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Abstract We present a systematic approach for determining the optimal actuator location for separation
control from input–output response data, gathered from numerical simulations or physical experiments. The
Eigensystem realization algorithm is used to extract state-space descriptions from the response data associated
with a candidate set of actuator locations. These system realizations are then used to determine the actuator
location among the set that can drive the system output to an arbitrary value with minimal control effort.
The solution of the corresponding minimum energy optimal control problem is evaluated by computing the
generalized output controllability Gramian. We use the method to analyze high-fidelity numerical simulation
data of the lift and separation angle responses to a pulse of localized body-force actuation from six distinct
locations on the upper surface of a NACA 65(1)-412 airfoil. We find that the optimal location for controlling
lift is different from the optimal location for controlling separation angle. In order to explain the physical
mechanisms underlying these differences, we conduct controllability analyses of the flowfield by leveraging
the dynamic mode decomposition with control algorithm. These modal analyses of flowfield response data
reveal that excitation of coherent structures in the wake benefits lift control, whereas excitation of coherent
structures in the shear layer benefits separation angle control.

Keywords Flow control · Flow separation · Eigensystem realization algorithm · Dynamic mode
decomposition · Lagrangian coherent structures

1 Introduction

Flow separation can degrade performance in many engineering systems, through reduced lift, increased drag,
and decreased efficiency. To alleviate the effects of flow separation on aerodynamic performance, active flow
control has been considered since the inception of the field of aerodynamics [1,2].

Open-loop flow control strategies based on various actuator technologies [3]—such as plasma actuators
[4–6], fluidic oscillators [7–11], and synthetic jets [12–16]—have been shown to effectively alter separated
flows, and in some cases to even yield complete reattachment. In [17], oscillatory forcing was found to improve
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control authority for separation control. Several studies have observed that actuating at the dominant shear
layer frequency is effective for mitigating flow separation [18–21]. Other studies have reported that separation
mitigation is most effective when actuation is applied at the separation bubble frequency, not the shear layer
frequency [22]. Further, it was shown that nonlinear flow interactions can result in lock-on effects that influence
the optimal forcing frequency [23,24].

Recent investigations have sought to identify candidate actuation frequencies more objectively using
operator-based and data-drivenmodal analysis techniques—such as linear stability analysis, resolvent analysis,
and dynamic mode decomposition (DMD) [14,20,25–28]. Actuation designed based on these analyses yielded
improved open-loop controller designs; however, the actuator positions considered were fixed and may not
necessarily translate to the optimal performance achievable in terms of separation control.

The positioning of actuators and sensors is known to play a central role in determining achievable control
performance. In most scenarios, using all available actuators and sensors will yield the highest performance for
a given system. However, through judicious selection and placement, it is possible to achieve optimal control
performance using fewer actuators and sensors. To this end, systems theoretic optimization approaches for
sensor and actuator placement have been proposed in a number of studies. The effect ofwhite noise disturbances
on actuator and sensor placement for the Ginzburg–Landau system was investigated in [29], where numerical
optimization was used to minimize the actuator effort and perturbation magnitude in an H2 sense. In [30], a
branch-and-bound procedure was proposed to determine the optimal actuator placement with constraints on
the number of actuators. Further, sensor selection for flow reconstruction has been considered in [31–34], and
for feedback flow control in [35].

Despite all of these advances, the optimal selection problem has remained relatively unexplored within the
context of separation control. Placing the actuators in locations that are intuitively optimal [36,37] may not be
optimal for control performance. Therefore, the selection from a set of candidate locations using systematic
criteria may assist in identifying the actuator location with the highest performance index. Further, such an
approach would ensure that the resulting selection would be feasible in practice—as the candidate set would
be constructed to adhere to physical and economic constraints on the type and placement of actuators.

In separation control, actuator placement is usually strongly correlated with the location of the separation
point. In steady flows, this location of flow separation from a no-slip wall is well known to be identified
exactly by Prandtl’s condition for separation in the Eulerian frame, through a point of zero skin friction and
a negative friction gradient in the wall-tangential direction. However, flow separation from a no-slip wall can
also be considered in the Lagrangian frame by understanding fluid tracers breaking away from a wall. While
much work has been done on unsteady separation (see [38]), only recently was it shown that the dynamics of
unsteady flow separation are better analyzed in a Lagrangian frame, wherein the Lagrangian separation point
is fixed for a periodic flow [39]. In [39], it was shown that the time-dependent separation angle θ(t) of the
Lagrangian unstable manifold can be computed using pressure and skin-friction data. In [39,40], it was further
shown that particles near a separation point are drawn toward an unstable manifold—i.e, an attracting line in
the flowfield.

In [41], the separation angle and lift response were recorded to a flow pulse at six candidate actuator
locations.

It was demonstrated that an increase in separation angle leads the separation line to become concave, for
any location upstream of the separation point. In turn, the concavity of the separation line results in flow
reattachment. In contrast, a decrease in separation angle results in an increase in the separation region. The
increase in separation angle coincided with an increase in lift and a reduction in drag. Thus, a pulse location
yielding a greater increase in lift corresponded to a greater degree of reattachment, providing guidance on
actuator selection for separation control. These qualitative analyses on actuator selection would benefit from a
systematic and quantitative approach grounded in optimal control theory. Further, a purely data-driven approach
would ensure that the actuator selectionmethod can be appliedwithin the context of both numerical simulations
and physical experiments.

In this paper, we present a data-driven technique for determining the optimal actuator location for driving
a quantity of interest (e.g., lift or separation angle) with minimal control effort. The only requirement for the
approach is a collection of input–output response data associated with a set of candidate actuator locations,
making the approach attractive for both numerical and experimental studies. The Eigensystem realization
algorithm (ERA) [42] is used to extract a system model that describes the dynamic response data. This
description is then used to solve aminimum energy optimal control problem,which yields an objectivemeasure
for comparing the relative performance of each actuator location in controlling the quantity of interest. The
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Fig. 1 Lift and separation angle response data due to a pulse of localized body-force actuation at each of six candidate locations
on a NACA 65(1)-412 airfoil. High-fidelity numerical simulation data courtesy of [41]

specific measure we propose is based on the generalized output controllability Gramian, which is valid for
both stable and unstable systems. This makes for a versatile approach that can be applied to general systems.

The optimal actuator selectionmethod is applied to high-fidelity numerical data from [41], corresponding to
the liftC�(t) and separation angle θ(t) responses due to a pulse of localized body-force actuation at six distinct
locations on the upper surface of a NACA 65(1)-412 airfoil with angle of attack α = 4◦ and chord-based
Reynolds number Rec = 20,000 (see Fig. 1). The optimal actuator locations for controlling lift and separation
angle are found to be different. As such, we introduce a DMD-based controllability analysis to identify flow
structures that are most sensitive to the actuation. This analysis sheds light on physical mechanisms that explain
these differences in the actuator selection results. The results suggest that the separation angle can be controlled
more easily than lift, provided that actuation is applied at the optimal location.

The paper is organized as follows: in Sect. 2, we present the optimalitymeasure and necessarymathematical
machinery for conducting a data-driven analysis. In Sect. 3, the method is applied to analyze the data in
Fig. 1 to determine the optimal actuator location for controlling lift and separation angle on a NACA 65(1)-
412 airfoil. We also introduce and use a DMD-based controllability analysis of the flowfield response to
identify physical mechanisms that can explain the actuator selection results. Conclusions are presented in
Sect. 4.

2 Methodology

Consider a finite-dimensional state-space realization G = (A, B,C) representing the dynamic response from
a single actuator input u(t) to a single output quantity of interest y(t):

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t).
(1)

Here x ∈ R
n is the n-dimensional state vector.

We assume that G = (A, B,C) is minimal (i.e., it is both controllable and observable).
It will be shown how such a realization can be determined from data in Sect. 2.2.
Linear realizations G = (A, B,C) have been used previously in the study of separated flows and are

justified so long as the input u(t) is sufficiently small so that the initial response of the system is dominated
by linear dynamics [43,44].
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We seek the control input uopt(t) that drives the system state from the origin to an arbitrary point in state-
space with minimal control energy over an infinite time-horizon1. This optimal control problem can be solved
by standard methods and is commonly referred to as the minimum control energy problem [45]:

minimize J =
∫ ∞

0
uT(τ )u(τ )dτ

subject to ẋ(t) = Ax(t) + Bu(t)
x(0) = 0
x(∞) = x f ,

(2)

which admits a solution if the system is controllable. The minimal input energy associated with the optimal
control is given by:

J opt = xTf W
−1
c x f , (3)

where the controllability Gramian

Wc :=
∫ ∞

0
eAτ BBTeA

Tτdτ (4)

is the stabilizing solution to the Lyapunov equation,

AWc + WcA
T + BBT = 0 (5)

To determine the actuator location that yields the minimum control energy, we can simply compare the
relative sizes ofWc corresponding to the dynamics of each actuator location—a largerWc being more control-
lable and requiring less input energy to control. Note that the controllability GramianWc is not invariant under
similarity transformation. This is an important point to consider when system realizations G = (A, B,C) are
obtained from data, as will be discussed in Sect. 2.2. In such instances, care must be taken when formulat-
ing measures of optimality directly based on Wc. Some suitable choices that are invariant under similarity
transformation are, e.g., det(Wc), trace(Wc).

To gain an intuition for the optimal solution, we can view the quadratic form in (3) as defining an ellipse
that contains all points in state-space that can be reached from the origin using no greater than unit input
energy, X = {x f ∈ R

n | xTf W−1
c x f ≤ 1}. The most controllable directions in state-space require the least

control energy to traverse and are related to the eigendirections associated with the largest eigenvalues of Wc;
the least controllable directions in state-space require the most control energy to traverse and are related to the
eigendirections associated with the smallest eigenvalues of Wc.

AlthoughWc provides intuition about themost controllable directions in state-space, in practice, the quantity
of interest may not directly correspond to these states; instead, the quantity of interest corresponds to a specific
linear combination of these states: y(t) = Cx(t). Hence, rather than considering the state controllability
Gramian Wc directly, we can instead work with a suitably weighted version of Wc:

Woc :=
∫ ∞

0
CeAτ BBTeA

TτCTdτ (6)

= CWcC
T, (7)

which is simply the output controllability Gramian [46]. Output controllability is a more natural measure of
optimality because it is invariant under similarity transformations, and thus constitutes a system property that is
coordinate independent. This choice is particularly appealing because measures based onWoc admit numerous
other interpretations, beyond those afforded by the minimum control energy perspective. For instance, the
output controllability Gramian is directly related to theH2-norm of a stable linear time-invariant (LTI) system
as:

‖g(t)‖2 =
√∫ ∞

0
g(t)Tg(t)dt = √

Woc (8)

1 Although finite time-horizons can be considered, we choose to focus on the infinite time-horizon case in order to maintain
objectivity in the optimality measure; the solution to the finite time-horizon problem is dependent on the final time, which can be
undesirable because the final time can always be chosen to influence the outcome of the optimality measure.
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where g(t) := CeAt B is the impulse response. Further, we can arrive at a frequency-domain interpretation of
this measure by invoking Parseval’s theorem [47]:

‖g(t)‖2 = ‖G(s)‖2 :=
√

1

2π

∫ ∞

−∞
(G(− jω)TG( jω))dω (9)

=
√

1

2π

∫ ∞

−∞
|G( jω)|2dω (10)

where G(s) denotes the transfer function from the input to the output. Hence, theH2-norm can be interpreted
as the average system gain over all forcing frequencies. Consistent with the minimum control energy interpre-
tation, this indicates that a system with a larger H2-norm will tend to yield a larger output for the same input
signal. TheH2-norm also admits a stochastic interpretation from the lens of linear quadratic Gaussian (LQG)
control [47]: All else equal, a system with a larger H2-norm will yield a larger output power in response to a
unit intensity white noise input.

2.1 Generalizability to unstable systems

The H2 optimality measure can be generalized to unstable systems. This generalization is useful if we are
interested in comparing actuator locations for general systems, which may or may not be stable. Of course, in
the context of unstable systems, neither the state controllability Gramian nor the output controllability Gramian
will necessarily be bounded; thus, these optimality measures are ill-suited for comparing general flow control
configurations that may exhibit unstable dynamics. However, by taking a frequency-domain perspective of the
state controllability Gramian, we can arrive at a generalized controllability Gramian P that is bounded for
unstable systems [48]:

P = 1

2π

∫ ∞

−∞
( jωI − A)−1 BBT

(
− jωI − AT

)−1
dω (11)

The generalized controllability Gramian is also related to the minimum control energy problem, as shown
in Theorem 5 of [48]. Specifically, when the system under consideration is controllable, xTo P

−1xo =
inf{‖u‖22 | x(0) = xo, x(−∞) = 0, x(∞) = 0}. As with Wc, a larger P indicates that less control energy is
required to drive the state to the origin from an arbitrary initial state (i.e., the system is “more controllable”).
In other words, the generalized controllability Gramian P has an equivalent interpretation as the conventional
controllability Gramian Wc, but extends the interpretation to the context of unstable systems. Indeed, when
the system under consideration is stable, the generalized controllability Gramian is equivalent to the standard
controllability Gramian (i.e., P = Wc).

Conveniently, for a stabilizable and detectable system, the generalized controllability Gramian P can be
computed directly from a state-space realization of the system. The procedure follows directly from Theorem 2
in Zhou et al. [48], which amounts to solving for the stabilizing solution X to the algebraic Riccati equation:

X A + ATX − XBBTX = 0 (12)

followed by a computation of the generalized controllability Gramian P as the solution to the Lyapunov
equation,

(A + BF)P + P(A + BF)T + BBT = 0, (13)

where F = −BTX . For stable systems, X = 0 and, therefore, P = Wc.
For the purpose of determining a measure of optimality for actuator placement, here we will define the

generalized H2-norm (denoted H2′) in analogy with Eq. (8), but now using the notion of generalized output
controllability CPCT instead of the conventional output controllability CWcCT.

‖G‖2′ =
√
CPCT (14)
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This measure is related to the output controllability of the system and is often times more desirable, as the
end goal is to effectively control the output. Another attractive feature of this measure is that it is invariant to
system realizations and is therefore not dependent on the method in which system realizations are obtained.

In the remainder of this paper, ‖G‖2′ will be used as ameasure for determining the optimal actuator location
among a set of candidate actuator locations. In our case, this measure is computed for all the candidate locations
using the minimal realization obtained from pulse response data, as will be described in the next subsection.

2.2 Minimal realizations from pulse response data

An imperative step in determining optimality among the candidate set of actuator locations is obtaining
mathematical models for the dynamic response from actuator input u(t) to the quantity of interest y(t) for
each candidate configuration. Once such system models are obtained, analyses corresponding to optimality
can be conducted. The field of system identification deals with obtaining mathematical models for a system
based on data observations obtained from the system.

In general, such data are usually sampled at discrete instants of time in a large variety of applications. Hence,
discrete-time system models show higher suitability for system identification methods. Identified models can
be transformed subsequently to continuous-time as needed for further analysis.

Here, we describe one such method for determining a minimal discrete-time system realization from
empirical pulse response data. These discrete-time state-space realizations are then converted to continuous-
time realizations—in the form of (1)—by means of Tustin’s approximation2 [49].

Consider the discrete-time state-space realization Ĝ = ( Â, B̂, Ĉ):

x(k + 1) = Âx(k) + B̂u(k)

y(k) = Ĉx(k)
(15)

where x ∈ R
n is the state vector, u ∈ R is the actuator input, y ∈ R is the output quantity of interest, and

k ∈ Z is the sampling time index. The response of the quantity of interest to a pulse input yields a sequence
of scalar Markov parameters:

hk =
{
0 for k = 0
Ĉ Âk−1 B̂ for k ≥ 1.

(16)

For each candidate actuator location,we appeal to theEigensystem realization algorithm (ERA) [42] to compute
a minimal realization of the system Ĝ = ( Â, B̂, Ĉ) directly from this pulse response data hk . To do so, we
define two Hankel matrices composed of the Markov parameters:

H0 =

⎡
⎢⎢⎣

h1 h2 . . . hno
h2 h3 . . . hno+1
...

...
. . .

...
hnc hnc+1 . . . hnc+no

⎤
⎥⎥⎦ , H1 =

⎡
⎢⎢⎣

h2 h3 . . . hno+1
h3 h4 . . . hno+2
...

...
. . .

...
hnc+1 hnc+2 . . . hnc+no+1

⎤
⎥⎥⎦ , (17)

wherenc+no < m andm is the length of the time series.Next, compute the singular value decomposition (SVD)
of H0 = UΣV ∗, then store the r largest singular values in a matrix Σr and the corresponding left- and right-
singular vectors in the matrices Ur and Vr , respectively. Finally, a minimal realization ( Â, B̂, Ĉ) can be
computed as:

Â := Σ
− 1

2
r U∗

r H1VrΣ
− 1

2
r (18)

2 Tustin’s approximation allows for conversion between continuous-time anddiscrete-time representations of a dynamic system.
Given the sampling time Ts , the approximation leverages a bilinear Tustin transformation to map between all points in the s-plane
and the z-plane:

z = esTs ≈ 1 + sTs/2

1 − sTs/2
.

The transformation is sometimes used to relate optimal control problems formulated in continuous-time to counterparts in
discrete-time and vice versa.
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B̂ := First column of Σ
1
2
r V ∗

r (19)

Ĉ := First row of UrΣ
1
2
r (20)

A complete description of ERA can be found in [42]. As was shown in the previous subsection, theH2′-norm
optimality measure associated with each actuator location can then be computed directly from this ERA-based
minimal realization.

Our choice of utilizing pulse response data for system identification is quite natural sinceMarkovparameters
have the property of being unique for a given system and are often referred to as the “signature” of the system
model [50]. In the event that other forms of input–output data are available through simulations/experiments,
methods such as Observer/Kalman Filter Identification (OKID) may be used to extend the applicability of
ERA to general input–output response data [51]. For example, OKID can be used to overcome any biases in
Markov parameters resulting from nonzero initial conditions, as ERA implicitly assumes x(0) = 0. When
the initial state x(0) �= 0, the resulting input matrix determined by ERA will be shifted as B̂ + x(0) and the
feed-through term will artificially become nonzero. Of course, the feed-through term can be enforced to be
zero in the ERA identification. In doing so, this will also bound the sensitivity of the optimality measure. If
x(0) �= 0 is the same for all realizations, then the relative values of the optimality measure computed for each
actuator location will be shifted by a comparable amount. As such, the use of this measure is still useful for
ranking and selecting the optimal actuator location, so long as the shift is small relative to the value of the
optimality measure. If the shift is large, then OKID can be used to improve estimates of theMarkov parameters
prior to applying ERA.

We note that ERA introduces some elements of subjectivity to the optimal selection process, since various
ERA algorithm parameters such as nc, no can be chosen to alter the specific realization; however, additional
precautions can be taken to ensure that the realization is sufficiently insensitive to these algorithmic parameters
and that multiple ERA realizations based on the same pulse response data yield consistent optimal actuator
rankings. Indeed, this will be the case for all of the results that are reported in Sect. 3.

We further note that ERA is applicable for both stable and unstable systems [43]. For sufficiently small
pulse inputs, the initial response of the system is dominated by linear dynamics. In principle, it is possible to
compute the output controllability Gramian by direct integration of pulse response data; however, performing
a direct integration of pulse response data for unstable systems (or of unconverged responses in general)
over an infinite time-horizon is not possible. Appealing to generalized Gramians computed via ERA system
realizations overcomes this challenge.

2.3 Direct numerical simulation

The simulations presented in this paper follow those described in detail by Nelson et al. [52] and Kamphuis et
al. [41]. Here, we only provide a summary pertaining to the numerical approximation method and the problem
setup. For the interested reader, we refer to the two papers and references therein for more details. The grid-
converged solution is based on the computational grid shown in Fig. 2, and it has 2256 quadrilateral elements.
The Mach number of the free-stream flow is specified to be M = 0.3, and the Reynolds number based on the
chord length and the free-stream velocity is set to Rec = 20,000. A discontinuous Galerkin method described
in [53] is used to approximate the two-dimensional compressible Navier–Stokes equations with a 12th-order
polynomial per element. This yields a total of 381,264 grid points, which was shown in [52] to give a grid
independent solution to the Navier–Stokes equations. While this is not a three-dimensional simulation, we call
this a high-fidelity result because of the accuracy of the simulation and because of the first-principle nature
of the governing equations. Riemannian free-stream boundary conditions [54] are set at the boundaries of the
computational domain. The airfoil surface is modeled as an adiabatic wall whose geometry is approximated
by a cubic spline [52]. Following the forcing model by Suzuki et al. [55] and the pulsed forcing as described in
[41], the pulsed body force is modeled by a spatial Gaussian distribution source function in the Navier–Stokes
equations that can be superimposed on the initial condition because the temporal dependency of the source
is according to a delta function that integrates to a Heaviside function, i.e., a sudden change in the initial
solution. The pulsed body force is applied under a constant angle of 5.9◦ with respect to the vertical axis and
in downward direction [41].
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Fig. 2 2D Computational domain. Only elements without interior Gauss points are shown

3 Results

We apply the approach described in Sect. 2 to the numerical pulse response data shown in Fig. 1 to determine
the optimal actuator location for controlling lift and separation angle. For clarity, we first outline the specific
steps involved in determining the optimal actuator location when the quantity of interest is the lift C�:

1. Collect data Collect sampled pulse response data Ci
�(k) for each of the i = 1, . . . , N candidate actuator

locations. Also, collect the uncontrolled baseline lift response C0
� (k) and compute its mean C0

� .
2. Form Markov parameters Subtract the uncontrolled baseline mean from each pulse response signal to

obtain the associated sequence of Markov parameters hik = Ci
�(k) − C0

� .
3. Identify system realizations Perform ERA on each sequence hik to obtain a discrete-time system realization

Ĝi = ( Âi , B̂i , Ĉ i ). Convert this realization to a continuous-time realizationGi = (Ai , Bi ,Ci ) via Tustin’s
approximation.

4. ComputeH2′ optimality measures For each system realization Gi , compute the generalized controllability

Gramian Pi from Eqs. (12) and (13). From this, compute the optimality measure ‖Gi‖2′ =
√
Ci PCiT for

each actuator location.
5. Select optimal actuator Sort actuators according to decreasingH2′-norm. The optimal actuator location is

the one associated with the largest value of ‖Gi‖2′ .

The same procedure can be applied to analyze the optimal actuator location for controlling separation angle.
To do so, simply substitute C� ← θ everywhere above.

We first perform steps 1–3 above for the lift and separation angle responses. An ERA model of order r is
realized for each actuator location and each quantity of interest (see Figs. 4 and 7). Here, r is chosen to give
the best match in terms of the original data obtained from numerical simulations. All realizations reported
here are based on nc = no = 500. As previously indicated, a number of these realizations exhibit unstable
dynamics, with some of the discrete-time system poles lying outside the unit circle in Figs. 3 and 6. This
motivates the use of generalized controllability Gramians and the associated H2′ for the subsequent analysis.
We note that the unstable realizations may be related to the slow asymptotic return to the baseline response.
This point is supported by the fact that realizations computed using shorter time-horizons result in unstable
modes that are “more unstable.” The minimality and order of ERA-based realizations were sanitized of any
potential numerical artificialities by accounting for pole-zero cancellations based on a range of tolerances from
O(10−5) to O(10−7). These tolerance values indicate the proximity of poles and zeros required to constitute
a numerical pole-zero cancellation. Tolerances have been selected in conjunction with the system order r to
ensure the realization is minimal and able to describe the given response data.

We next perform steps 4–5 in the selection process outlined above. The H2′-norms associated with each
actuator location are sorted from most controllable to least controllable and reported in Tables 1 and 2. The
optimal actuator location for lift control is found to be x/c = 0.2, whereas for separation angle control, it is
found to be x/c = 0.3. The ranking of actuators and further analysis of these results is presented for lift in
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Table 1 Optimality of actuator locations based on the generalized H2-norm, sorted from most to least optimal for different
tolerance values used in minimal realization for lift response data

x/c ‖G‖2′

.2 51.79

.6 31.31

.1 17.41

.5 15.81

.4 15.41

.3 13.41

Sect. 3.1 and for separation angle in Sect. 3.2. A modal analysis of the flowfield is conducted in Sect. 3.3 to
help identify physical mechanisms underlying these observations.

3.1 Optimal actuator placement for controlling lift

Based on the H2′-norm, the optimal actuator location for lift control is x/c = 0.2. This location has the
highest controllability among all six candidate locations. The optimality study considered tolerance values
for pole-zero overlap of O(10−5) to O(10−7). The optimal actuator position is largely constant with these
tolerances, although minor variations in the relative ranking of other actuators are observed in the case of lift
control. Some of the eigenvalues of the discrete-time realizations obtained are outside the unit circle for all
actuator locations, thereby confirming that the identified systems are unstable (see Fig. 3). As can be seen in
Fig. 4, the high order for the obtained minimal realizations, in all likeliness, indicates that the system may have
some degree of nonlinearity in it, which is captured by a larger number of states. The peak frequency for all
actuator locations is around f c/U∞ = 6.12, as can be seen in Fig. 5, and corresponds to the wake frequency.
Thus, it appears that among all actuator locations, x/c = 0.2 is able to induce a resonance by coupling with
the flow dynamics at this forcing frequency.

3.2 Optimal actuator placement for controlling separation angle

A similar exercise as described above is also undertaken for the separation angle pulse response data (see
Table 2 and Figs. 6,7,8). Based on the H2′-norm, the optimal actuator location for separation angle control is
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Fig. 3 System poles of (discrete-time) minimal realization computed from pulse response data for each actuator location using
ERA for lift response data. Some poles are outside the unit circle for all locations
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Fig. 4 Lift coefficient pulse response data at each actuator location. Each realization is minimal with order r

x/c = 0.3 (see Table 2). This location has a degree of controllability which is significantly larger than other
locations. The related norm for this actuator location is an order of magnitude greater than the next optimal
location. This is also reflected in the very high response peak associated with this location as compared to the
other candidate locations (see Fig. 7). Note that the next optimal location is x/c = 0.5, which coincides with
the asymptotic separation point itself [41].

The results provide two interesting observations. First, the order of theminimal realizations obtained for the
separation angle responses is an order of magnitude above the realizations associated with the lift responses.
This suggests a greater degree of complexity in the underlying dynamics of the separation angle response
than of the lift response. Consistently, generalized H2-norms associated with these candidate locations (see
Table 2) are greater than their lift counterparts. This is especially prominent for the higher ranked locations in
the separation angle case.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Bode magnitude plot for minimal realization at each actuator location for lift response data

Table 2 Optimality of actuator locations based on the generalized H2-norm, sorted from most to least optimal for different
tolerance values used in minimal realization for separation angle response data

x/c ‖G‖2′

.3 1.63 × 107

.5 3.99 × 104

.4 1059.57

.1 243.24

.6 91.95

.2 76.74
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Fig. 6 System poles of (discrete-time) minimal realization computed from separation angle pulse response data for each actuator
location using ERA. Some poles are outside the unit circle for all locations

3.3 Modal analysis of the flowfield response

To understand why the actuator locations for controlling separation angle and lift are optimal, we perform
modal analysis of the flowfield and attempt to understand the underlying physical mechanisms.

We leverage the dynamic mode decomposition (DMD) to extract dynamically meaningful spatiotemporal
information from snapshot data of the dynamic response of the flowfield [56–58]. In particular, we use the
DMDwith control (DMDc) algorithm [59] in order to properly account for the influence of external forcing on
the flow from actuation. DMDc is a data-driven method that is closely related to ERA [59]; however, DMDc
assumes access to the full-state output, whereas ERA does not. Further, DMDc requires additional care when
data are gathered from physical experiments, as measurement noise can introduce bias errors that must be
taken into account [28,60–62].

At its heart, DMDc approximates flow response data with a dynamical system of the form:

x(k + 1) = Âx(k) + B̂u(k). (21)

Here,we take x(k) ∈ R
n to be a snapshot of the velocity field at time-step k and u(k) ∈ R as the associated input.

For a unit pulse of body-force actuation applied at a single location on the airfoil at k = 0, this corresponds to
u(0) = 1 and u(k) = 0 for k ≥ 1. Response data are collected and stored in data matrices of state and input
sequences:

X = [
x(1) x(2) . . . x(m)

]
(22)

X ′ = [
x(2) x(3) . . . x(m + 1)

]
(23)

Υ = [
u(1) u(2) . . . u(m)

]
. (24)

Then, DMDc approximates the underlying system dynamics ( Â, B̂) as a least-squares/minimum-norm
solution to X ′ ≈ ÂX + B̂Υ [59]. Specifically,

[
Â B̂

] ≈ X ′
[
X
Υ

]
︸︷︷︸

Ω

=
[
X ′Ṽ Σ̃−1ŨT

1︸ ︷︷ ︸
Ā

X ′Ṽ Σ̃−1ŨT
2︸ ︷︷ ︸

B̄

]
, (25)
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Fig. 7 Separation angle pulse response data at each actuator location. Each realization is minimal with order r

where the truncated SVD gives a rank-p approximation of Ω ≈ ŨΣ̃ Ṽ T, ŨT = [
ŨT
1 ŨT

2

]
, Ũ1 ∈ R

n×p,

Ũ2 ∈ R
1×p, Ā ≈ Â, and B̄ ≈ B̂. Since n is large in fluids applications, DMDc works with a reduced-order

representation of the dynamics:

x̃(k + 1) = Ãx̃(k) + B̃u(k), (26)

where x = Û x̃ , Ã = ÛT ĀÛ , B̃ = ÛT B̄, and Û ∈ R
n×r is determined from a rank-r approximation of X ′

computed via the truncated SVD of X ′ ≈ ÛΣ̂ V̂ T. It follows that the eigenvectors v and eigenvalues λ of Ã
are related to the eigenvectors φ (DMD modes) and eigenvalues λ (DMD eigenvalues) of Ā [59]. It is also
possible to relate the left-eigenvectors w of Ã to the left eigenvectors ψ (adjoint DMD modes) of Ā, as noted
in [58] and [63]. The DMDc algorithm is summarized as:
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Fig. 8 Bode magnitude plot for minimal realization at each actuator location for the separation angle response

1. Collect data and form the relevant data matrices X , X ′, and Υ defined in Eqs. (23)–(24), respectively.
2. Compute the rank-p truncated SVD

Ω =
[
X
Υ

]
≈ ŨΣ̃ Ṽ ∗. (27)

3. Compute the rank-r truncated SVD X ′ ≈ ÛΣ̂ V̂ ∗, where r < p.
4. Compute the reduced-order system realization

Ã = Û∗X ′Ṽ Σ̃−1Ũ∗
1 Û (28)

B̃ = Û∗X ′Ṽ Σ̃−1Ũ2 (29)
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Fig. 9 DMD Eigenvalues for actuator locations x/c = 0.2 and x/c = 0.3

5. Compute the eigendecompositions Ãvi = λivi and ÃTwi = λiwi . The DMD eigenvalues λi can be
used to determine the associated modal frequencies � λi/(2πδt) and growth/decay rates log |λi |/δt , where
δt is the sampling time. The DMD mode corresponding to each DMD eigenvalue λi is computed as
φi = X ′Ṽ Σ̃−1Ũ∗

1 Ûvi .

Further details about DMDc can be found in [59].
PerformingDMDc on velocity field response data due to pulse actuation applied at x/c = 0.2 and 0.3 yields

realizations ( Ã, B̃) of order r = 300. Recall, these locations are found to be optimal for lift and separation
angle control, respectively. DMD eigenvalues for actuator locations x/c = 0.2 and x/c = 0.3 are shown in
Fig. 9.

We note that wT
i B̃ provides information about the controllability of the DMD mode φi . This, in fact, is

closely related to the well-established modal controllability test of Popov, Belevitch, and Hautus (PBH) [64].
Here, we invoke a measure of modal controllability for linear systems proposed in [65]:

γi = |wT
i B̃|

‖wi‖‖B̃‖ (30)

where B̃ is a column vector in this study because there is only one input channel per realization. Then,
the measure γi corresponds to the cosine of the (acute) angle between the two one-dimensional subspaces
defined by wi and B. If the two subspaces are orthogonal, then γi = 0, indicating that the DMD mode φi
is uncontrollable from the input. On the other hand, if the two subspaces are perfectly aligned, then γi = 1,
indicating that DMD mode φi is maximally controllable. We note that for multi-input systems, one must
consider modal controllability from each available input channel. In such instances, a measure of gross modal
controllability can be defined to account for the relative norms of columns in B̃. Further details can be found
in [65].

Using this procedure, we sort DMD modes according to their relative controllability measures. The mag-
nitude of the most controllable DMD modes for actuator locations x/c = 0.2 and x/c = 0.3 is plotted in
Fig. 10. For x/c = 0.2—the optimal location for lift control—the most controllable DMD mode is strongly
active within the separation bubble and into the wake near the trailing edge of the airfoil. This suggests that
the separation bubble and near-wake are most receptive to actuation that benefits lift control. In contrast, the
most controllable DMD mode for x/c = 0.3—optimal for separation angle control—is most active in the
shear layer and in the wake. Indeed, this mode shows evidence of vortical structures within the shear layer
that are effectively manipulated via control at x/c = 0.3. This observation suggests that vortex roll-up within
the shear layer provides a mechanism that benefits separation angle control. From Fig. 10, it appears that the
separation line delineates regions of high versus low spatial frequency content.

Since DMD modes are single-frequency flow structures, the frequencies associated with the most control-
lable DMD modes may serve as good candidate frequencies for open-loop control using sinusoidal forcing.
Further, we note that the frequencies associated with the most controllable DMDmodes are consistent with the
peaks in the separation angle frequency response determined via ERA (see Fig. 8). This finding supports our
earlier claim that controlling the separation angle may prove to be more effective than controlling lift directly.



D. Bhattacharjee et al.

Fig. 10 The magnitude of the most controllable DMD mode associated with actuation at x/c = 0.2 and x/c = 0.3, visualized
using vorticity

Next, we leverage the generalized controllability Gramian P to determine the most controllable directions
in state-space. To do so, we first transform the discrete-time DMDc system realization ( Ã, B̃) to the associated
continuous-time realization and then compute the generalized controllability Gramian directly from Eqs. (12)
and (13). The principal directions of P can be used to reveal the flow structures that are most sensitive to
control action. In particular, the most controllable flow structures are associated with the one-dimensional
subspace spanned by

ξP = X ′Ṽ Σ̃−1ŨT
1 ÛvP , (31)

where vP is the eigendirection associated with the largest eigenvalue of P .
The most controllable flow structures for actuator location x/c = 0.2 and x/c = 0.3 are shown in Fig. 11.

Unlike the most controllable DMD modes, the most controllable flow structures identified by this Gramian-
based analysis are not associated with just a single frequency; rather, these structures can exhibit rich dynamics
that are associated with evolution along the most controllable direction in state-space. As such, the controllable
subspace reveals a different description of control mechanisms than the modal controllability analysis. The
optimal actuator location for lift control appears to activate vortex shedding in the wake, starting immediately
at the trailing edge of the airfoil. This is consistent with the modal controllability analysis for actuation at
x/c = 0.2. The fact that the wake is most sensitive to actuation at x/c = 0.2 is also consistent with physical
intuition, since the transfer of bound vorticity into free vorticity in the wake is the physical mechanism for lift
production. For separation angle control, the Gramian-based analysis reveals complex dynamics between the
rear of the shear layer, the separation bubble, and the near-wake. This fact gives a slightly different picture than
what was observed in themodal controllability analysis. These differences suggest that the dynamics governing
the separation angle response are highly nonlinear compared to the dynamics governing the lift response.
Further, both the modal controllability analysis and this Gramian-based analysis suggest that actuation at
x/c = 0.3 can make regions in the shear layer more controllable. As pointed out by several other studies, the
shear layer plays a key role in the optimal control of fluid-flows. Several studies have suggested actuating the
flow at the shear layer frequency for better control of coherent structures. The results presented here provide
evidence to believe that the actuator placed at x/c = 0.3 is able to excite the fluid flow more effectively in
these regions and hence provide greater controllability.
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Fig. 11 The magnitude of the first principal direction of the generalized controllability Gramian associated with actuation at
x/c = 0.2 and x/c = 0.3, visualized using vorticity

4 Conclusion

A data-driven approach for determining the actuator location requiring the minimum control energy to drive
an output quantity-of-interest was presented. Given input–output response data for a candidate set of actuator
locations, the eigensystem realization algorithm was used to extract state-space system descriptions suitable
for solving a minimum input energy optimal control problem and computing the generalizedH2-norm for each
location. The method only requires access to input–output response data, making it relevant for numerical and
experimental studies alike.

The method was used to investigate the optimal actuator location for airfoil separation control using data
from high-fidelity numerical simulations of a NACA 65(1)-412 airfoil, with α = 4◦ and Rec = 20,000. Lift
and separation angle response data to a pulse of localized body force actuation were used to determine the
optimal location among a candidate set of six locations on the upper surface of the airfoil. It was found that the
location x/c = 0.2 was optimal for controlling lift, whereas the location x/c = 0.3 was found to be optimal
for controlling separation angle. The analysis also revealed separation angle to be more sensitive than lift to
actuation from the associated optimal location, making separation angle the more attractive quantity to regulate
in separation control applications.

In order to identify physicalmechanisms underlying these results, we presented a data-driven framework for
conducting controllability analysis of the flowfield using dynamic mode decomposition with control (DMDc).
A controllability analysis of the dominant single-frequency DMD modes confirmed greater controllability for
the actuator placed at x/c = 0.3, which was the optimal location for separation angle control. Actuation from
this location was found to excite flow structures within the shear layer, corroborating previous findings on the
effectiveness of shear layer excitation for separation control. A complementary analysis of the controllable
subspaces in the flowfield dynamics confirmed that coherent structures in shear layer were most sensitive to
actuation applied at the optimal location for separation control (x/c = 0.3). In contrast, coherent structures in
the wake were most sensitive to actuation applied at the optimal location for lift control (x/c = 0.2).

The methods introduced in this paper are generally applicable for optimal actuator selection and control-
lability analysis.

A distinctive feature of the proposed optimal actuator selection method is that it is entirely data-driven. The
approach does not require access to primal or adjoint simulations, which are often required to conduct similar
analyses. This makes for a convenient analysis procedure that can be used to objectively assess the optimal
actuator location from available or easy-to-acquire response data. Further, the data-driven nature of the method
also makes it generally applicable and should benefit investigations of other flow control configurations as
well.
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