euler
discretization) and expressed as

Ax(k +1) = Ag(k)Ax(K) + By (k)Au(k) + w(k) (14)

where k € Z5( are the sampling time steps or instances, with Zs( denoting the set of non-negative integers. Here, we
take the discretization time-step equal to the sampling interval.

MPC is a finite-horizon optimal control strategy based on predicting future system behavior via a model of the
system [52]. In this work, the LTV system in Eq. (T4) serves as the model. However, we consider the disturbances to be
identically zero in the prediction equations for the current MPC design. Also, the model matrices are held fixed over the
MPC prediction horizon, which results in an optimization with reduced computational complexity [53}54]. This linear
time-invariant approach for prediction can be further justified by choosing sufficiently small values of the sampling
interval and the number of time steps for prediction. The resulting prediction horizon (equal to the product of number of
prediction time steps and sampling interval) would be short, whereby limiting the evolution of the underlying system
over that timespan.

The prediction equations at a time-step k—obtained using Eq. (T4) with w(k) = 0 and model matrices
(Ag(k),B4(k)) held fixed at their values at k—are given in a compact form as

AX (k) = F(k)Ax(k) + H(k)AU(k) (15)
with
Ax(k) ] [ Au(k) ] [ 14
Ax(k +1) Au(k +1) Ay(k)
Ax(k +2) Au(k +2) A2 (k)
AX(k) = : , AU(k) = . JF(k) = : ,
|AX(k + N — 1) [Au(k+N —1)] (AN =1 (k)]
(0) . . . . O'
B, (k) : . 0]
Aq(k)By(k) B, (k) ' : : o
H(k) = | AZ(k)Bg(k) Aa(k)Ba(k)  By(k) o
[AY2(k)By(k) AN (k)Ba(k) : - Ba(k) O]

where I, is the 4 X 4 identity matrix and O denotes null matrices of appropriate dimensions, and N is the number of
time steps associated with the prediction or control horizon. In other words, the prediction and control horizons are
considered equal for the MPC formulation here. The terminal state perturbation is given by

Ax(k + N) = Al (k)Ax(k) + B4 (k)AU(k)

where By (k) = [AN'(K)Ba(k) AN2(0Ba(K) - - - Aa(Ba(k) Ba(h)|

MPC allows the user to specify a cost (or objective) function which is typically minimized to calculate the optimal
solution after each sampling interval. The cost function should be chosen such that minimizing it means that the control
objectives (e.g., reference tracking, regulation etc.) have been satisfied with the least possible control effort. In this case,
the control objective is regulation, i.e., we want to drive the predicted state perturbations in Eq. (I3) to the origin, i.e.,
AX(k) — 0. For the present formulation, we choose a cost function that penalizes the weighted norm of predicted state
perturbations AX (k) and the weighted norm of predicted control input perturbations AU(k). We also incorporate a
term penalizing the terminal state perturbation Ax(k + N). Therefore, the quadratic cost function for the LTV-MPC is

10
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given by

J (AX(k), Ax(k + N), AU(k))
N-1 N-1

= AX' (k + N)Q (k)Ax(k + N) + Z AXT(k +))QAx(k + 1) + Z Au" (k +))RAu(k +i) (16)
i=0 i=0

= AX" (k + N)Q (k)Ax(k + N) + AXT (k)QnAX (k) + AUT (k)RNAU (k)

where Qf (k) > 0 is time-dependent while Qn and Ry are independent of time and given by

Qn =diag (Q,Q,...,Q),Ry =diag(R,R,...,R).

Here, diag(-) means block-diagonal operation, Q € R*** and R € R?*? are chosen such that Q > 0 and R > 0. The
time-dependent matrix Q (k) is chosen based on the solution to the discrete-time Algebraic Riccati Equation, which is
given by

P= Al (k)PA;(k) — AL (k)PB,4(k)(R +BL(k)PB, (k) 'BL(k)PA,(k) + Q.

Upon solving the above equation, we set Q s (k) = P. After substituting the expressions for AX(k) and Ax(k + N) in Eq.
(T6), the cost function J (AX(k), Ax(k + N), AU(k)) becomes a quadratic in (Ax(k), AU(k)) and can be expressed as

J(Ax(k), AU(k)) = AUT (k) [H' (k)QnH(k) + Ry +BJ (k)Q /B, (k)] AU(k)
+2 ((FUOAX(E)TQNH(K) + (AY ()AX(K)TQ;Ba(k)) AU(K) (a7)
+ (F(k)Ax (k)" Qn (F(k)Ax(k)) + (AL (k)Ax(k)' Qs (AL (k)Ax(K)).
We specify the input constraints as
1n ® Aupin(k) < AU(k) < 1n ® Agay (k)

where 1y stands for an N-dimensional vector of ones and ® denotes the Kronecker product. Here, Aupi(k) =
Upin — U, (k) and Aupax (k) = upmax — - (k) with u, (k) denoting the reference control input vector at some time-step &,
and up, and U,y respectively denote the minimum and maximum values of the control inputs.

Algorithm 2: HGV Integrated Guidance and Control Framework

1 Initialization: Given the mission time window ¢ € [#o, ], select a sampling interval At, set f; = fg and k = 0.
Choose the reference dynamic pressure, Q, R, N, ey, Unin, Unmax.-

2 whilez; <ty do
3 Guidance Subsystem
Given (h(tx), V(tx)), compute (@, (), ¥r(tx), 6, (tk), Cor, (1)) using Algorithm
T T

5 Setx,(tx) = [V(tr) ar(tx) v, (tx) 0] Su (1) = [5r(lk) Co, (fk)] .

6 Control Subsystem/Controller

7 Generate continuous-time LTV model matrices A(#x), B(¢) for (x,-(#x), u, (tx)).

8 Set Ax(k) = x(t) — X, (¢x) and discretize A(zx), B(#x) to obtain Ay (k), By (k).

9 Solve the SCQP in Eq. (I8) to compute Au* (k).
10 Setu(ty) = u, (1) + Au* (k).
11 HGY Motion
12 Integrate the kinematics in Eq. (I) and dynamics in Eq. ) from 7, to rx + Az using u(zy).
13 Settpy =t +At,k=k+1.

Therefore, the optimization problem for the LTV-MPC at each time-step k € Z( is given by
i J (Ax(k), AU(k
oin (Ax(k), AU(k))

(18)
subjectto 1y ® Aupiy(k) < AU(k) < 1y @ Aupyax (k)

11
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where J (Ax(k), AU(k)) is as shown in Eq. (T7). The optimization in Eq. (I8) is a strictly convex quadratic program
(SCQP). Here, the constraints on AU(k) are convex and the cost function J (Ax(k), AU(k)) is strictly convex in AU(k)
as the Hessian matrix satisfies

8%J ~ _ _
———— | =H"(k)QnH(k) + Ry + B (k)Q/Ba(k) > 0
(5070 = HHO@NH() + R + B0 Bt
since Ry > 0 by choice and the remaining two matrices are positive semi-definite. Therefore, the optimization problem
in Eq. admits a unique, global minimizer [55] for all time-steps k and can be computed efficiently using existing
solvers. Let the minimizer at some time-step k be given by

AU = [(Au) T (Au)T(k+1) (Aw)T(k+2) ... (Au)T(k+N-1)| .

Then, the control input vector at that time-step is chosen as u(k) = u, (k) + Au* (k).

Assume that ¢ € [to, 7] (fo = 0 without loss of generality) is the specified time window for the re-entry mission.
Take At as the sampling interval for MPC and discretize the mission time window into time instances or steps separated
by At time units. Now, consider the time instant corresponding to the k-th time-step, that is, f; = #o + kAt, and let the
IGC module receive closed-loop trajectory information (including HGV altitude) for ¢ = #. The guidance subsystem
generates reference trajectory-controls pair (X, (#x), u, (1x)) using (h(tx), V(x)) (see Algorithm|I), and passes on the
reference values to the flight controller. The controller computes the LTV model matrices A(#x), B(fx) corresponding
to the reference pair (X, (¢x), u,(#x)). Then, as described in this section, the model and the reference pair are utilized to
compute the control inputs u(zx) or u(k), i.e., the commanded 6 and ¢ at time ¢ = fx or time-step k. This procedure is
repeated at every At time units over the entire mission, resulting in a feedback interconnection between the proposed
guidance subsystem and flight controller. Therefore, HGV reference trajectories obtained via the proposed framework
are coupled with the LTV-MPC design and the closed-loop flight controls acting on the vehicle. A summary of the
proposed IGC framework is provided in Algorithm 2}

2 L
Ar Q
3 0 g1 r
O 0.05¢ 1 3
QOot
O L L L L L
2 4 6 8 10 12 2 12
a (deg)
2 .
Ar Q
. 0.1 g1 I
©0.05¢ ] 3
Ol
0 L L L L L L L L L L L
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
0 (deg) § (deg)
(a) Lift coefficient (b) Lift-to-drag ratio

Fig. 4 HGYV lift coefficient and lift-to-drag ratio on the trim contour defined by Cy;, = 0 or g = 0. These
correspond to the low-a trim contour shown in Fig. E}

V. Numerical Results
Simulation results of the proposed IGC framework for the generic HGV geometry and aerodynamic database
described in Section [[l.B]are provided in this section. First, we investigate feasibility of the proposed guidance synthesis
and verify Assumption[} To this end, we use fourth-order polynomials in (e, 6) to fit the trim contours shown in Fig.
Lift and drag coeflicients associated with the fitted polynomials are obtained through local interpolation of the database.
We utilize these lift coefficients to find Amin, Zmax> Vimin» Vmax such that Assumption |l|is satisfied for an admissible range

12
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Fig. 5 HGY closed-loop trajectories and control inputs. Reference signals here correspond to the trajectory and
control inputs highlighted in blue. The trajectory in blue is initialized as in Eq. (20) with 7 = 0.6.

of ¢, which would depend on the maximum allowable bank angle. For all the results in this section, we take the
maximum bank angle equal to 60 deg, i.e., ¢, € [0.5, 1]. Also, out of the two trim contours shown in Fig. [3| we choose

13
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the low-a one as it corresponds to higher lift-to-drag ratio compared to the other contour. The lift coefficient (Cr) and
lift-to-drag ratios on the chosen trim contour are respectively depicted in Figs. #ajand[4b] and the C;, here lies between
-0.02 and 0.145. Then, satisfying Assumption [I]essentially boils down to finding zeros of the function

HE a V2
(Re+h)*> (Rg+h)

1
I(h,V,Cpr,co) = E.OO eXP(—ahh)VZSCLCU — Mg

for all values of Cp € (-0.02,0.145), ¢, € [0.5,1] and all (h,V) pairs corresponding to dynamic pressures
that are close to the reference value specified for gliding. All the simulations in this section are initialized at
(h,V) = (40 km, 3.5 km/s) and we select the reference dynamic pressure as 98% of its initial value. Now consider, for
example, (Amin, fmax) = (30, 45) km which yields (Viin, Vinax) = (1.72,4.92) km/s for the reference dynamic pressure
chosen. Quasi-steady equilibrium (i.e., [(h,V,CL, c) = 0) requires 0.0494 < Cpc, < 0.0774, which is feasible for
Cr € (—0.02,0.145) and ¢ € [0.5, 1], thereby satisfying Assumption|[I] Note that these are sample calculations and
other values of Amin, Aimaxs Vmin, Vmax satisfying Assumptionﬂ] can be found. The key takeaway is that Assumptionﬂ]
holds for the reference dynamic pressure and the HGV geometry-related parameters (see Section [ILB]) chosen, rendering
the proposed guidance synthesis in Algorithm|I]feasible for the simulations carried out here. With regards to Algorithm
we pick reference (@, 6) = (9.1, 12.3) deg which would make the vehicle fly at 90% of the maximum lift-to-drag ratio
on the trim contour (see Fig. with a lift coefficient Cz, = 0.0905 (see Fig. a). The reference ¢, is then computed to
satisfy the quasi-equilibrium glide constraint (i.e., [(h,V,Cr, c,) = 0) at a given pair of (%, V) along the trajectory.
Parameters related to the IGC framework (see Algorithm 2 are chosen as

At = 1072 s, N = 10, upin = (=15 deg, 0.5) , upmax = (15 deg, 1),

3 . (19)
R = 10°L,, Q = diag (Qv, Qa. 0y, Qy) , ey = 0.15

where Qy =0.01,Q, = 107, 0, = 10, and Q4= 103, and I, is the 2 x 2 identity matrix. Also, the time discretization
is carried out through a zero-order hold and the SCQP in Eq. (T8) is solved using MATLAB’s QP solver ‘quadprog’. The
reference flight path angle computed via the guidance law (TT) at the initial time # = 0 is y,-(0) = —0.015 deg. The HGV

T
is then randomly initialized around the reference state x, (0) = [Vr 0) ar(0) 7y-(0) O] with V,-(0) = 3.5 km/s
and @, (0) = 9.1 deg as

T
x(0) =x,(0) +7 [0 3deg —ldeg 2 deg/s] (20)

where 7 € [-0.6,0.6] is chosen randomly from an uniform distribution. No initial deviation in the flight speed is
introduced as flight speed is not directly controlled or modulated, and it is allowed to decay as dictated by HGV dynamics
along the trajectory. Time histories of closed-loop trajectories and control inputs are depicted in Fig. [5] The LTV-MPC
controller successfully tracks the quasi-equilibrium reference trajectories despite initialization errors, while obeying
the constraints on stabilator deflection and bank angle magnitudes. These randomly initialized simulations showcase
nominal (i.e., inherent) robustness of the LTV-MPC design against plant-model mismatch [46} 47]. Theoretically
assessing the robustness and convergence properties of the closed-loop error system associated with proposed IGC
framework will be carried out in our future work. As shown in Fig. [6a the reference dynamic pressure gets tracked
approximately after r = 50 s for all the simulated trajectories and the transient oscillations initially are largely due to the
tracking errors in the flight path angle (cf. Fig. [5c). We conclude that the requirements of the mission are therefore
satisfied. However, the tracking in ¢ is biased, as shown in Fig. [’iﬂ This is a consequence of the reference being
generated through the quasi-equilibrium glide condition y = 0, while each trajectory actually requiring a small, negative
¥ (see Remark [T). While the MPC parameters here are tuned such that this requirement gets satisfied and the HGV
successfully flies its mission, this discrepancy in y will be investigated into more detail in our future work. Furthermore,
the initial control input rates in these simulations are large and constraining the control input rates—along with the
currently included magnitude constraints—will be a subject of future work as well.

Time histories of the kinematic states and the heading angle are shown in Fig. [6] where downrange, cross-range
and heading angle are initialized at zero. The vehicle is observed to climb initially in an attempt to lower its dynamic
pressure and converge close to the specified dynamic pressure which, as mentioned above, is 98% of the initial value.
The altitude profiles do not exhibit phugoid-like oscillations [[16} 135]]—a benefit that likely stems from the quasi-steady
equilibrium gliding condition despite the aforementioned biasing issue in ¢,. The downrange and cross-range values
obtained here are of the order of 750 km and 250 km, respectively. The heading angles vary from zero to approximately
45 deg due to the non-zero bank angles commanded by the controller.
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Fig. 6 HGYV dynamic pressures, kinematic states (altitude, cross-range, and downrange) and heading angles for
the trajectories in Fig. [5}
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Fig. 7 HGYV closed-loop trajectories, stabilator deflections, and dynamic pressures for the case where

stabilator deflection is the only control input. Reference signals here correspond to the trajectory and
stabilator deflection highlighted in blue. The trajectory in blue is initialized as in Eq. (20) with

T
x,(0) = [3.5km/s 7.63deg 0.057 deg 0] and 7 =0.2.
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Fig. 8 HGY kinematic states (altitude and downrange) for the trajectories in Fig. (7} This is the case where
stabilator deflection is the only control input.

For comparison, another set of simulations is carried out by taking the stabilator deflection as the only control
input and the bank angle is held constant at zero. The controller and guidance subsystem in Algorithm [2]are adjusted
accordingly, while keeping the IGC parameters fixed at their values shown in Eq. (T9). Also, the reference (a, §) pairs
for quasi-steady equilibrium gliding are different (see the discussion in Section[ITI). The reference angle of attack and
flight path angle at the initial time ¢ = 0 are (@, (0), v, (0)) = (7.63,0.057) deg. Closed-loop simulations are carried out

T
by setting the initial state as in Eq. (20) with the initial reference state x, (0) = [3.5 km/s 7.63deg 0.057 deg 0]

and 7 € [-0.2,0.2] randomly chosen from an uniform distribution. The time histories of closed-loop trajectories and
stabilator deflections are shown in Fig. [7] The dynamic pressure profiles are shown in[7f|and we can conclude that the
mission objectives have been met in this set of simulations as well. But, the extent to which initial errors in the trajectory
can be tolerated is much smaller here in contrast to the earlier case where both ¢ and ¢, were considered as control
inputs. In fact, there is a three-fold reduction in the range of 7 for which tracking becomes possible. This highlights the
benefit of including bank angle as a (pseudo) control variable, while emphasizing on HGV motion in the longitudinal
plane. Also, it is possible that the set of initial conditions for which closed-loop trajectories are tracked becomes smaller
when ¢ is no longer considered as a control variable. A rigorous analysis is needed to substantiate this hypothesis
and would be a part of our future work. The altitude and downrange profiles are shown in Fig. [8] with the downrange
initialized at zero. The altitude profiles do not show phugoid-like oscillations and the downrange values here are of the
order of 850 km, higher than the earlier case (compare Fig. [8band Fig. as the heading angle remains fixed at zero.

We compute and compare heat fluxes and load factors for the two sets of trajectories simulated in this section. The
load factor (ny ) and the Brandis-Johnston correlation [56, 57| for heat flux 5 are given by

VL? + D?

mgq

n= 7.455 % 10_97‘;0'52,0(/’1)0'4705V3'089

ny =

where r,, is the nose radius of the vehicle and 7 is expressed in terms of W/cm?. The Van Driest model [49} [58] has also
been employed for calculating the heat flux. Van Driest calculates the heat flux at a stagnation point by solving the
boundary layer equations after a strong shock. Thus, the boundary layer edge conditions are computed using perfect gas
shock theory. Once the post shock conditions are calculated for a given altitude and freestream velocity, heat flux is
calculated via:

1 = kPr0S i — (—Z(pe )

V?; Pe

where « = 0.763 for a sphere, Pr is the Prandtl number and is 0.72 for air, u is the viscosity which is computed using
the Sutherland’s formula, and v is the specific enthalpy. Here, the subscript e denote the boundary layer edge conditions,

1/4
) (Vaw - Vw)
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Fig. 9 HGYV heat fluxes and load factors for the two sets of trajectories. The top row ((a), (b)) corresponds to the
case where both stabilator deflection and cosine of bank angle are controls. The bottom row ((c), (d)) corresponds
to the case where stabilator deflection is the only control input.

and the subscript w denote the wall conditions, and v,,, corresponds to adiabatic wall conditions which is approximated

as Vaw = Ve + Vg “u2, where u, is the boundary layer edge velocity. Also, v,, assumes a constant wall or stagnation

point temperature on the vehicle, which is assumed to be 7, = 500 K.

The load factor and heat flux results for the two sets of trajectories are shown in Fig. [0 where we have
utilized r,, = 0.1 m as HGV nose radius. For trajectories where both ¢ and ¢, are control inputs, the load factors
converge to a constant value after the initial oscillations (see Fig. Qb)) as the vehicle starts operating at the reference
(@,6) = (9.1, 12.3) deg and reference dynamic pressure, whereby the lift and drag forces acting on the vehicle become
fixed. In contrast, the load factors in Fig. [9d} which correspond to the case where stabilator deflection 6 is the only
control input, slowly grow after the initial oscillations. As the HGV descends through the atmosphere, the acceleration
due to gravity increases and the lift required for quasi-equilibrium gliding becomes higher. The slow growth in the
load factors occur as the IGC framework accommodates the higher lift requirement. The heat fluxes for both sets of
trajectories—as predicted by Brandis-Johnston correlation and Van Driest model—are shown in Figs. Da] While the
Van Driest model predicts lower values compared to the correlation formula, both methods indicate an approximately
monotonic decrease in the heat flux with the vehicle descending and slowing down. Further, we observe that the heat
flux decreases relatively quicker for trajectories with ¢ and ¢ as controls. This is caused by higher drag corresponding
to those trajectories, which slows the HGV down quicker (compare Fig. [Sajand Fig. [7d). The maximum allowable load
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factor and heat flux for an airframe could become constraints in the guidance subsystem, and enforced via a choice of
reference dynamic pressure and/or other constraints on HGV states. Our future work will involve investigating these
aspects in the context of IGC for HGVs.

VI. Conclusions and Future Work

An IGC framework for constant dynamic pressure glide under vertical quasi-steady equilibrium conditions is
proposed and investigated. The flight path angle guidance law generates glide trajectories convergent to the specified
dynamic pressure despite initialization errors and other factors that might introduce an offset. Closed-loop simulations
illustrate that the LTV-MPC design is inherently robust to plant-model mismatch and successfully flies the HGV subject
to hard constraints on the control inputs. Furthermore, having only the stabilator deflection in the control channel
leads to inferior convergence and tracking performance compared to the scenario where bank angle is considered as a
second (pseudo) control variable along with stabilator deflection. Future work will focus on theoretically assessing this
observation. Heat fluxes and load factors along the simulated closed-loop trajectories are analyzed. Embedding suitable
constraints on these quantities in the IGC analysis and synthesis will be part of the future work.
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