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The flight testing of hypersonic vehicles is challenging due to the nonlinear, uncertain, and possibly unstable

dynamics of these vehicles.This paperpresents a control synthesismethod for ahypersonic vehiclewith the purpose of

guaranteeing robust stability during flight testing when accurate analytic vehicle models are unavailable.

Conventional model-based approaches typically rely on curve fitting of numerical simulation and test data, which

can introduce inaccuracies.Ourproposed approachassumes knowledge of the linear formof the ordinarydifferential

equation and uses quadratic constraints to bound sampled data that accounts for the nonlinear and uncertain portion

of the model for controller synthesis by iteratively solving convex semidefinite programs. A numerical example

demonstrating the effectiveness of the proposed method is performed before applying the technique to a nonlinear

hypersonic vehicle found in the literature.Using the synthesized stabilizing controller,wedemonstrate that the vehicle

states remain within a certified bound given a known harmonic excitation when initiated from a quantified set of

allowable initial conditions. Based on these simulation results, our proposed control synthesis method shows promise

in ensuring robustness when performing hypersonic vehicle flight testing.

I. Introduction

H YPERSONIC vehicles traveling at speeds greater than Mach 5

are currently under development for commercial and defense

applications. Developing robust feedback controllers for these exper-

imental vehicles is challenging due to their highly uncertain, non-

linear, and coupled dynamics, which stems from the difficulty in

capturing complex aerothermodynamics at hypersonic speeds. This

is especially true for prototype hypersonic flight vehicles, where

opportunities to collect flight test data to refine the vehicle model

are limited and the available flight tests are limited in duration. In this

scenario, it is essential to develop flight maneuvers (i.e., excitation

inputs) that sufficiently excite the vehicle’s dynamics while also

designing a feedback controller that ensures closed-loop stability

and safety-critical constraints on the vehicle response are maintained

(i.e., the vehicle is kept within a safe flight envelope) in the presence

of relatively large model uncertainty and nonlinearities.

The success of model-based control methods depends heavily on

the fidelity of the underlying model. Work was performed notably

by the authors of Refs. [2,3] to model a hypersonic vehicle with

flexible dynamics and the sensitivity to varying mass. This was

followed by other modeling papers such as [4] that used piston

theory to calculate pressure on the vehicle surface. An early non-

linear model of the longitudinal dynamics of a hypersonic vehicle

was developed by the authors of Ref. [5]. Model-based control

methods are found in the literature for hypersonic vehicles, notably

[6], which features a robust control design. A backstepping con-

troller with fault tolerance was studied in [7]. Adaptive sliding

model control [8,9] and linearization-based techniques [10,11]

have also been considered. While these controllers address the

control challenges associated with the nonlinear dynamics of a
hypersonic vehicle, they rely on knowledge of an analytic form
of the system’s nonlinearities, while accounting for uncertainty in
certain model parameters. This is a potential limitation when work-
ing with dynamic models generated from computational fluid
dynamics (CFD) simulations [12] or experimental wind tunnel data
[13], which typically provide modeling information at specific
points within a parametric space (e.g., a lookup table of aerody-
namic coefficients), rather than an analytic model. Curve fitting the
data provides a coarse approximation of the best available data as
deviations from the fit are ignored. In the case of a hypersonic flight
test, it may be required to design flight test controllers based on
simulation and test data, which limits the use of traditional nonlinear
control approaches.
Data-driven techniques are now becoming increasingly popular

for control systems [14–17]. For example, strategies are being devel-
oped to determine the input–output properties of dynamic systems
from sampled data, including identifying dissipation inequalities [18]
and passivity metrics [19]. Other more recent work utilizes a neural
control scheme [20] or fuzzy logic system [21]. Once the input–
output properties of a system or a portion of the system are identified
from data, stability theorems (e.g., passivity theorem, circle criterion)
can be leveraged to design controllers that ensure closed-loop stabil-
ity or performance properties. This input–output approach allows
for a “black box” interpretation of the complicated, nonlinear, and
possibly uncertain aspects of the system while allowing for a frame-
work in which stabilizing controllers can be designed.
This paper makes use of input–output sampling to develop a

control design method for the stabilization of a hypersonic flight test
vehicle with nonlinear dynamics. The motivation here is a flight test
where input–output data are to be collected for nonlinear system
identification, which necessitates a flight test vehicle response that is
not well-captured by a linear model. This results in the need for
nonlinear analysis tools to be able to certify the safety of the flight
test. In this work, we aim to design a linear feedback controller that
provides a certification of transient boundedness in the states of the
nonlinear system during such as a flight test. Our proposed approach
follows a method similar to what is described in [22], where the
nonlinear dynamics of the hypersonic vehicle are modeled as pertur-
bations to a known linear time-invariant (LTI) linearization of the
system within a linear fractional transformation (LFT) framework.
Integral quadratic constraints [23] provide a framework to quantify
the input–output properties of an operator (e.g., a nonlinear function
or a dynamic system). A subset of this framework is the characteri-
zation of static and memoryless nonlinearities using quadratic con-
straints (QCs) [23] that are satisfied pointwise at every instance in
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time. In this work, the vehicle’s nonlinear dynamics are partitioned
into a linear dynamic model and another portion that contains all
nonlinearities. Input–output samples of the nonlinearities are used to
quantify norm-bound QCs that characterize the nonlinearities within
a local region about an equilibrium trim condition. Control synthesis
is a challenge due to the fact that the perturbations are described with
input–output data, and the sampling range of these data is dependent
on the choice of controller. This poses a problem, as the sample-based
input–output characterization of the perturbations requires a control-
ler to be chosen a priori, while a controller cannot be synthesized
until this input–output characterization is known. The causality
dilemma is resolved by first prescribing a closed set for the states
and inputs for use in sampling and subsequent characterization of
QC properties of the nonlinearities. By constraining the maximum
singular value of the controller during synthesis, this ensures that the
control input always remains within the prescribed range of sampled
inputs. As the synthesis problem is nonconvex, it is resolved by
iteratively solving three semidefinite programs (SDPs) that are
obtained through convex relaxations.
Harmonic excitation is often used for flight testing of prototype

aircraft for system identification and stability margin determination
[24]. These flight test maneuvers are executed by applying carefully
designed input time series to the aircraft’s control inputs. Oftentimes,
these inputs are the sum of harmonic signals with unique frequencies
and phase shifts designed to be mutually orthogonal both in the time
and frequency domain. These harmonic excitations on the aircraft
control inputs are sometimes made in addition to the system’s feed-
back control input, as the aircraft can be open-loop unstable. A
feedback controller that provides a guarantee of state boundedness
is useful to avoid instability and catastrophic failures induced by
perturbing the vehicle outside of the flight envelope the feedback
controller is designed for. Complicating this problem further is the
presence of nonlinearities in the system’s dynamics, which are often
difficult to model and test for. Moreover, these nonlinearities cannot
be ignored if the purpose of the flight test is to obtain input–output
data further from the equilibrium point in order to refine the nonlinear
model through a system identification process. It is worth noting that
in [25], the “truthmodel” of the hypersonic vehiclewas developed by
the authors of Ref. [5] using physics-based first principles. Even so,
there were significant differences in the drag and lift plots when
comparing the truth model to the “full fit” and “simplified fit”
models. The truth model is not publicly available, but the control-
oriented model and associated coefficients are published in [25],
allowing us to demonstrate how sampling the control-orientedmodel,
not just analytic curve-fitted data, can be incorporated into the control
synthesis procedure.
The main contributions of this work in comparison to the control

methodology presented in [22] include 1) the manner in which
weightings and uncertainty decomposition are employed to make
the hypersonic vehicle model in [25] amenable to the control syn-
thesis method in [22] and 2) the development of an analysis and
synthesis framework that extends the work in [22] to account for the
exogenous excitation signals relevant to a hypersonic vehicle flight
test. Our proposed control synthesis method is able to account for the
sampled nonlinearities of the control-oriented hypersonic model in
[25] by providing a guarantee that the vehicle states remain bounded
within a specified region in the presence of harmonic excitation
signals similar to [24]. The synthesized controller provides a means
of performing flight test maneuvers of a nonlinear hypersonic vehicle
while adhering to safety-critical constraints. In contrast to traditional
nonlinear control techniques, this control synthesis method does
not require an analytic representation of the vehicle’s nonlinear
dynamics.
The rest of this paper is organized in the following manner:

Important preliminaries, including notation, and a description of
the problem statement are presented in Sec. II. Section III details
the system with an appended exogenous input signal treated as a
general external signal, filtered external signal, and harmonic exci-
tation signal. Section IV proposes control synthesis methods for the
three types of exogenous inputs with relaxations of the linear matrix
inequalities (LMIs) in Sec. V. The proposed algorithm is first applied

to a two-state nonlinear model in Sec. VI to clearly demonstrate the
effect of different choices in the characterization of the exogenous
input signal when synthesizing the controller. Section VII pro-
vides numerical results with the proposed control synthesis method
applied to the hypersonic vehicle model in [25]. Given the complex-
ities of this model, only one of the methods for characterizing the
exogenous input signal is successfully implemented. This is followed
by concluding remarks in Sec. VIII.

II. Preliminaries

This section presents the notation that will be used throughout
the paper along with a general model description and the problem
statement.

A. Notation

The symbol N n is a shorthand for the set of natural numbers
f1; 2; : : : ; ng. The matrix of zeros and identity matrix are, respec-
tively, written as 0 and 1. A column matrix of zeros with the ith entry
of 1 is denoted as 1i.Matrices and vectors are represented in boldwith
matrices capitalized and vectors lowercase (e.g., A ∈ Rn×m and
b ∈ Rn). Symmetric n-by-n matrices are represented by A ∈ Sn,
and their positive or negative definiteness is denoted by A > 0 or
A < 0, respectively. The maximum singular value of A is denoted
by σ�A�. A given ellipsoid centered at the origin is denoted as

En�E� � fx ∈ RnjkE−1xk2 ≤ 1g and Bn�r� � fx ∈ Rnjkxk2 ≤ rg
denotes the closed unit-norm ball of radius r in Rn. The finite time

signal norm is expressed as kxk2T � ∫ T
0
kxk2 dt.

B. Problem Statement

The remainder of this section focuses on outlining a mathematical
description of the problem of interest in this work; particularly, we
wish to design a state-feedback controller that ensures boundedness
in the presence of excitation inputs and nonlinear dynamics that may
only be known through input–output samples. To this end, consider a
dynamic system governed by the differential equation _x � f�x; u�.
The dynamic system may be represented about the equilibrium point
�x0; u0� without any approximation as

δ _x � Aδx� B1δu� Δ�δx; δu� (1)

where δx � x − x0, δu � u − u0, and Δ�δx; δu� � f�x; u�−
�Aδx� B1δu�. The state matrix A � ∂f∕∂x evaluated at �x0;u0�
and control matrix B1 � ∂f∕∂u evaluated at �x0; u0� capture the
linearized dynamics about the equilibrium, whileΔ�δx; δu� captures
all the higher-order terms. It is assumed that the pair (A, B1) is
stabilizable. It is worth noting that Δ�δx; δu� approaches zero as
δx → 0 and δu → 0. As the nonlinear dynamics approach dynamic
equilibrium, the system’s dynamics approach its linearized dynam-
ics. It is also emphasized that the nonlinear dynamics in Eq. (1) are an
exact reformulation of the system’s nonlinear dynamics _x � f�x; u�
due to the specific definition of Δ�δx; δu�.
The nonlinearities may be distributed into np input–output func-

tions pi � Δi�vi�; i ∈ N np that can be individually characterized

by sampled data of the respective input–output functions. Their
contributions to the nonlinear equations of motion appear via the

signal p� Δ�v� � �Δ1�v1�Δ2�v2� · · · Δnp�vnp��T ∈ Rnp , where

v � �vT1 vT2 · · · vTnp �T is dependent on x and u. The reformulation

of Eq. (1) is

δ _x � Aδx�B1δu� B2p (2)

pi � Δi�vi�; i ∈ N np (3)

vi � Ei�Ciδx�Diδu�; i ∈ N np (4)

where the matrices Ci and Di determine the inputs to the functions
Δi�vi�. The weighting matrix Ei is introduced to normalize the
vector vi such that the norm is not greater than 1. This provides a
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more balanced weighting of each variable since the states may be

composed of variables with different units. Setting Ei as a diagonal

matrix with each entity being the inverse of the maximummagnitude

of the corresponding state is a reasonable weighting matrix.
The higher-order terms are represented in the functionΔi and may

be determined in various manners. When analytical equations are

available, the equation of motion may be decomposed into a vector

sum of np equations:

δ _x � f�x; u� �
np

i�1

f i�x; u�; i ∈ N np (5)

f i�x;u�� f i�x0;u0��
∂f i

∂x �x0;u0�
δx� ∂f i

∂u �x0;u0�
δu�Δi�x;u� (6)

� f i�x0; u0� � �Aiδx� �Biδu� Δi�x; u� (7)

Rearranging this equation yields a description of the nonlinearities in

the form

Δi�x;u� � f i�x; u� − � �Aiδx� �Biδu� f i�x0; u0�� (8)

Note that �Ai � ∂f i∕∂x and �Bi � ∂f i∕∂u. The sum of partial deriv-

atives is related to the terms in Eq. (2) through the relationships

f i�x0; u0� � 0, �Ai � A, and �Bi � B1. When analytical

equations are available, the selection of f i; i ∈ N np can be made

such that each Δi is dependent on the least number of states and

inputs, allowing for tighter linear bounds on the nonlinearity (e.g.,

f i � 1Ti f). The use of too many np, however, runs the risk of

untangling favorable cancellation and being more computationally

difficult to solve. Otherwise, if experimental data, such as drag

coefficients from wind tunnel testing, or numerical data, such as

lift coefficients from CFD simulations, are available, they can be

similarly incorporated as input–output data points of Δi; i ∈ N np .

The samples are often performed to span a grid space of sufficiently

small interval and may be appended to approximate the dynamics

as needed. Furthermore, it is assumed that knowledge of an equilib-

rium point x0 and u0 as well as the linearized model A and B1 is

available, which can be obtained through system identification dur-

ing small-amplitude flight tests, as demonstrated in [24].
Assuming that a full-state measurement is available, a static full-

state feedback controller of δu � Kδx is chosen. The closed-loop

equations can be written, without approximation, by substituting

δu � Kδx into Eqs. (2), (3), and (4), yielding

δ _x � �A� B1K�δx� B2p (9)

pi � Δi�vi�; i ∈ N np (10)

vi � Ei�Ciδx�DiKδx�; i ∈ N np (11)

A block diagram illustrating the closed-loop system (9)–(–11) is

shown in Fig. 1a, where Eqs. (9) and (11) represent a state-space

realization for G in Fig. 1a, while Eq. (10) represents Δ in Fig. 1a.

The objective of this paper is to synthesize a static full-state feed-
back controller K for a system whose nonlinearities have input and
state dependencies such as in Eqs. (9–11). The system is deemed to
have input and state dependencies because vi is composed of both
states δx and inputs δu � Kδx. Furthermore, the synthesized con-
troller is to guarantee boundedness of the system states x within a
prescribed region En�E� given input–output sampled bounds on the
system nonlinearities Δ. To accommodate an excitation signal, the
controller additionally has to perform in the presence of a known
exogenous input ρ�t� that is oftentimes the known sum of multiple
harmonic sinewaves of different frequencies and phases. The system
input signal is modeled as

δu � Kδx� B3ρ (12)

whereB3 distributes the input excitation signal to the control inputs.
In this paper, only a single exogenous signal is considered, although
modifications may be made to account for additional independent
signals. The following section presents three options on how to
account for the presence of the excitation input to assist in the
development of the proposed control synthesis approach.

III. System Model with an Exogenous Input Signal

The known exogenous signal is accounted for using three
different approaches when synthesizing a controller to bound the
system’s closed-loop response. Firstly, a general approach isdeveloped
that only assumes that the exogenous input ρ�t� has a maximum
magnitude of ψ . This approach is often taken in robust control liter-
aturewhenaccounting for unknownexogenous signals [26]. Secondly,
by knowing the frequency content and maximum amplitude ψ of the
exogenous input, the bandwidth of the signal is captured using a band-
pass filterGf to reflect the absence of low- and high-frequency signals

from the control design and analysis. Thirdly, in the case where the
exogenous signal is composedof harmonics, the signal can be captured
using states that are appended to the original system dynamics. This
third option provides the most explicit description of the exogenous
signal but suffers from larger computational costs and is only appli-
cable to harmonic exogenous signals.

A. Model with General External Signal

The exogenous input signal ρ in Eq. (12) may be appended to
Eqs. (2–4) to yield the following system equations:

δ _x � �A� B1K�δx�B2p�B1B3ρ (13)

pi � Δi�vi�; i ∈ N np (14)

vi � Ei�Ci �DiK�δx�EiDiB3ρ (15)

The system is captured in the block diagram Fig. 1b. While the
exogenous signal ρ has fixed amplitude of ψ , the frequency content
is not restricted here. This is the baseline robust control setup.

B. Model with Filtered External Signal

The external signal may be constrained to only contain frequency
content that is consistent with a band-pass filter of transfer function
Gf with state space representation of �Af;Bf;Cf; 0� of input ρ and
output ν, where ν becomes the filtered input into the system described
in Sec. III.A. The filter Gf encompasses the frequency content of

the expected signal and has gains exceeding 1 at these frequencies.
A band-pass filter may be incorporated for such purpose with the
state-space realization

_xf � Afxf �Bfρ (16)

ν � Cfxf (17)

With the addition of the controller, the perturbed input is
δu � Kδx� B3ν. The system can be generalized with the states

yT � �δxTxTf � as

a) b)

Fig. 1 Block diagrams of a) the closed-loop nonlinear system and b) the
closed-loop nonlinear system with an exogenous input ρ.
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_y � A� B1K B1B3Cf

0 Af
y� B2

0
p� 0

Bf
ρ (18)

� A B1B3Cf

0 Af

� B1K 0

0 0
y� B2

0
p� 0

Bf
ρ (19)

� �Ab �Ak�y� B̂2p� B̂fρ (20)

where the matrices Ab � A B1B3Cf

0 Af
and Ak �

B1K 0

0 0
are defined to separate the portions of the dynamics that depend on

the control gain K from those that do not.
The closed-loop equations of motion with the band-pass filter

representation of excitation input are described by

_y � �Ab �Ak�y� B̂2p� B̂fρ (21)

pi � Δi�vi�; i ∈ N np (22)

vi � Ei�Ci �DiK�δx�EiDiCfxf (23)

It is worth noting that the band-pass filter described in this section

is only to be used as a model to improve knowledge of the exogenous

excitation signal for the controller synthesis method outlined in

Sec. IV.C. During flight test implementation, the actual exogenous

excitation signal would be applied directly to the system without the

band-pass filter.

C. Model with Harmonic Excitation Signal

The approach taken in this section involvesmodeling the harmonic

signal through the use of appended states to the original state space.

Each harmonic excitation signal is represented as the free-response

output of a two-state state-space system. For example, the signal

h1�t� � A1 sin�ω1 � ϕ1� corresponds to the solution of the ordinary
differential equation �h1 � 2μω1

_h1 � ω2
1h1 � 0, where μ � 0 and

the initial condition β1�0� is chosen appropriately to match the

amplitude and phase of the harmonic signal. This corresponds to

the output of the state-space system

_β1 �
0 1

−ω2
1 −2μω1

β1 (24)

h1 � 1 0 β1 (25)

In this work, a small amount of decay or damping in the harmonic

signal is introduced through the parameter μ > 0 to aid with numeri-

cal computations. This damping value can be made very small to

minimize the effects on the actual harmonic signal, especially for the

first few cycles when flight testing is performed. For compactness in

subsequent derivations, Eqs. (24) and (25) are expressed as

_β1 � S1 β1 (26)

h1 � T1 β1 (27)

Consider a signal formed by the summation ofnh harmonic signals

given by

h�t� � A1 sin�ω1t� ϕ1� � A2 sin�ω2t� ϕ2�
� · · · �Anh sin�ωnh t� ϕnh� (28)

This signal h can be generated as the output of the state-space system

_β � Sβ (29)

h � Tβ (30)

where S � diag�S1;S2; : : : ;Snh�, T � �T1 · · · Tnh �, and β �
�βT1 · · · βTnh �T. The state-space representations of S and T are not

unique. A change of variable of �β � Πβ is introduced as a means to
improve numerical conditioning and weigh the effects of initial
conditions that will be useful later in the control synthesis. The
transformed state-space system is

_�β � �S�β (31)

h � �T �β (32)

where �S � ΠSΠ−1 and �T � TΠ−1.
The control input to the nonlinear hypersonic model described by

Eqs. (2–4) is augmented with the harmonic excitation signal B3h as

δu � Kδx� B3h � Kδx� B3
�T �β (33)

The equation of motion in Eq. (2) can thus be rewritten as

δ _x � �A� B1K�δx� B2p� B1B3
�T �β (34)

Augmenting the state vector to include the harmonic excitation states,

the new state becomes zT � �δxT �βT�, which results in the augmented
dynamics

_z � A� B1K B1B3
�T

0 �S
z� B2

0
p (35)

� A B1B3
�T

0 �S
� B1K 0

0 0
z� B2

0
p (36)

� �As �Ak�z� B̂2p (37)

where thematricesAs � A B1B3
�T

0 �S
andAk �

B1K 0

0 0
are

defined to separate the portions of the dynamics that depend on the
control gain K from those that do not.
The closed-loop equations of motion with harmonic excitation are

described by

_z � �As �Ak�z� B̂2p (38)

pi � Δi�vi�; i ∈ N np (39)

vi � Ei �Ci �DiK� DiB3
�T z; i ∈ N np (40)

IV. Control Synthesis Conditions in the Presence of
Exogenous Excitations

The proposed control synthesismethod is presented in this section,
starting with a description of the LMI conditions derived in [22] that
guarantee closed-loop asymptotic stability of an autonomous non-
linear system with norm bounds on the system’s nonlinearities. An
extension of the result in [22] is then introduced as ameans to provide
a transient bound on the norm of the state, rather than simply ensuring
asymptotic stability. Matrix inequality conditions are then derived to
explicitly account for harmonic excitation signals while maintaining
bounded outputs.

A. Control Synthesis Without Any Exogenous Signals

The proposed control synthesismethod is formulated starting from
the stability theorem presented in [22], which is stated as follows.
Theorem IV.1: Consider the closed-loop system described by

Eqs. (9–11), where the perturbations satisfy the norm bounds
kpik2 ≤ γikvik2, i ∈ N np . LetW > 0 and r > 0 be chosen such that
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Xc � Enx �W� ⊆ X and Uc � Bnu�r� ⊆ U, respectively. Then, the
closed-loop system is locally asymptotically stable in Xc if there

exist P ∈ Snx , K ∈ Rnu×nx , τ > 0, and λi > 0; i ∈ N np , such that

P > 0 and

P�A� B1K� � �A� B1K�TP PB2 Θ

BT
2P Λ 0

ΘT 0 Ξ

< 0 (41)

τ21 K

KT W−1W−1 ≥ 0 (42)

τ ≤ r (43)

where Λ � −diag�λ1; : : : ; λnw� and Ξ � −diag�λ1∕γ211; : : : ; λnw∕
γ2nw1�;Θ � �λ1Φ1; : : : ; λnΦnw �, with Φi � CT

i � KTDT
i , i ∈ N np .

Proof: See the proof of Theorem 3.1 in [22]. □

Theorem IV.1 provides a means to certify the asymptotic stability
of an autonomous nonlinear system within a local region. Although
thiswas shown to yield a useful control synthesismethod for sampled
nonlinear systems in [22], it does not provide any guarantees of what
might occur to the closed-loop system state during the system’s
transient response. For example, the state may exit the sampled
region E�W� for a period of time before returning and asymptotically
stabilizing to the equilibrium point. To overcome the limitation of
Theorem IV.1, transient bounds of the states as described in [27,(28,
Chap. 6)] are imposed to avoid exceeding the sampled region E�W�.
Including the weighting matrix W, a slight modification of the
transient bounds is described in the following lemma for com-
pleteness.
Lemma IV.1: Consider the closed-loop system described by

Eqs. (9–11), where the perturbations satisfy the norm bounds

kpik2 ≤ γikvik2, i ∈ N np . The transient norm bound

kW−1δx�T�k2 ≤ ξkW−1δx�0�k2 (44)

is satisfied if there exist P ∈ Snx and ξ ∈ R>0 such that P > 0,
Eq. (41), and

ξ1 −WTPW ≥ 0 (45)

WTPW 1

1 ξ1
≥ 0 (46)

Proof: The non-negative function V � δxTPδx is defined and the
proof of Theorem 3.1 in [22] is usedwith Eq. (41) to show that _V ≤ 0.
Integrating both sides from t � 0 to t � T, where T ∈ R>0, yields

V�T� ≤ V�0� or δxT�T�Pδx�T� ≤ δxT�0�Pδx�0�. The inequality

in Eq. (45) can be rewritten as P ≤ ξW−TW−1. Applying the non-
strict Schur complement ([28] p. 28, Chap. 2) to Eq. (46) results in

P ≥ ξ−1W−TW−1. Combining these results yields

ξ−1δxT�T�W−TW−1δx�T� ≤ δxT�T�Pδx�T�
≤ δxT�0�Pδx�0� ≤ ξδxT�0�W−TW−1δx�0� (47)

or ξ−1kW−1δx�T�k22 ≤ ξkW−1δxk22. Multiplying both sides of the

inequality by ξ and taking the square root of the resulting expression
completes the proof. □

This Lemma may be viewed as an extension of Theorem IV.1
such that with a given K,W, γi; i ∈ N np , the transient bound ξ may
be minimized or enforced by solving an SDP.

B. Control Synthesis with General Exogenous Signal

In addition to the controller input, an exogenous harmonic excita-
tion signal could be perturbing the system. In the robust control

literature, this may be viewed as disturbance or noise ρ. Instead of

asymptotic stability, state boundedness is shown by combining

Theorem IV.1 and Lemma IV.1.
Theorem IV.2: Consider the closed-loop system described by

Eqs. (13–15), where the perturbations satisfy the norm bounds

kpik2 ≤ γikvik2, i ∈ N np . Let W > 0 and r > 0 be chosen such

that Xc � Enx�W� ⊆ X and Uc � Bnu�r� ⊆ U, respectively. Then,
the harmonic-embedded closed-loop system is locally bounded

as

W−1δx�T� 2
2
≤ ξ2 W−1δx�0� 2

2
� ρ 2

2T
(48)

if there exist P ∈ Snx , K ∈ Rnu×nx , τ > 0, and λi > 0; i ∈ N np ,

such that P > 0 and

P�A�BK� � �A�BK�TP PB2 PB1B3 Θ

BT
2P Λ 0 0

BT
3B

T
1P 0 −ξ1 Ψ

ΘT 0 ΨT Ξ

< 0 (49)

τ� ψ ≤ r (50)

are satisfied along with Eqs. (42), (45), and (46). The variables

are defined as Λ � −diag�λ1; : : : ; λnw� and Ξ � −diag�λ1∕
γ211; : : : ; λnw∕γ

2
nw1�;Θ � �λ1Φ1; : : : ; λnΦnw �, with ΦT

i � Ei�Ci�
DiK�, i ∈ N np , and Ψ � �λ1BT

3D
T
i ; : : : ; λnB

T
3D

T
n �. Furthermore,

ψ is the L∞ norm of ρ�t� that encapsulates the maximum magni-

tude of the external signal.
Proof: The proof follows Theorem 3.1 in [22] with some modi-

fication. As a first step, it is important to ensure that δu � Kδx�
B3ρ ∈ U is satisfied. To determine a suitable constraint that

ensures this, it is first noted that Xc � Enx �W� ⊆ X implies

kW−1δxk2 ≤ 1 for δx ∈ Xc. The norm of the feedback control input

is bounded as

kKδxk2 � kKWW−1δxk2 (51)

≤ �σ�KW�kW−1δxk2 ≤ �σ�KW� (52)

which can be equivalently expressed as kKδxk2 ≤ τ, where

τ21 ≥ KWWKT. Applying the Schur complement to this matrix

inequality results in Eq. (42). Knowing that ψ ≤ max�jρj�, the

control input satisfies δu ∈ U if τ� ψ ≤ r, which is the constraint

in Eq. (50).
Defining the non-negative function V � δxTPδx;P > 0, taking

its time derivative, and using Eq. (13) yields

_V �
δx

p

ρ

T P�A� BK� � �A� BK�TP PB2 PB1B3

� 0 0

� � −ξ1

δx

p

ρ

� ξρ2 �53�

The inputs and outputs of each Δi can be rewritten as

v

pi

� Ei�Ci �DiK� 0 DiB3

0 1Ti 0

δx

p

ρ

(54)

With knowledge that p2
i ≤ γ2i kvik2 is true pointwise in time for each

Δi;∈ N np , this inequality can be written as
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vi

pi

T γ2i 1 0

0 −1
vi

pi

≥ 0 (55)

Multiplying both sides of Eq. (55) by Eq. (54) yields

δx

p

ρ

T γ2iΦiΦT
i 0 γ2iΦiDiB3

� −1i1Ti 0

� � γ2iB
T
3D

T
i DiB3

δx

p

ρ

≥ 0 (56)

Applying the Schur complement to Eq. (49) results in

P�A� BK� � �A� BK�TP PB2 PB1B3

BT
2P Λ 0

BT
3B

T
2P 0 −ξ1

−

Θ

0

Ψ

Ξ−1

Θ

0

Ψ

T

< 0

(57)

which can be equivalently written as

P�A� BK� � �A� BK�TP PB2 PB1B3

BT
2P Λ 0

BT
3B

T
2P 0 −ξ1

−
np

i�1

λi

Φi

0

BT
3D

T
i

γ2i
λi
1

Φi

0

BT
3D

T
i

T

λi < 0

(58)

Multiplying Eq. (58) on the left and right by � δxT pT ρ � and
� δxT pT ρ �T and then substituting in Eq. (53) results in

_V − ξρ2 �
np

i�1

λi

δx

p

ρ

T

γ2iΦiΦT
i 0 γ2iΦiDiB3

� −1i1Ti 0

� � γ2iB
T
3D

T
i DiB3

δx

p

ρ

< 0

(59)

Knowing that λi > 0, i ∈ N np , and Eq. (56) are satisfied, the S-

procedure [28, Chap. 2] implies _V < ξρ2. Integrating _V < ξρ2 from
t � 0 to t � T, where T ∈ R>0, yields V�T� − V�0� < ξ∫ T

0ρ
2dt.

Applying the nonstrict Schur complement, Eq. (46) can be rewritten

as ξ−1W−TW−1 ≤ P. The constraint (45) can be rewritten as

P ≤ ξW−TW−1. Combining these results yields

ξ−1δx�T�TW−TW−1δx�T� ≤ δx�T�TPδx�T� ≤ δx�0�TPδx�0�
� ξ

T

0

ρ2 dt ≤ ξx�0�TW−TW−1x�0� � ξ
T

0

ρ2 dt �60�

Multiplying by ξ and using both ends of the inequalities results in

W−1δx�T� 2
2
≤ ξ2 W−1δx�0� 2

2
� ρ 2

2T
(61)

which completes the proof. □

C. Control Synthesis with Filtered Exogenous Signal

The control synthesis with a general exogenous signal presented in
Sec. IV.B does not take advantage of any knowledge of the known
frequency content of the signal. To do so, a band-pass filter may be

incorporated within the analysis that filters out frequencies that are
not present within the excitation inputs. The additional filter states
are accounted for within the following theorem.
Theorem IV.3: Consider the closed-loop system described by

Eqs. (21), (22), and (23), where the perturbations satisfy the norm
bounds kpik2 ≤ γikvik2, i ∈ N np . Let W > 0 and r > 0 be chosen
such that Xc � Enx�W� ⊆ X and Uc � Bnu�r� ⊆ U, respectively.
Then, the harmonic-embedded closed-loop system is locally
bounded as

W−1δx�T� 2
2
≤ ξ2 W−1δx�0� 2

2
� ρ 2

2 T
(62)

if there existP ∈ Snx ,K ∈ Rnu×nx , τ > 0, and λi > 0; i ∈ N np , such

that P > 0 and

PAb �AT
bP � PAk �AT

kP PB̂2 PB̂f Θ
� Λ 0 0

� � −ζ 0

� � � Ξ

< 0 (63)

τ� ψ ≤ r (64)

�WTP �W CT
s

� ξ1
≥ 0 (65)

�WTP �W − ξ1 ≤ 0 (66)

along with Eq. (42). The variables are Λ � −diag�λ1; : : : ; λnw�,
Ξ � −diag�λ1∕γ211; : : : ; λnw∕γ2nw1�;Θ � �λ1Φ1; : : : ; λnΦnw �, �W �
diag�W; 1�, Cs � �1nx×nx ; 0nx×nf �, and ΦT

i � Ei�Ci �DiK DiCf�,
i ∈ N np . The variable ψ � max�jρj� encapsulates the maximum

magnitude of the external signal.
Proof: The proof follows similarly to the proof of Theorem IV.2

and is presented in Sec. A1 in the Appendix. □

D. Control Synthesis with Harmonic Exogenous Signal

If the exogenous signal additional to the controller inputs is com-
posed of known harmonic signals, which is often the case for system
identification testing, the information of the signal can be included in
the control synthesis with the following theorem that represents the
sum of harmonic signals as augmented states to the system.
Theorem IV.4: Consider the closed-loop system described by

Eqs. (38), (39), and (40), where the perturbations satisfy the
norm bounds kpik2 ≤ γikvik2, i ∈ N np . Let W > 0 and r > 0 be
chosen such that Xc � Enx �W� ⊆ X and Uc � Bnu�r� ⊆ U, respec-
tively. Then the harmonic-embedded closed-loop system is locally
bounded as

W−1δx�T� 2
2
≤ ξ2 W−1δx�0� 2

2
� �β�0� 2

2
(67)

if there existP ∈ Snx ,K ∈ Rnu×nx , τ > 0, and λi > 0; i ∈ N np , such

that P > 0 and

P�As �Ak� � �As �Ak�TP PB̂2 Θ

B̂T
2P Λ 0

ΘT 0 Ξ

< 0 (68)

τ� ψ ≤ r (69)

�WTP �W CT
s

� ξ1
≥ 0 (70)

�WTP �W − ξ1 ≤ 0 (71)
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as well as Eq. (42). The variables are defined as Λ �
−diag�λ1; : : : ; λnw� and Ξ � −diag�λ1∕γ211; : : : ; λnw∕γ2nw 1�;Θ �
�λ1Φ1; : : : ; λnΦnw �, with ΦT

i � Ei�Ci �DiK Di
�T�, i ∈ N np ,

�W � diag�W; 1�, and Cs � �1nx×nx 0nx×2nh �. The variable ψ �
max�jhj� encapsulates the maximum magnitude of the har-
monic wave.
Proof: The proof follows similarly to the proof of Theorem IV.2

and can be found in Sec. A2 in the Appendix. □

The result of Theorems IV.2–IV.4 forms the basis of the proposed
control synthesis method. Unfortunately, the constraints of Eqs. (42)
and (68–71) cannot be solved as an SDP, as they include bilinear
matrix inequalities in the variables P, K, τ, ξ, and λi; i ∈ N np .
To overcome this, the constraints are reformulated and/or relaxed
into convex constraints that can be solved as SDPs for controller
synthesis. Section V presents the relaxations needed to formulate
the proposed iterative convex control synthesis method.

E. Discussion on Closed-Loop Stability and Transient Bounding
Results

Theorems IV.2–IV.4 present matrix inequality conditions that
guarantee the closed-loop nonlinear system has a transient response
bounded within the region Xc in the presence of exogenous
excitation signals. This type of transient bounding result provides
confidence that while energy is being injected into the system via
the exogenous excitation signals, the system will remain within a
safe envelope in which the norm bounds on the nonlinearities
have been characterized. In the case where the exogenous excita-
tion signals are removed and the closed-loop system is auto-
nomous, any controller that meets the conditions outlined in
Theorem IV.2, IV.3, or IV.4 is guaranteed to result in an asymp-
totically stable closed-loop system with the region of attraction

fδx ∈ Rnx j kW−1δxk2g. In other words, a controller that satisfies
Theorem IV.2, IV.3, or IV.4, also satisfies Theorem IV.1 and
Lemma IV.1, which guarantees both the transient bound on the
state within the sampling region Xc and asymptotic stability about
the equilibrium point.

V. Control Synthesis Relaxation for LMI Computation

The matrix inequalities in the previous section are LMIs in the
design variables P, λi; i ∈ N np , and ζ, which make them suitable for
analysis. The matrix inequalities are, however, bilinear matrix
inequalities when considering the controller gain K as the design
variable. This section provides reformulations of these conditions
that result in the proposed iterative convex-optimization synthesis
methods.
A key convex relaxation that is implemented to accommodate

the augmented states used in Theorem IV.3, and Theorem IV.4 is
the restriction that P be block diagonal (i.e., P � diag�P11;P22�,
where P11 ∈ Snx and P22 ∈ S2nh ). The inverse of P is thus also

block diagonal, R � P−1 � diag�R11;R22�, where R11 � P−1
11 and

R22 � P−1
22 .

Although this iterative control synthesis algorithm is similar in
nature to the control synthesis method presented in [22], two key
differences are 1) a guaranteed bound on the norm of the system state
that must hold pointwise in time, which ensures that the system does
not leave the sampled region of the state space, and 2) exogenous
harmonic excitation signals are accounted for by the inclusion of
internal harmonic dynamics.
Section V.A first presents a relaxation to the controller size. Next,

Sec. V.B presents the general relaxation of control synthesis with
general exogenous excitation along with the algorithm to solve it.
Sections V.C and V.D follow the same format for filtered and har-
monic exogenous excitation.

A. Controller Size Relaxation

As with many LMI-based control synthesis methods, changes of
variables and congruence transformations are to be applied to the
matrix inequalities presented in Sec. IV to yield a convex synthesis

algorithm. This section derives a relaxation on the matrix inequality

in Eq. (42) that is needed within all three of the proposed synthesis

methods in this paper to be compatible with these changes of varia-

bles and congruence transformations. To obtain this relaxation,

first, a congruence transformation with diag�1;R11� is applied to

Eq. (42), and the change of variables ϵ � τ
p

and F � KR11 are

made, yielding

ε1 F

FT �W−1R11�T�W−1R11�
≥ 0 (72)

which is a bilinear matrix inequality with respect to R11 that en-

sures �σ�KW� ≤ ε
p

. Using the completion of squares identity

XTY � YTX ≤ XTX� YTY for X;Y ∈ Snx [27,29] and setting

Y � 1, X � W−1R11, Eq. (72) is relaxed as an LMI:

ε1 F

FT �W−1R11�T � �W−1R11� − 1
≥ 0 (73)

Alternatively, a different relaxation of the bilinear term

�W−1R11�T�W−1R11� for a given R11 can be performed by lineariz-

ing the bilinear term about a feasible R110
, which is similar to

the convex overbounding approach in [30]. This is done by setting

X � W−1R11 and Y � W−1R110
within the completion of the

squares identity to yield the LMI

ε1 F

FT T1

≥ 0 (74)

where T1 � �W−1R11�T�W−1R110
� � �W−1R110

�T�W−1R11�−
�W−1R110

�T�W−1R110
�.

Finally, to express Eq. (42) in terms of the variables K and P,
instead of F and R, a congruence transformation is performed with

diag�1;P11� and then a Schur complement to obtain

ε1 K 0

KT T2 P11

0 P11 R−1
110

WWR−1
110

≥ 0 (75)

where T2 � W−1W−1R110
P11 � P11�W−1R110

�TW−1.

B. Control Synthesis Via Relaxation: General Excitation

The matrix inequalities in Theorem IV.2 are not in the form of an

LMI that can be solved without modifications. Somemanipulation is

necessary to relax the bilinear matrix inequality of Eq. (49) for con-

trol synthesis using standard LMI solvers iteratively. A suitable LMI

relaxation is first presented, followed by the proposed iterative

synthesis method.

1. Relaxation for LMI: General Excitation

Applying a congruence transformation of diag�R; 1� to Eq. (49),

where R � P−1 and F � KR, results in

AR� BF� RAT � FTBT B2 B1B3
~Θ

� Λ 0 0

� � −ξ1 Ψ
� � � Ξ

> 0 (76)

where ~Θ � � λ1 ~Φ1 : : : λn ~Φn � and ~Φi � RCT
i � FTDT

i .

Next, setting all λi � λ and then applying a congruence trans-

formation of diag� λ
p

1; 1∕ λ
p

1; λ
p

1; 1∕ λ
p

1� and change of

variables of �R � λR and �F � λF yields
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A �R� B �F� �RAT � �FTBT B2 λB1B3
�Θ

� −1 0 0

� � −λξ1 Ψ
� � � ~Ξ

> 0 (77)

where �Θ � � �Φ1 : : : �Φn �, �Φi � �RCT
i � �FTDT

i , and ~Ξ �
−diag�1∕γ21; : : : 1∕γ2n�.

2. Iterative Control Synthesis Algorithm: General Excitation

Theorem IV.2, along with the relaxations presented in Secs. V.A

and V.B, is used to formulate the following iterative controller

synthesis method.
1) InitializeW, r,Ei; i ∈ N np , and ξ to computeXc � Enx �W� �

fx ∈ Rnx jkW−1xk2 ≤ 1g and Uc � Bnu�r� ψ� � fu ∈ Rnu jkuk2 ≤
r� ψg. The initialization may be informed by the goals of the con-
troller. For example, En�W� is chosen to encompass the expected
initial states, r may be set to the largest allowable actuation, and ξ
is set to a value larger than 1 (e.g., ξ � 4).
2) Compute samples pi � Δi�x; u� for x ∈ Xc and u ∈ Uc to

compute the norm bounds γi; i ∈ N np that satisfy (55).

3) Set γi to a very small value and solve for a feasible R, F, and ε
that satisfy the constraints (73), (77),R > 0, and ε > 0. If no feasible
solution is found, return to step 1 to initialize with smaller, scaled-
down values of W, r, and/or ξ. Otherwise, set K � FP.
4) Set P0 � W−1 and use K to solve for a feasible P, ε, and

λi; i ∈ N np subject to constraints (49), (75), P > 0, ε > 0, and

λi > 0; i ∈ N np . If no feasible solution is found, return to step 1 to

initialize with smaller, scaled-down values of W, r, and/or ξ.
Otherwise, set R � P−1.
5) Fix R0 and solve for R and ε subject to constraints (74), (76),

R > 0, and ε > 0 that minimize ε. If no feasible solution is found,
return to step 1 to initialize with smaller, scaled-down values ofW, r,
and/or ξ. Otherwise, set K � FP.
6) If the stopping criterion τ� ψ ≤ r is met, minimize ξ subject to

constraints (45), (46), (49), P > 0, and λi > 0; i ∈ N np , and then

exit. Otherwise, return to step 4.
The small value of γi in step 3 can beviewed as ameans of reducing

the nonlinearity constraints when solving for a feasibleK. Having γi
match the values in step 2 is equivalent to having all of the non-

linearities accounted for, whichmight be difficult in the first iteration,

and thus a nonzero small value of γi will aid finding a solution in

step 3.

C. Control Synthesis via Relaxation: Filtered Excitation

Thematrix inequalities in Theorem IV.3 are not in the form of LMI

that can be solved without modifications. Some manipulation is

necessary to relax the bilinearmatrix inequality in Eq. (63) for control

synthesis using standard LMI solvers iteratively. A suitable LMI

relaxation is first presented, followed by the proposed iterative

synthesis method.

1. Relaxation for LMI: Filtered Excitation

Applying a congruence transformation of diag�P−1; 1� to Eq. (63),
where R � P−1 and F � KR11, yields

AbR� RAT
b �AkR� RAT

k B̂2 B̂f
~Θ

� Λ 0 0

� � −ξ1 0

� � � Ξ

> 0 (78)

where ~Θ � � λ1 ~Φ1 : : : λn ~Φn �,

~Φi �
R11C

T
i � FTDT

i

R22C
T
fD

T
i

and

AkR � BKR11 0

0 0
� BF 0

0 0

.
Further relaxing λi � λ and applying a congruence transformation

of diag� λ
p

1; 1∕ λ
p

1; λ
p

1; 1∕ λ
p � yields

λ�AbR� RAT
b �AkR� RAT

k B̂2 λB̂f
~Θ

� 1 0 0

� � −λξ1 0

� � � �Ξ

> 0 (79)

where �Ξ � −diag�1∕γ21; : : : ; 1∕γ2n�.
With a change of coordinates of �R � λR and �F � λF � K �R,

Ab
�R� �RAT

b �Ak
�R� �RAT

k B̂2 λB̂f
�Θ

� 1 0 0

� � −λξ1 0

� � � �Ξ

> 0 (80)

where �Θ � � �Φ1 : : : �Φn �,

�Φi �
�R11C

T
i � �FTDT

i

�R22C
T
fD

T
i

and Ak
�R � B �F 0

0 0
.

2. Iterative Control Synthesis Algorithm: Filtered Excitation

Theorem IV.3, along with the relaxations presented in Secs. V.A

and V.C, are used to formulate the following iterative controller

synthesis method:
1) InitializeW, r,Ei; i ∈ N np , and ξ to computeXc � Enx�W� �

fx ∈ Rnx jkW−1xk2 ≤ 1g and Uc � Bnu�r� ψ� � fu ∈ Rnu jkuk2 ≤
r� ψg. The initialization may be informed by the goals of the
controller. For example, En�W� is chosen to encompass the expected
initial states, r may be set to the largest allowable actuation, and ξ is
set to a value larger than 1 (e.g., ξ � 4).
2) Compute samples pi � Δi�x; u� for x ∈ Xc and u ∈ Uc to

compute the norm bounds γi; i ∈ N np that satisfy Eq. (55).

3) Set γi to a very small value and solve for a feasible R, F, and ε
that satisfy the constraints (73), (80),R > 0, and ε > 0. If no feasible
solution is found, return to step 1 to initialize with smaller, scaled-
down values of W, r and/or ξ. Otherwise, set K � FP.
4) Set P0 � diag�W−1; 1� and use K to solve for a feasible P, ε,

and λi; i ∈ N np subject to constraints (63), (75), P > 0, ε > 0, and

λi > 0; i ∈ N np . If no feasible solution is found, return to step 1 to

initialize with smaller, scaled-down values of W, r, and/or ξ. Other-
wise, set R � P−1.
5) Fix R0 and solve for R and ε subject to constraints (74), (79),

R > 0, and ε > 0 that minimize ε. If no feasible solution is found,
return to step 1 to initialize with smaller, scaled-down values ofW, r,
and/or ξ. Otherwise, set K � FP11.
6) If the stopping criterion τ� ψ ≤ r is met, minimize ξ subject to

constraints (45), (46), (49), P > 0, and λi > 0; i ∈ N np , then exit.

Otherwise, return to step 4.
The small value of γi in step 3 can beviewed as ameans of reducing

the nonlinearity constraints when solving for a feasible K. Having

γi match the values in step 2 is equivalent to having all of the

nonlinearities accounted for, which might be difficult in the first

iteration; thus, a nonzero small value of γi will aid finding a solution
in step 3.
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D. Control Synthesis via Relaxation: Harmonic Excitation

Thematrix inequalities in Theorem IV.4 are not in the form of LMI

that can be solved without modifications. Some manipulation is
necessary to relax the bilinearmatrix inequality of Eq. (68) for control
synthesis using standard LMI solvers iteratively. A suitable LMI

relaxation is first presented, followed by the proposed iterative
synthesis method.

1. Relaxation for LMI: Harmonic Excitation

Applying a congruence transformation to Eq. (68) with

diag�P−1; 1� and then using the change of variables R � P−1 and

F � KR11 yields

AsP
−1 �P−1AT

s �AkP
−1 �P−1AT

k B̂3 P−1Θ
� Λ 0

� � Ξ
< 0 (81)

AsR� RAT
s �AkR� RAT

k B̂3
~Θ

� Λ 0

� � Ξ
< 0 (82)

where ~Θ � � λ1 ~Φ1 : : : λn ~Φn �; i ∈ N np ,
~ΦT
i � Ei�C3;iR11�

D3;iFD3;i
�TR22�, and AkR � diag�BF; 0�.

Another relaxation is defined by setting λi � λ and applying a

congruence transformation of diag� λ
p

1; 1∕ λ
p � as well as the coor-

dinate transformations �R � λR and �F � λF � K �R11. This yields

λ�AsR� RAT
s �AkR� RAT

k � B̂3
�Θ

� 1 0

� � �Ξ
< 0 (83)

As
�R� �RAT

s �Ak
�R� �RAT

k B̂3
�Θ

� 1 0

� � �Ξ
< 0 (84)

where �Θ � � �Φ1 : : : �Φnp �, �ΦT
i � Ei�C3;i

�R11 �D3;i
�F D3;i

�T �R22�,
Ak

�R � diag�B �F; 0�, and �Ξ � −diag�1∕γ211; : : : ; 1∕γ2n1�.
The LMIs of Eqs. (82) and (84) are convex relaxations of the

bilinear matrix inequality in Eq. (68) that are used to develop the
proposed iterative convex control synthesis method described in
Sec. V.D.2. Any solutions to the LMIs of Eqs. (82) and (84) are
ensured to satisfy the bilinear matrix inequality of Eq. (68).

2. Iterative Control Synthesis Algorithm: Harmonic Excitation

Theorem IV.4, along with the relaxations presented in Secs. V.A

and V.D, is used to formulate the following iterative controller
synthesis method:
1) InitializeW, r,Π, andEi; i ∈ N np to computeXc � Enx �W� �

fx ∈ Rnx jkW−1xk2 ≤ 1g and Uc � Bnu�r� � fu ∈ Rnu jkuk2 ≤ rg.
The initialization may be informed by the goals of the controller.
For example, En�W� is chosen to encompass the expected initial
states, r may be set to the largest allowable actuation, and ξ is
set to a value larger than 1 (e.g., ξ � 4). Furthermore, Π may be
initiated as a diagonal matrix of Πi;i � 1∕β�i ; i � 1; : : : ; nh, where

β�i � supt�jβij�. Compute �S and �T given the frequency and ampli-
tude of the expected harmonic excitation signals.
2) Compute samples pi � Δi�x; u� for x ∈ Xc and u ∈ Uc to

compute the norm bounds γi; i ∈ N np that satisfy Eq. (55).

3) Set γi to a very small value and solve for a feasible R, F, and ε
that satisfy the constraints (73), (84),R > 0, and ε > 0. If no feasible
solution is found, return to step 1 to initialize with smaller, scaled-
down values of W, r, and/or Π. Otherwise, set K � FP11.
4) Set P0 � diag�W−1; 1� and use K to solve for a feasible P, ε,

and λi; i ∈ N np subject to constraints (68), (75), P > 0, ε > 0, and

λi > 0; i ∈ N np . If no feasible solution is found, return to step 1

to initialize with smaller, scaled-down values of W, r, and/or Π.
Otherwise, set R0 � P−1.
5) Fix R0 and solve for R and ε subject to constraints (74), (82),

R > 0, and ε > 0 that minimize ε. If no feasible solution is found,
return to step 1 to initialize with smaller, scaled-down values ofW, r,
and/or Π. Otherwise, set K � FP11.
6) If the stopping criterion τ� ψ ≤ r is met, minimize ξ subject

to constraints (68), (70), (71), (75), P > 0, and λi > 0; i ∈ N np and

then exit. Otherwise, return to step 4.
The small value of γi in step 3 can beviewed as ameans of reducing

the nonlinearity constraints when solving for a feasibleK. Having γi
match the values in step 2 is equivalent to having all of the non-

linearities accounted for, whichmight be difficult in the first iteration;

thus, a nonzero small value of γi will aid finding a solution in step 3.

VI. Numerical Example with a Two-State
Nonlinear Model

Before applying the proposed algorithms on the dynamics of a

hypersonic vehicle, we apply them on a simpler two-state nonlinear

model that has quadratic and input-state coupling nonlinearities. The

purpose of this two-state nonlinear model is to highlight the relative

strengths and weaknesses of the three different control synthesis

methods based on the different options used to characterize the

exogenous excitation signals.

A. Two-State Nonlinear Model Dynamics

This section presents a two-state fluid-inspired problem from [22].

This model is inspired by [31] and has two states x1 and x2, as well as
one input u.

_x1

_x2
� −0.1 1

0 −0.1
x1

x2
� 1

1
u� x1x2 � u2

x21 − u2
(85)

Note that the control input appears nonlinearly in these system

dynamics. This can be expressed in a compact form that captures

the nonlinearities expressed around the origin as x0 � 0 and u0 � 0,
and thus δx � x and δu � u as inEqs. (2–4),where the nonlinearities
may be expressed as

Δ�x; u� � p1

p2

� x1x2 � u2

x21 − u2
(86)

Other associated matrices are

A � −0.1 1

0 −0.1
; B1 �

1

1
; B2 � 1E1 � E2 � 1;

C1 �
1 0 0

0 1 0

T

;C2 �
1 0 0

0 0 0

T

;D1 � D2 � 0 0 1 T

Numerical simulations performed for the fluid-inspired model

described in this section are presented here. The trim conditions

are at the origin. The sampling region of Xc × Uc is set at

Xc � B�2.0833�, or equivalently Xc � E�W� with W � 0.481, in
all instances and Uc � B�r� with r � 0.47.
The external signal ρ is a sum of five harmonic sine waves,

each with amplitudes of 0.002 and frequencies of 1–5 rad/s with

equal spacing. The phase values of the sine waves are �180° 0°
150° 210° 180°� and μ � 0.001. The superposition of the harmonic

sine waves has ψ � �max jρj� � 0.0049, as shown in Fig. 2. The Π
matrix was selected to minimize the β0 to have a larger region of

allowable initial conditions; thus, Π � 0.07 ⋅max�diag�β��−1 �
diag�35; 35; 35; 17.5; 35; 11.6667; 35; 8.75; 35; 7� was selected. In

all cases, ξ � 4 was initialized for algorithms in Secs. V.B.2

and V.C.2.
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B. Numerical Results

The region of attraction of the original two-state nonlinear

model without external excitation satisfies Theorem IV.1 with

kx�0�k2 ≤ 0.48. To further satisfy the transient bounds of the sam-

pling region of Lemma IV.1 to ensure that the norm-bound con-

straints are satisfied, ξ � 1.2467 was obtained with no other

excitation, giving a region of attraction of kx�0�k2 ≤ 0.385.
When a general excitation ϕ is introduced, the implementat-

ion of the algorithm in Sec. V.B.2 that satisfies Theorem IV.2

yields ξ � 5.4953 with a corresponding allowable initial condition

kx�0�k2 ≤ 0.0873 when kρk2T � 0. As time progresses, kρk2T
increases, as observed in Fig. 3, as more energy is being introduced

by the exogenous signal. This causes the allowable initial conditions

to shrink since the kρk2T term of the inequality in Eqs. (48) and (62)

increases with time.

To further expand the bounded region of the allowable initial

condition, the control synthesis using a band-pass filter Gf �
25.9 s∕�s2 � 23.17 s� 9.78� that captures the frequency content

of ρ is used in the synthesis algorithm of Sec. V.C.2. Theorem IV.3

is satisfied with ξ � 4.519 and a bounded region of initial condition

0 10 20 30 40 50 60
Time (s)

0

0.05

0.1

0.15

0.2

Fig. 3 The kρk2T transient bounding for general and filtered excitation signal of the fluid-inspired model in Sec. VI.

0 10 20 30 40 50 60

Time (s)

-5

0

5
10-3

Fig. 2 The harmonic excitation signals ρ applied to the fluid-inspired model in Sec. VI.

-0.1

-0.05

0

0.05

0.1
Region of Allowable Initial Condition

-0.1

-0.05

0

0.05

0.1
Region of Allowable Initial Condition

-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Region of Allowable Initial Condition

a) b) c)

Fig. 4 Phase portrait response of the two-state fluid-inspired model of Sec. VI with external excitation of ρ and with controllers synthesized using
algorithms based on a a) general excitation, b) filtered excitation, and c) harmonic excitation. The region of allowable initial condition is indicated by a
dashed red circle. Note that the axes of (c) are scaled differently from those of (a) and (b) to ensure legibility.
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of kx�0�k2 ≤ 0.1062when kρk2T � 0. Similar to the previous case of
general excitation, as kρk2T grows with time, the region of allowable
initial conditions shrinks to satisfy Eq. (62).
Finally, by augmenting the linear states with harmonic states,

the algorithm in Sec. V.D.2 that satisfies Theorem IV.4 yields

ξ � 1.2435 with a constant �β0 � 0.1565, which results in the
kx�0�k2 ≤ 0.3529 region of the allowable initial condition. Unlike
the previous two approaches of general excitation and filtered exci-
tation, using augmented harmonic states does not have a time-
dependent region of allowable initial condition since the introduced
exogenous signal is captured within the linear states and has been
defined to be very gradually decreasing.
The increasingly enlarged region of allowable initial conditions is

made possible by increasing the constraints of the exogenous signal
given additional knowledge. Figure 4 shows the phase portrait
response of the fluid-inspired closed-loop system with the three
different synthesized controller. Each of the 200 trajectories is ini-
tiatedwithin the region of allowable initial conditions. The results are
listed in Table 1.

VII. Numerical Example with a Hypersonic Vehicle

The numerical example in Sec. VI for the fluid-inspired model
demonstrated the effectiveness of modeling the exogenous signal as
harmonic states compared to the other synthesis methods. This
method is applied to a nonlinear hypersonic vehicle model in this
section.

A. Hypersonic Model Dynamics

This section presents a slightly modified version of the control-
oriented hypersonic model from [25] and reformulates the dynamics
to a form that is amenable to the proposed control synthesis approach.
The harmonic excitation signals used as part of a flight test are also
described and formulated in a manner that they can be incorporated
within the hypersonic model and accounted for within the control
synthesis procedure.
The hypersonic vehicle model considered in this paper is based

on a longitudinal control-oriented model described in [25] with
the engine dynamics removed to reduce the number of states and
remove an element of complexity in this investigation. It is worth
noting that there is no fundamental limitation preventing the pro-
posed control method from being applied to the full model in [25].
Although the additional complexities of the vehicle’s engine
dynamics are not included in this work, this will be examined in
future work. The nonlinear equations of motion of the hypersonic
vehicle are

_V � 1

m
�T�α;Φ� cos α −D�V; α�� − g sin �θ − α� (87)

_α � 1

mV
�−T�α;Φ� sin α − L�α�� �Q� g

V
cos �θ − α� (88)

_θ � Q (89)

_Q � 1

Iyy
M�V; α; δe;Φ� (90)

where V is the vehicle’s velocity, α is the vehicle’s angle of attack, θ
is the vehicle’s pitch angle, and Q is the vehicle’s pitch rate. The
vehicle’s mass is given by m, while its moment of inertia about the
pitch axis is Iyy. The control inputs are specified as the elevator

deflection δe and the fuel-to-air ratio Φ. The thrust, drag, lift, and
moment acting on the vehicle are nonlinear functions of the state
and input and are denoted as T�α;Φ�, D�V; α�, L�α�, and
M�V; α; δe;Φ�, respectively. Some of the states are illustrated in
the simplified schematic of Fig. 5.
As described in [25], these nonlinear state- and input-dependent

functions are obtained through compressible flow theory and are
analytically intractable. Furthermore, direct application of nonlinear
design methodologies, such as feedback linearization, to the truth
model governing equations is not possible with implicit functions of
the state and input variables. The control-oriented model is a curve fit
and simplified model that was used for the application of an approxi-
mate feedback linearization technique.
The nonlinear dynamics described by Eqs. (87) through (90) can be

written in terms of the nonlinear ordinary differential equation

_x � f�x; u�, where the state is defined as x � �V α θ Q�T and the

inputs are given byu � �δe Φ�T. The system’s nonlinear dynamics can
be linearized about a trim point. Only the elevator angle δe is set as
an input to the dynamic system in this particular numerical example.

B. Numerical Results

Numerical simulations are performed with the nonlinear hyper-
sonic vehicle longitudinal model described in Sec. VII.A. Numeri-
cal results in this section are presented for scenarios with and
without external harmonic signals to the elevator angle δe. The trim
condition with states V0 � 9962 ft/s, α0 � 2.3°, θ0 � 0.9768°, and
Q0 � 0 deg/s and inputs δe0 � 13° and Φ � 0.1294 is chosen.
The nonlinearities of the control-oriented model are characterized

by the following functions:

f1 �
1

m
T�α;Φ� cos α11 (91)

f2 �
−1
m

D�V; α�11 (92)

f3 � −g sin �θ − α�11 (93)

f4 � _α12 (94)

f5 � _Q�V; α; δe;Φ�14 (95)

such thatf � np
i f i, as described inEq. (7). The sampling region of

Xc × Uc is defined as Xc � E�W�, with W � diag�50; 0.05; 0.05;
0.05� andUc � B�r�with r � 0.161. In this numerical example, the

sampling of Δi; i ∈ N np is computed from the analytic control-

oriented model in Eq. (8), though the methodology allows for the
incorporation of data from other sources, such as from a lookup

table of CFD data. The weighting matrixEi; i ∈ N np is chosen such

that kvik2 ≤ 1; i ∈ N np . The bounds computed for Δ are γ21 �
1.43682, γ22 � 15.2734, γ23 � 2.81978 ⋅ 10−5, γ24 � 3.06664 ⋅ 10−9,
and γ25 � 0.00361895.

Fig. 5 Schematic of the longitudinal hypersonic model in [25].

Table 1 Results of fluid-inspired two-state nonlinear model (region
of allowable initial condition)

Synthesis approach ξ Allowable kx�0�k2
No exogenous signal — — 0.48
No exogenous signal with
transient bounds

1.2467 0.385

Harmonic excitation 1.2435 0.3529
Filtered excitation 4.519 0.1062 (for kρk2T � 0)

General excitation 5.4953 0.0873 (for kρk2T � 0)
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Without the addition of any harmonic excitation signals, the
sequential SDP synthesis method described in [22] is additionally
constrained with transient bound constraints on the closed-loop
response using Lemma IV.1. When solved, it yields ξ � 1.935

with bounded initial conditions within the set X⋆ ∈ ξ−1E�W� �
0.5168E�W�. Intuitively, this is a Euclidean ball with the vertex at
approximately half of the diagonal of W. For example, one of the
vertices is δV � 25.84 ft∕s with other terms within δx � 0.
The exogenous signal considered here is made of three harmonic

excitation signals with frequencies ω � f1; 2; 3g rad/s and ampli-
tudes of δe � 0.15° added to the elevator input of the closed-loop
system. The phase between the harmonic excitations is chosen as
ϕ � f−88.8085°;−177.6169°;−266.4254g in the numerical results.
The choice of frequencies and amplitudes is in a somewhat arbitrary
fashion, though as reference, the linearized system’s natural frequen-
cies are 0.0047, 2.31, and 2.2174 rad/s. The phase is chosen such that
the amplitude of the excitation signal is approximately 0 at t � 0 s.
Artificial damping of μ � 0.003 is applied to force a small exponen-
tial decay of the harmonic signal. The resulting signal is shown in
Fig. 6 and represents the external harmonic excitation applied to the
elevator angle input δe.
In Theorem IV.4, the bound on the region of allowable initial

conditions E�W� depends not only on ξ but also on �β�0�T �β�0�,
indicating that the initial conditions of the harmonic signal

play a role in the bounding of the system states. By setting Π �
0.1 ⋅max�diag�β��−1 � diag�38.1972; 38.1972; 38.1972; 19.0986;
38.1972; 12.7324� for the change of coordinates, �β�0�T �β�0� � 0.03.
This allows for tuning of the phase ϕ to minimize ψ . The algorithm
in Sec. V.D.2 is solved in MATLAB using YALMIP [32] and
MOSEK [33], yielding a transient bound value of ξ � 1.8824 and
the controller gain

K � −0.0005 2.4608 0.5126 1.3894

−0.0028 0.1242 −0.9077 −0.5698
(96)

Substituting this and kW−1δx�T�k2 � 1 into Eq. (67), the region of
allowable initial conditions is found to be X⋆h � 0.5022E�W�.
Numerical simulations are performed on the longitudinal hyper-

sonic vehicle with 200 different randomized initial conditions within
the set X⋆h, with the synthesized controller K and the harmonic
excitation signal h applied to the elevator angle δe. All four states
are shown in Fig. 7. The inputs from both the controller and the
harmonic signal are shown in Fig. 8, where ψ � 0.3723°.

C. Discussion

In the scenario of no external harmonic excitations, the synthesized
controller provides a guarantee of closed-loop asymptotic stability

0 10 20 30 40 50 60
-0.4

-0.2

0

0.2

0.4

Fig. 6 The harmonic excitation signals applied to the closed-loop numerical simulations performed in Sec. VII.B.

Fig. 7 Closed-loop results of the system states with 200 randomized sets of initial conditions from the numerical simulations performed in Sec. VII.B.
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for the given region of attraction of X⋆ � 0.5168E�W�, while still
staying within bounds where the nonlinearities are adequately quan-
tified through QCs.When an external harmonic excitation is present,
asymptotic stability can no longer be guaranteed. Instead, a form of
bounded output stability can be shown with the region of allowable
initial conditions X⋆ � 0.5022E�W�, which is confirmed through
the numerical simulation results of Figs. 7 and 8. This is slightly
smaller than the previous scenario due to the need to account for the
energy that the excitation signal adds to the system.
When applied to a hypersonic vehicle prototype testing, our pro-

posed method allows for the vehicle to take on any harmonic exci-
tation maneuvers within the boundary of E�W�; if for any reason this
boundary is exceeded, the flight computer could switch to use the
synthesized controller K to return to the flight trim condition. This
could promote safe dynamic flight testing at the boundaries of the
flight envelope while avoiding instability.
It is notable that the region of allowable initial conditions syn-

thesized with the controller is conservative. Numerical simulations
with initial conditions starting outside the region of allowable initial
conditions are found to converge to a steady-state harmonic pattern
within the sampling region Xc. This is to be expected, as the con-
trol synthesis formulation is based on theorems with sufficient
conditions for boundedness.
Scaling the variables was found to be especially important in this

hypersonic example. This was achieved with the scaling matrix E
and W. In addition to normalizing the amplitudes, this approach
accounts for the difference in units. The weighting matrix W can
further be used as a design choice on emphasizing initial conditions in
the different degrees of freedom.

VIII. Conclusions

This paper has presented a control synthesis method that ensures
the boundedness of a nonlinear system’s states in the presence of
harmonic excitation inputs and with only input–output knowledge of
the system’s nonlinearities. This is an extension of the synthesis
method presented in [22], which did not provide any transient bounds
on the system’s closed-loop response and did not account for any
exogenous signals. The incorporation of transient bounds and har-
monic excitation signals makes the proposed control synthesis ame-
nable for hypersonic vehicle testing at conditions where the vehicle’s
nonlinearities are non-negligible, as shown through numerical sim-
ulation results.
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Appendix: Proof of Theorems IV.3 and IV.4

This appendix includes proofs of Theorems IV.3 and IV.4, which
are similar to the proof of Theorem IV.2 but have subtle, yet impor-
tant, distinctions.

A1. Proof of Theorem IV.3

Proof: The proof follows closely Theorem IV.2. The input is
constrained similarly by Eqs. (64) and (42) to ensure that δu ∈ U.
Defining the non-negative function V � yTPy, where P > 0, taking
its time derivative, and using Eq. (21) yields

_V�
y

p

ρ

T
PAb�AT

bP�PAk�AT
kP PB̂2 PB̂f

� 0 0

� � −ζ

y

p

ρ

� ζρ2

(A1)

The inputs and outputs of each Δi can be rewritten as

v

pi

�
Ei�Ci �DiK DiCf� 0 0

0 1Ti 0

y

p

ρ

(A2)

With knowledge that p2
i ≤ γ2i kvik2 is true pointwise in time for

each Δi;∈ N np , this inequality can be written as

vi
pi

T γ2i 1 0

0 −1

vi

pi

≥ 0 (A3)

Fig. 8 Closed-loop results of the system inputs with 200 randomized sets of initial conditions from the numerical simulations performed in Sec. VII.B.
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Returning to the norm bound of Δi; i ∈ N np , multiplying both sides

of Eq. (A3) by Eq. (A2) yields

y

p

ρ

T γ2iΦiΦT
i 0 0

0 −1i1Ti 0

0 0 0

y

p

ρ

≥ 0 (A4)

Applying the Schur complement to Eq. (63) results in

PAb �AT
bP � PAk �AT

kP PB̂2 PB̂f

� Λ 0

� � −ζ

−
Θ
0

0

Ξ−1

Θ
0

0

T

< 0

(A5)

Multiplying the left and right sides by � yT pT ρ � and

� yT pT ρ �T and then substituting in Eq. (A1) results in

_V − ξρ2 � np
i�1 λi

y

p

ρ

T γ2iΦiΦT
i 0 0

0 −1i1Ti 0

0 0 0

y

p

ρ

< 0

(A6)

Knowing that λi > 0, i ∈ N np , and Eq. (A4) is satisfied, the

S-procedure [28, Chap. 2] implies _V < ξρ2. Integrating _V < −ξρ2
from t � 0 to t � T, where T ∈ R>0, yields V�T� < V�0��
ξ∫ T

0ρ
2 dt. Applying the nonstrict Schur complement, Eq. (65) can

be rewritten as ξ−1 �W−TCT
sCs

�W−1 ≤ P. The constraint (66) can be

rewritten as P ≤ ξW−TW−1. Combining these results yields

ξ−1y�T�T �W−TCT
sCs

�W−1y�T� ≤ y�T�TPy�T� ≤ y�0�TPy�0�
� ξ

T

0

ρ2 dt ≤ ξy�0�T �W−T �W−1y�0� � ξ
T

0

ρ2 dt �A7�

Substituting �W � diag�W; 1� and Cs
�W−1 � �W−1 0� into Eq. (A7)

yields

ξ−1x�T�TW−TW−1x�T� ≤ ξ�x�0�TW−TW−1x�0�
� xf�0�Txf�0�� � ξ

T

0

ρ2 dt (A8)

The initial condition of the filter states xf can be set to 0 and

multiplying by ξ results in

W−1δx�T� 2
2

≤ ξ2 W−1δx�0� 2
2
� ρ 2

2 T
(A9)

which completes the proof. □

A2. Proof of Theorem IV.4

Proof: The proof follows closely Theorem IV.3. The input is

constrained similarly by Eqs. (69) and (42). Defining the non-

negative function V � zTPz;P > 0, taking its time derivative, and

using Eq. (38) yields

_V � z

p

T PAs �AT
sP � PAk �AT

kP PB̂2

� 0

z

p
(A10)

The inputs and outputs of each Δi can be rewritten as

v

pi

� Ei �C3;i �D3;iK� D3;i
�T 0

0 1Ti

z

p

� ΦT
i 0

0 1Ti

z

p
(A11)

With knowledge that p2
i ≤ γ2i kvik2 is true pointwise in time for each

Δi;∈ N np , this inequality can be written as

vi

pi

T γ2i 1 0

0 −1
vi

pi

≥ 0 (A12)

Returning to the norm bound of Δi; i ∈ N np , multiplying both
sides of Eq. (A12) by Eq. (A11) yields

z

p

T γ2iΦiΦT
i 0

0 −1i1Ti

z

p
≥ 0 (A13)

Applying the Schur complement to Eq. (68) results in

PAs �AT
sP � PAk �AT

kP PB̂2

� Λ
−

Θ
0

Ξ−1
Θ
0

T

< 0

(A14)

Multiplying the left and right sides of Eq. (A14) by � zT pT �
and � zT pT �T and then substituting in Eq. (A10) results in

_V � np
i�1 λi

z

p

T γ2iΦiΦT
i 0

0 −1i1Ti

z

p
< 0 (A15)

Knowing that λi > 0, i ∈ N np , and the inequality in Eq. (A13) is

satisfied, the S-procedure [28, Chap. 2] implies that _V < 0.
Integrating _V < 0 from t � 0 to t � T, where T ∈ R>0,

yields V�T� ≤ V�0� or z�T�TPz�T� ≤ z�0�TPz�0�. Applying the
nonstrict Schur complement, Eq. (70) can be rewritten as

ξ−1 �W−TCT
sCs

�W−1 ≤ P. The constraint (71) can be rewritten as

P ≤ ξ �W−T �W−1. Combining these results yields

ξ−1z�T�T �W−TCT
sCs

�W−1z�T� ≤ z�T�TPz�T�
≤ z�0�TPz�0� ≤ ξz�0�T �W−T �W−1z�0� (A16)

Substituting �W � diag�W; 1� and Cs
�W−1 � �W−1 0 � into

Eq. (A16) and then multiplying by ξ results in

δx�T�TW−TW−1δx�T� ≤ ξ2 δx�0�TW−TW−1δx�0� � �β�0�T �β�0�
(A17)

which completes the proof. □
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