AIAA Aviation Forum and ASCEND co-located Conference Proceedings
21 - 25 July 2025, Las Vegas, Nevada
AIAA AVIATION FORUM AND ASCEND 2025

Downloaded by University of Minnesota on July 17, 2025 | http://arc.aiaa.org | DOI: 10.2514/6.2025-3216

Improving predictive performance of low-order models using

bounded trigonometric closures

Vamsi Krishna Chinta*
University of Minnesota, Minneapolis, MN 55455, USA

Diganta Bhattacharjee '
University of Minnesota, Minneapolis, MN 55455, USA

Peter Seiler?
University of Michigan, Ann Arbor, MI 48109, USA

Maziar Hemati®
University of Minnesota, Minneapolis, MN 55455, USA

Low-order models of high-dimensional systems are useful in many settings requiring
prediction, analysis, and control. However, predictive fidelity in low-order models can be
compromised due to the inherent truncation of higher-order modes required to construct such
models, either directly from the governing equations or using data-driven techniques. Previous
studies have proposed the use of quadratic and higher-order polynomial closures to account
for these truncated modes without increasing the model order. While these closures have been
shown to improve predictive accuracy over short time periods, the underlying models are not
guaranteed to be bounded and can result in a deterioration in predictive capability over longer
time horizons. In this work, we propose a trigonometric closure model that improves predictive
performance over long time periods. Trigonometric closures are formed as pairs of sine and
cosine functions acting on appropriately weighted state variables, enabling prediction over a
wide range of frequencies as needed to model the truncated modes. We mathematically prove
that introducing the proposed trigonometric closure to a stable linear model of the system
dynamics guarantees long-time boundedness of the resulting model. We demonstrate the utility
of the trigonometric closures for improving a low-order linear model on two test cases: (i) a
transient cylinder wake, and (ii) the periodic vortex shedding of a cylinder wake. The resulting
models are found to improve predictive accuracy and maintain boundedness over hundreds of
convective time units.

I. Introduction

A. Motivation and Background

Physics-based models grounded in partial differential equations have been widely used to simulate and study different
types of physical systems, including fluid flows. A numerical simulation that relies on discretizing the governing
equations and resolves all the spatio-temporal scales is known as a full-order model (FOM). The computational cost of
FOM depends on the grid’s spatio-temporal resolution. For many physical systems, such as high Reynolds number (Re)
turbulent flows and rocket engine combustion, the grid’s spatial resolution needs to be sufficiently high and this can incur
significant computational cost. FOMs may be useful to understand complex physics but may be prohibitively expensive
for design optimization or flow control applications. This motivates the need for reduced-order models (ROMs) which
are computationally inexpensive while being reasonably accurate to capture the dominant physics.

Many high-dimensional physical systems evolve on a low-dimensional manifold. Reduced-order modeling techniques
exploit this property to build low-order models. Projection-based reduced-order models utilize a dimensionality reduction
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technique to project the dynamics onto a low-dimensional subspace. Linear dimensionality reduction techniques—such
as proper orthogonal decomposition (POD) [1]]—are popular choices for this dimensionality reduction step. POD
relies on projecting the high-dimensional snapshot data of observables (from simulations or experiments) onto a
low-dimensional linear subspace with the basis functions computed directly from the data. A low-order model is then
built that only solves the evolution equations in the low-dimensional subspace. In other words, the ROM solves for the
evolution of the coefficients of the leading POD modes, while ignoring the influence of the higher-order (truncated)
modes. The original system is then reconstructed by mapping the low-dimensional latent space to the high-dimensional
state space. However, ROMs that rely on a linear dimensionality reduction step cannot capture non-linear manifolds and
they need to be sufficiently high dimensional to capture the interaction between the modes that drive the dynamics.

Non-linear dimensionality reduction can be used to identify complex non-linear manifolds via a non-linear mapping
between the high-dimensional state space to the low-dimensional subspace [2], or by decomposing the domain into
several subdomains and using a local approximation for each [3H5]]. Such methods typically achieve a higher compression,
thereby further reducing the size of the latent dimension compared to a linear dimensionality reduction step. One
popular choice for non-linear dimensionality reduction are autoencoders [6H8]. Autoencoders map a high-dimensional
state space to a low-dimensional latent space via an encoder. The dynamics are evolved in this latent space and mapped
back via a decoder to the high-dimensional state space. The number of parameters to train increases with the dimension
of the snapshot data and hence training can become computationally expensive. In addition, generating sufficiently large
snapshot datasets by solving FOM also adds to the computational cost and in some cases, such as high-Re fluid flows,
the autoencoder approach can be prohibitively expensive.

Alternative approaches for constructing nonlinear manifolds have been proposed based on quadratic and high-order
polynomial functions [9H12]. However, building a low-dimensional ROM using projection-based methods require
truncating higher-order modes and solve for the evolution of the leading modes. The truncated higher-order modes can
influence the trajectories of the leading modes and over time the predictions diverge from the true solution. Therefore,
higher dimensional ROMs tend to have higher accuracy because they capture the higher-order interactions between
modes, but may be prone to instability. On the other hand, low-dimensional ROMs can be more stable, but do not
account for all the higher-order interactions, and hence may be less accurate. Therefore, building a ROM that is both
accurate and stable is challenging. Closure models bridge this gap by accounting for the interactions, as well as creating
a mapping between the leading modes and the truncated higher-order modes. This facilitates building a low-dimensional
ROM without sacrificing accuracy. However, many of the above mentioned techniques do not typically address the
problem of boundedness or stability and the training process need to be modified appropriately to enforce it, which can
be non-trivial [13H17].

Certifying stability of a ROM could be achieved through characterizing bounds on its trajectories, which are often
established via an energy-like metric and boundedness of the metric usually translates into bounded trajectories. These
ideas stem naturally from well-established methods in systems theory like Lyapunov analysis and set invariance [18}[19].
In particular, the concept of trapping regions—put forward by Schlegel and Noack [[13] in the context of fluid-flow
modeling and analysis—has been the focus of many ROM-related studies in recent times [[15}[17, 20} 21]. A trapping
region—which is closely related to the concept of ultimate boundedness [18, Chapter 4]—is a compact subset of
the state space that is invariant with respect to the underlying system dynamics. Thus, once a trajectory enters the
trapping region, it remains in its interior for all future times, thereby guaranteeing a bounded response from the system.
Schlegel and Noack [13]] provided conditions for existence of such trapping regions, which was refined recently by
Liao et al. [20]. Data-driven modeling methods leveraging the existence of a trapping region have also been proposed
[L5L[21]]. Therefore, constraints ensuring existence of a trapping region could be embedded within a data-driven model
synthesis routine. An approach like that would provide a pathway for building data-driven ROMs that are both accurate
and guaranteed stable. Alternatively, trapping region analysis for a given ROM could provide useful insight into the
long-time behavior of the underlying model.

B. Contribution

In this work, we use a data-driven approach to build a low-order projection-based model with closure. We propose a
trigonometric closure which consists of sine-cosine pairs of different frequencies. The choice of the closure terms is
based on the desired characteristics of the closure model. We show that a trigonometric closure can approximate complex
manifold shapes, form an expressive basis to map the leading modes to higher-order truncated modes, and results in a
ROM that is long-time bounded when integrated to a stable linear model. We develop a rigorous proof grounded in
Lyapunov analysis to show the long-time boundedness of this model and also estimate the size of the trapping region.
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This is in contrast to previous closure models which do not typically guarantee stability or boundedness. In addition,
this method requires fewer parameters to train when compared to autoencoders and hence the data requirements and
computational cost of training is also comparatively less. We demonstrate the ability of this model’s expressivity and
boundedness properties on two test cases: (i) a transient cylinder wake [22f], and (ii) the periodic vortex shedding in the
wake of a cylinder.

C. Outline

The manuscript is organized as follows: In Section [II} we discuss the reason for using trigonometric closures
backed by illustrative examples. In Section[[II] we discuss the training procedure to obtain a low-order model with
trigonometric closure. This is followed by the requirements of the model for long-time boundedness and a rigorous
mathematical proof for it. Specifically, we prove that when certain conditions are satisfied, the low-order model with the
proposed trigonometric closure admits a trapping region. In addition, we also propose a method—rooted in convex
optimization—to compute spherical estimates of that trapping region. In Section[[V] we start with the method we used
to generate training data for the periodic cylinder wake test case. Then, we compare and contrast a low-dimensional
4-mode linear model with and without the proposed trigonometric closure. In particular, we demonstrate the ability of
the ROM with closure in boosting accuracy while being long-time bounded. This is followed by a demonstration of the
proposed trapping region estimate. Finally, we provide the concluding remarks in Section [V]

I1. Trigonometric Closure Model: Preliminaries

In this section we discuss the strengths of using a trigonometric closure model based on the desired characteristics
of a closure. The purpose of a closure model is three fold: (1) Approximation of low-dimensional manifolds on
which dynamics evolve: This is a non-linear dimensionality reduction step and it has two components: (a) Closure
correction: This captures the higher-order interactions of the leading modes with the truncated modes and accounts
for them as a “closure correction” to the low-dimensional model, and (b) Lifting transformation: Lift the low-order
model to higher dimensions by mapping the the leading modes to the truncated ones. We show via an illustrative
example that this method can approximate complex manifold shapes and hence better ROM predictions. (2) Expressive
basis: This goes back to the lifting transformation mentioned previously. We show via an illustrative example that the
trigonometric closure serves an expressive basis to effectively map the leading modes to the truncated ones; and (3)
Longtime boundedness: A closure correction is added to boost the accuracy. However, adding a closure correction term
should not destabilize an existing model, especially when it is stable or marginally stable prior to implementation of the
closure. We show that when the trigonometric closure is integrated to a stable linear model, the combined model is
long-time bounded. In this section we discuss each of these points in detail and show that trigonometric closure models
satisfy all three.

A. Approximation of low-dimensional manifold on which dynamics evolve

We use a closure modeling approach similar to Kalur et al. [23]]. To summarize their method briefly, ¢ snapshots of
an N dimensional system are collected. A linear {—dimensional (¢ << N) model for the evolution of the £ POD modes is
then constructed using the Dynamic Mode Decomposition (DMD) algorithm [24]] and is given by

%(k +1) = Ax(k) (D)

where % € Rf is an ¢-dimensional vector of POD coefficients. An r-dimensional (r < ¢) linear model, obtained by
projecting the linear operator onto an r—dimensional subspace, is given by

f(k +1) = A%(k) )

where X € R”. This r—dimensional linear model does not account for the influence of the £ — r truncated modes on the
evolution of the leading r modes and is captured via a closure model. The closure model is defined as a mapping from
the leading r modes to the £ — r truncated modes and is given by

X=P+D(X®K) 3)
where @7 := [I,4, 0,«(¢-r)] maps the full state vector X to the r-dimensional reduced vector %, i.e., X = DTk
Similarly, ® lifts the reduced state vector X to an {-dimensional vector. Using this transformation, the first r entries
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Fig. 1 Evolution of trajectories for a full-order model (FOM) (in black) and a 2 dimensional reduced-order
model (ROM) (a) The trajectory of the ROM (in red), confined to a two dimensional subspace spanned by the first
two POD modes. (b) Trajectory of the ROM (in blue) and the quadratic manifold it is confined to. Introducing a
quadratic closure can be interpreted as projecting the FOM onto the quadratic manifold thereby reducing the
projection error.

are exactly the same as % and the rest are 0. ® € R’ xr? is an operator mapping the leading POD coefficients (X) to
truncated coefficients (X — @%) via the quadratic term (X ® %). ® is obtained via ridge regression over the training data
where X (and X) is known. An r— dimensional model with a quadratic closure is obtained by substituting Eq. (3) into
Eq. (T), multiplying with ®T on LHS and RHS, and using the orthogonality property of ®" and @ (i.e., ®T® = 0, see
[11]) to obtain

R(k +1) = AR(k) + B (%(k) ® %(k)) )

where A = ®TA® and B = ®TA®.

Kalur et al. [23] give an insightful 3D representation of this quadratic closure modeling problem. Figure T[] which
has been adapted from Kalur et al. [23]], shows the interpretation using a 3-dimensional visualization of the evolution of
full-order and reduced-order models. The full-order model corresponds to a transient cylinder wake with the governing
equations given by [22]]

U= pu—yv—uw
V=uv4u-—vw 5)

W=—w+u’+1?

where p = 1/10. The FOM is simulated for an initial condition xy = (0.001, 0,0.0001) with a time step At = 0.01 for
t = [0, 30]. Note that these parameters are consistent with the parameter values in Kalur et al. [23]] to solve the FOM
and generate snapshot data.

Figure [T(a)| shows the evolution of the state trajectories for a 3 dimensional full-order model in black and a 2
dimensional linear reduced-order model in red. The 2 dimensional linear model is obtained using DMD and only tracks
the evolution of the first 2 POD modes, i.e., r = 2 in Eq.(2)). Because the ROM is a linear combination of the first two
POD modes, the evolution is constrained to the 2D subspace shown by the translucent plane. Figure[I(b)] shows the
evolution of a 2-dimensional ROM with a quadratic closure shown in Eq.(@), along with the manifold it evolves on. The
truncated modes are estimated via Eq. (3) and is used to compute the evolution of the full state vector in the physical
space. The effect of this quadratic closure model can be interpreted as projecting the FOM onto a quadratic manifold.
Clearly, this method significantly reduces the projection error when compared to a projection onto a 2D planar surface.

Although, a quadratic closure term may boost accuracy, there is no guarantee that the combined model is stable or
long-time bounded. In this work, we propose to use a trigonometric closure model with the closure terms being the
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Fig. 2 Evolution of trajectories for FOM in black, and a 2 dimensional ROM with trigonometric closure in blue.
(a) ROM evolution with 1 frequency per mode. The ROM does not approximate the FOM accurately and the
projection error is high. (b) ROM with 2 frequencies per mode. The ROM trajectory closely approximates the
FOM and the projection error is reduced. The manifold on which the FOM evolves is also better approximated
as the FOM closely grazes the manifold on which the ROM evolves.

weighted sum of sine and cosine pairs of different frequencies as

[ sin(27 f11x1) |
cos(2x fi1x1)
sin(27 fix1)
cos(27 fiax1)
sin(27 finx1) ©

cos(27 finx1)

sin(27 frnxr)
[cOS (27 frnxy) ]
—_—
7(fij %)

where n is the number of frequencies per state. Notice that this model is obtained by replacing the Kronecker product
in Eq. (3) with the sine-cosine pairs. Therefore, it results in a different size of @ e R*¥™ compared to the quadratic
closure. The number of frequencies to use is a hyperparameter and is tuned to increase the predictive fidelity.

A trigonometric closure model can be interpreted as a simplification of the Fourier series of a general r— dimensional
manifold without the non-linear combination of sine-cosine terms. In other words, we consider the subset of terms
where the sine or cosine terms have a non-zero wavenumber for one of the state variables and the wavenumbers for
other state variables are zero. Although this simplification is adhoc and not rigorously justified, it allows modeling with
limited number of terms. After this simplification, the closure vector has a constant norm anywhere in the state space —
an important property that we exploit for establishing global boundedness of the proposed method. We test this closure
model on the same test case as before to compare and contrast with the previous quadratic closure modeling from Kalur
et al. [23].

The r—dimensional model with a trigonometric closure model can be expressed as

%(k +1) = Ax(k) + B7 (f;;, %(k)) @)



Downloaded by University of Minnesota on July 17, 2025 | http://arc.aiaa.org | DOI: 10.2514/6.2025-3216

which is obtained by substltutmg Eq. () into Eq. (1), multiplying with @T on LHS and RHS, and using the properties
=@, ®T® = 0. Here A = ®TA® and B = ®TA®. We use a data-driven method to compute the frequencies
fij and operators ®—the details of this training process are given in Sectlon As before, this closure modeling
approach can be interpreted as a projection of the FOM on to a manifold constructed with non-linear terms, which are
the sine and cosine pairs in this case. Figure[2(a)|and 2(b)|show the manifold created by using 1 and 2 frequencies per
state respectively. The evolution of the full order model is shown in black and that of the ROM is shown in blue. Table[I]
compares an integrated error metric, employed for both quadratic and trigonometric closure models, and computed using

_ ID-Djle
= Dl %
where ||(+)||pro is the Frobenius norm and
u(l) u2) -+ u(t) a(l)y a2y --- i)
D=[v(l) v2) - v)|. D=|s(1) @2 - 9@
w(l) w(2) - w(r) w(l) w(2) -+ w()

Here (u, v, w) are the state variables of the FOM and (i, 9, w) are for the estimates from the ROM. The integrated
error metric shows how each of the models perform over the time horizon. Clearly, the projection error when using 2
frequencies per state is much less than using 1 frequency per state, and the manifold on which the ROM evolves also
closely grazes the FOM evolution. This model also has the least error overall, even lower than the quadratic closure
model. Therefore, the number of frequencies to use can be a hyperparameter to approximate complex manifold shapes
by providing additional degrees of freedom to the model.

Table 1 Prediction error for quadratic and trigonometric closure models.

Case € (%)
Linear Projection 241
Quadratic closure 0.62
Trigonometric closure — 1 frequency/mode 0.54
Trigonometric closure — 2 frequencies/mode | 0.4387

B. Expressive basis

A linear dimensionality reduction step expands the snapshot data as a linear sum of weighted basis functions. When
using proper orthogonal decomposition for dimensionality reduction, the modes are ranked by their singular values, and
therefore leading POD modes have higher energy. The weights (or temporal coefficients) may have different spectral
content. In many cases, coefficients of the leading POD modes are narrow banded and contain low frequency content,
while those of higher-order modes contain higher frequency content and are more broadbanded. Because, a closure
model acts as a surrogate for the truncated modes, it should be capable of generating higher and a broadbanded frequency
content from the leading modes. As we show later, this is achieved by tuning the weights f;; in Eq. @

Consider the temporal signal x = sin (2710¢), a pure-tone sinusoid of frequency 10 and its weighted sinusoidal
activation y = sin (2rwx) where w denotes the weighting parameter. These are shown in Fig.|3] The left hand side
shows the base signal x in red solid line and the derived signal y in dashed blue line. The right hand side shows the
Fourier transform. The vertical red lines show the frequency of the base signal in the Fourier space. The filled blue
circles correspond to the frequencies of the derived signal y. Notice that when the weight is small (see Figs.[3[a) - (b)
for w = 0.1), the base signal and the derived signal have approximately the same frequency content. However, when the
weight w is increased (see Figs. [3{c) - (d) for w = 0.5 and Figs.[3|e) - (f) for w = 1), the derived signal y becomes more
broad banded with higher frequency content. This is the property we exploit to model the truncated higher-order terms
as a function of the leading modes. We show later in Section[[V]that the first 4 leading modes of a cylinder wake can
reasonably represent up to 30 truncated modes.
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Fig. 3 Base signal x and the derived signal y obtained by sine activation of x after multiplying with a weight
2nw. The plot on the left hand side show the signal in time domain while the figures on the right hand side
shows the signal in frequency domain. When the weight is small ~ 0.1, the derived signal has the same frequency
content as that of the base signal. When the weight is increased, the derived signal has higher frequency content
and is also more broad banded. The red vertical lines show the frequency of corresponding to the base signal x.
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C. Long-time boundedness

Although closure models improve the accuracy of a low-order model [[11 12} 25], they typically do not guarantee
stability of the combined model. In Section [[ll.B] we show that when the proposed trigonometric closure model is used
in conjunction with a stable linear model, the combined model admits a trapping region making the evolution long-time
bounded. To summarize, the main result establishes global boundedness of the ROM with the proposed closure model
by utilizing the fact that the norm of the closure terms is a constant at any point in the state space. This is in contrast to a
polynomial closure model and an analysis similar to the one presented here could only lead to a local guarantee on the
boundedness. A stable linear operator with spectral radius strictly less than 1 contributes towards energy dissipation.
The closure terms are energy dissipative or energy producing depending on the closure operator and current state. The
proof shows that outside an ellipsoidal ball, the energy is strictly decreasing. Therefore, trajectories outside this ball will
eventually converge into the ball. Within the ball there can be energy production or dissipation, but the trajectories
are confined within the ball. This stability property is particularly important when modeling physical systems that are
bounded.

II1. Low-order Model with Trigonometric Closure: Synthesis and Stability
In this section, we describe the methodology for synthesizing a low-order model with the trigonometric closure and
computing the training parameters from data. This is followed by conditions and a mathematical proof, showing that the
combined model admits a trapping region, and is therefore long-time bounded. This is followed by a methodology to
estimate the size of the trapping region.

A. Low-order model synthesis

In this work, we test the trigonometric closure for ROMs obtained from a high dimensional linear model. We
compute the linear model using the standard Dynamic Mode Decomposition (DMD) algorithm [24]. Note that the
proposed method is not restricted to DMD and is suitable to other techniques for computing the linear model, including
models derived as linearizations of governing equations. A brief overview of the DMD algorithm is provided here for
completeness. We start by collecting the snapshots of the observables at equal time intervals and compile a data matrix
S. A new data matrix S’ is compiled by time shifting the snapshots one step ahead in time. These matrices are given by

S= S S22 -+ Se-1 | S = S 83 -+ S¢ |- (8)

The POD modes (U) and their coefficients (ZVT) are computed after a singular value decomposition of the data matrix
S. If the number of snapshots used () is less than the dimension of the observables (N) (£ < N), then a rank-{
approximation can be made without any loss of information. In other words, because the rank of the data matrix is £, the
reconstruction will be exact after trimming down the X matrix to be a square and neglecting the columns of U greater
than ¢. This rank-¢ truncation is given by

S=UZV' =U/Z,V]. )

A linear model for the evolution of these POD coefficients (X = Z[)V}) is built using the standard DMD approach.
This model will have the form given in Eq. (T)), where A = UTS’V,X~!. To build a low-order model of dimension
r, this high dimensional operator is projected on to an r-dimensional space A = ®TA®, where ® and ®" are
defined in Section [[I.A] Then the r-dimensional reduced-order model will have form given in Eq. (). Typically, for
low-order models » <« €. The evolution of the r-dimensional state trajectories X given by the above model may not
be accurate because the higher-order interactions are not accounted for. Furthermore, a low-rank reconstruction of
the high-dimensional state will have higher error in general. Therefore a closure model should be able to account for:
1) Closure correction: This accounts for the interaction of the truncated modes with the retained or leading modes
and corrects their solution trajectories. 2) Lifting transformation: Estimation of truncated modes (or higher-order
modes) from the leading (retained) modes. These truncated modes were previously estimated a quadratic closure term
(11, 23] i.e., using a Kronecker product of the reduced state vectors, see Eq. (3). With the proposed closure model, the
quadratic term (% ® %) is replaced with the trigonometric terms as shown in Eq. (6). The reduced-order model with the
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trigonometric closure is obtained by substituting Eq. (6) into the {— dimensional linear model in Eq. (I)), multiplying
with ®" on LHS and RHS, and using the properties ¥ = ®'%, ®"® = 0 to obtain Eq. (7). The operators of the resulting
ROM are given by A = ®TA® and B = ®TA®

The number of frequencies to choose per mode is a hyperparameter to tune and we showed the influence of number
of frequencies on the accuracy of the ROM in Fig. [2} A two-step procedure is used to compute the frequencies f;; and

the closure operator ®@. The loss function for this problem is defined as
L=l (x- @%) - @7 (f;;.%) | (10)

where 7 (f;;, %) is as shown in Eq. (@). The two step process implemented in this work is summarized in Algorithm
wherein we use the ‘MultiStart’ optimization routine in MATLAB to solve for the frequencies.

Algorithm 1 Procedure for computing frequencies (f;;) and closure operator (D)

Input: X, X, ®, L,.in
Output: f;;, )
Initialize the frequencies f;; from a random distribution
Compile the LHS (X — ®%) and RHS (7 (f;;, %)) matrices of the closure formulation in Eq. (6) over the trainig data
while £ > £,,;,, do
Step 1: Freeze f;; and compute @ using ridge regression
Step 2: Freeze ® and solve an optimization step to minimize the loss function £ in Eq. (T0) and update f;;
end while

Note that Algorithm [I] involves optimizing over the frequencies f;; in the closure model, and the number of
frequencies to train using this approach is rn. Taking an alternative approach, the closure operator ® € R**¥" and
frequencies f;; can be computed simultaneously by minimizing the loss function in Eq. (I0). In such a formulation, the
number of parameters to train/optimize would equal to 2(¢ — r)rn + rn, which could be significantly higher than the
two-step approach outlined in Algorithm [I|and might require significantly more computational resources. Furthermore,
the two-step approach significantly enhances the accuracy of the solution, although results are not shown here for brevity.

B. Trapping Region Characterization
The trigonometric closure modeling with a stable linear model admits a trapping region, which ensures long-time
boundedness of the combined model. We start by stating the technical assumptions for the ensuing analysis.

Assumption 1 The governing system (1) satisfies the following:
1) The matrix A is stable, i.e., p(A) < 1 where p(-) denotes the spectral radius.
2) The closure vector is unit norm, i.e., ||t(fi;,X(k))|| = 1 for all X(k).

Note that the unit norm assumption here is without loss of generality as the norm of the closure vector can be absorbed
into the operator B. Assumption|1|ensures asymptotic stability of discrete-time linear dynamics for use with DMD. A
continuous-time formulation can be derived using the appropriate stability conditions. Next, we provide the definition
of a trapping region.

Definition 1 ([13,120]) A trapping region is compact set that is forward invariant with respect to the governing system.
Thus, once a trajectory enters the trapping region, it remains in the trapping region for all future times. A trapping
region is termed globally monotonically attracting if an energy function is strictly monotonically decreasing along all
trajectories starting from an arbitrary state outside of the trapping region.

Note that the discussion here will focus on monotonically attracting trapping regions, but we will use the term “trapping
regions” for simplicity. The trapping region could be characterized using an ellipsoid and the approach outlined here is
conceptually similar to the region of attraction characterization in [26} 27]. An alternative characterization is provided
in Appendix |Al The main technical result related to the ellipsoidal approach is summarized next, wherein I and O
respectively denote identity and null matrices of appropriate dimensions.
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Theorem 1 Under Assumption[l} if there exists P > 0, 11 > 0 and A5 € R such that

ATPA-P ATPB O P O O O 0 O
BTPA B™PB O|+4,|0 O O|+4,|0 -1 0O|<0 (11)
) O 0 0O 0 -1 0O 0 1

then {& € R” : X'P& < 1} is a trapping region for system (7).

Proof: Consider a generalized (quadratic) energy function given by V(%(k)) = X' (k)P&(k) where P > 0 and set
7(k) := 7(f;j,%(k)) to simplify notations. Now, multiply on the left by [ﬁT(k) 7T (k) 1] and on the right by

[ch(k) T(k) l]Ttoobtain

VR(k + 1)) = VR(K)) + 4 (VR(K) = 1) + 1 (1 - ||T(k)||2) <0. (12)

The last term on the left hand side of the above inequality (I2) is zero under Assumption[l} Also, for V(x(k)) > 1, we
have V(x(k + 1)) — V(x(k)) < 0 from as A1 > 0. Thus, energy decreases in the region characterizing V(%) > 1,
which is the set {& € R” : *'P& > 1}. Note that a 1; > 0 satisfying (TT) would mean ATPA-P+ 1P < 0or
LP<P- ATPA < P which yields 4; < 1. Now, setting A3 = 1 — A; and rewriting (I2) in terms of A3 gives

VE(k+1)) = 1+ 3(=VE&(K) +1) + 4 (1 - ||T(k)||2) <0

which implies that V(%(k + 1)) < 1 whenever V(&(k)) < 1 as 23 > 0 and (1 — ||7(k)||*) = O under Assumption
Therefore, the sub-level set {& € R” : V(&) < 1} or {& € R” : RTP& < 1} is a trapping region of system (7). O
The trapping region characterized above is an ellipsoid which can be outer bounded using a norm ball of radius R.

In other words, we require {& € R” : RTP& < 1} C {& € R” : £T% < R?}, which can be enforced through the following
set-containment result:

Lemma 1 [f there exists 14 > 0 such that

4P -1 (0]

>0, 13
o) RZ -4 (13)

then (K e R” :XTPx < 1} C {& e R : X'% < R?}.

Proof: The set-containment condition dictates that all % satisfying § P& < 1 imply X% < R?. Using the S-procedure,

this is equivalent to finding a 14 > 0 such that XT& — R? < 14(XTP& — 1) which can be expressed as

AT
X
1

This completes the proof. o

This result is a necessary and sufficient condition for set-containment as we have used the lossless S-procedure (see,

e.g., [28} 129]] for details). We can optimize over the radius R to find the smallest ball containing the ellipsoidal trapping
region as

A

X
1

4P -1 (0]

<0=
o) RZ— A4

> 0.

I- 4P o)
0 A4 — R?

min R? (14)
P>0,11>0,2;,14 ZO,R2

subject to (I1)), (T3).

However, the constraints (TT)) and (I3)) are non-convex (or bilinear) due to the terms A;P and 24P, respectively. Note
that (T3) requires R? — A4 > 0 with a A4 > 0. Thus, the minimum radius R satisfies R? = A4 and the set containment
condition becomes R*P > I. Define y := 1/R? and the optimization (T4) can be reformulated as

max (15)
P>0,41>0,42,y

subject to (TI), P > yI

10
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where the non-convex constraint (I3)) is replaced with P > yI which is convex. However, (I3)) is not a convex program
due to the bilinear term A P in the constraint (TT). As such, we grid over 1; and obtain a semi-definite program involving
linear matrix inequalities for each A; on the grid (see Section [[V.B).

IV. Numerical results

In this section we show results corresponding to two test cases: (i) a periodic cylinder wake, and (ii) a two-dimensional
limit cycle. In the first test case we show that a low-dimensional stable linear model with the trigonometric closure can
accurately predict the evolution of the FOM well beyond the training snapshots. This test case showcases the advantages
of using the proposed trigonometric closure in building low-order model for high-dimensional system without sacrificing
accuracy and ensuring stability. For the second test case, we plot the trajectories of a two dimensional limit cycle to
visualize the trapping region. We then compute it’s radius using the method discussed in section [[Il.BJand compare it
with the radius from the plot to demonstrate it’s effectiveness.

A. Periodic vortex shedding in a cylinder wake

The test case we consider here is the periodic vortex shedding in the wake of a cylinder. We use the immersed
boundary projection method (IBPM) [30} 31] available online in the github repository [32] to solve the FOM and obtain
the velocity field snapshots for a cylinder wake at Re = 100. The simulation is run sufficiently long to let the transients
evolve into a periodic vortex shedding. A total of 475 snapshots are obtained with equal time spacing which represent
about 16 vortex shedding cycles. Of these 152 snapshots are used for training and the rest are used for testing.

This system is known to be long-time bounded, i.e., the solution trajectories remain bounded regardless of how long
it is run or observed. Although POD does not separate out modes by its frequency content, the leading POD coefficients
of a cylinder wake have a narrow-banded and low frequency content while the higher-order POD coefficients have higher
and broad-banded frequency content. Therefore this particular test case demonstrates the expressivity of the closure
basis, and the long-time boundedness of the resulting low-order model.

100 100
—DNS

50
o

g o0
<

-50

-100 | 1 |
0.5T 1T 1.5T 2T 125T 250T 375T 500T
t t

(@ (b)

Fig. 4 Time evolution of the second POD mode for different time horizons (a) Comparison between DNS and
ROM (b) Comparison between a 4-mode DMD without closure and the ROM. Here we refer to DMD with
trigonometric closure as the ROM and T stands for the training time horizon.

We compare the results from the trigonometric closure modeling approach proposed in this work against the standard
DMD test case. For this test case, the ROM is built using 4-dimensional linear operator with trigonometric closure
with 8 frequencies per mode. The linear operator is obtained via DMD, and the frequencies and other operators are
obtained in a data-driven fashion as mentioned in section [[TIl Figure 4] shows the time evolution of the second POD
mode for different time horizons, where ‘T” is the time horizon used for training. The time evolution of this POD mode
appears to be narrow-banded; although not shown here, the time evolution of the first POD mode is similar to it, but
with a phase shift. Similarly, the evolution of third POD mode is similar to the fourth one with a phase shift and is also
narrow-banded. Figure[d](a) shows the comparison between the ground truth i.e., POD coefficients computed from DNS

11
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Fig.5 Comparison of the truncated modes estimated via the proposed trigonometric closure model and the
DNS ground truth. The higher-order modes are derived from the leading modes via Eq. (6).

in solid black line and the ROM predictions in dashed blue line. The predictions are in very good agreement with the
DNS in the training horizon as well as beyond it. Figure d{b) shows the ROM and the DMD marched forward for 5007 .
The 4 mode DMD model without a closure (shown as DMD) shows an exponential decay in the amplitude while the
amplitude of the ROM remains constant. This is because the 4 mode DMD model does not account for the interaction
between the leading and truncated modes. In contrast, this interaction is accounted for and the trajectories are corrected
when using the 4 mode DMD with trigonometric closure (shown as ROM). The closure modeling not only corrects the
state trajectories but also facilitates estimation of the higher-order modes. Figure [5|shows the estimates for the 207" and
28" mode to compare with the DNS ground truth. As before, the estimates closely match the DNS within and beyond
the training horizon. These modes appear to have multiple frequencies. For example, the 20’ mode (see figure [5(a))
has a high frequency signal embeded inside a low frequency one. Similarly, the 28" mode (see ﬁgure also has a
multiple frequencies. Note that the underlying model is 4 dimensional with a trigonometric closure. Therefore, the
higher-order modes are represented as a function of the leading first 4 POD modes via the closure model in Eq. (6). As
discussed in subsection [[I.B| we use the property of the sine and cosine functions in generating higher and broad-banded
frequency content from low frequency leading POD modes. When using this closure model, the extent to which the
truncated modes can be represented reasonably well can be tuned by the number of frequencies f;; to use. Here, we
use 8 frequencies per mode (32 in total) and were able to approximate about 30 truncated modes. Using the two-step
training approach discussed in section the model approximates the frequency of the target signal and calibrates it,
thereby approximating a wide range of truncated modes.

1. Accuracy of the reconstructed flow fields

Figure [6] shows the reconstructed flow field from DMD and the ROM against the DNS ground truth over the last
snapshot of the testing dataset. Although the 4-mode DMD model captures the location of the vortices, they appear
smeared out. However, the reconstructed flow fields from the ROM are a closer match to the DNS and the vortices are
more distinct. An integrated error metric is computed to assess the accuracy of the reconstructed flow fields. This error
metric is given by

(16)
”u”Fro

T
where u = [u v] with # and v denoting the streamwise and vertical velocity fluctuations. The variable with a hat ()

is for the ROM predictions and the unhatted variable is for the DNS gound truth. The accuracy («) is given by
a = (1-¢)x100. (17)
The accuracy of the model is computed for both the DMD and the ROM are shown in Table |2} The accuracy of the

12
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reconstructed flow field is increased by about 15% when using the trigonometric closure. These results underscore the
current approach’s capability to build low-order models without sacrificing accuracy.

Table 2 Prediction error for DMD and ROM over training and testing datasets.

Train Test
DMD | 87.0% | 86.9 %
ROM | 99.9% | 99.9 %

DNS
2 \ \
t =475
Q4L i
2
4 mode DMD
2 T T T T
Q4 i
2 1 1
DMD + trig. closure
2 T T T T 2
1
Q4 i
-1
) 1 1 I 1 2
0 2 4 6 8
x/D

Fig. 6 Vorticity contours from the flow fields reconstructed for a 4-mode DMD and the ROM to compare with
the DNS over the last snapshot of the testing dataset. The vortices appear to be smeared out for DMD whereas
they are more distinct when using the closure model.

2. Long-time behaviour
Figure[7|shows the long-time behavior when the ROM is marched forwards in time for 500 training time horizons
for different values of the regularization parameter A. The operator @ is computed via ridge regression as

@ = argmin || (X - ®X) - YC(®)||> + A|[Y]]%. (18)
Y

Here C(X) represents the closure terms, it is C(X) = (X ® X) for a quadratic closure and is the vector of sine-cosine pairs
of different frequencies for the trigonometric closure given by 7( f;;, X) in Eq. @

For a quadratic closure, when 1 = 19 (see figure [7(a)), the amplitude appears to be constant until 3757 but the
solution quickly diverges. Increasing this value to A = 20 results in the amplitude decay as shown in figure [7(b).
Therefore, a very careful tuning of the regularization parameter is necessary for the solution to be bounded or non-zero

13
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Fig. 7 Long-time behavior of the solution after time marching the ROM for 5007. When using quadratic
closure (see subplots (a) and (b)), the amplitude appears to remain constant until 3757. However, even with a
small change in the hyperparameter A in the ridge regression, the solution’s nature changes from blowing up to
decaying beyond 3757. On the other hand, the amplitude remains bounded when using trigonometric closure
even though there is 4 order of magnitude change in A(see subplots (c) and (d)).
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within the time horizon we need. On the other hand, when using a trigonometric closure, the results do not appear to
change much even with a significant change in A. Figure c) shows the solution for A = 1072, When A is increased to
102, the amplitude still remains constant and is long-time bounded. For other test cases, not shown here, tuning A can
increase the accuracy of the model but the solution never blows up as long as the liner operator is stable.

B. Academic Example: Two-Dimensional Limit Cycle
We demonstrate the trapping region analysis in Section[[TL.B]for an academic example constructed from the previously
discussed cylinder wake case. First, we use the proposed data-driven modeling framework to obtain a two-state model of
the form (/) with two frequencies per state for the trigonometric closures. We then artificially dampen the eigenvalues
of the linear operatorf*] as
A=A, -107%1 (19)

where A, is the linear operator obtained via DMD for the cylinder wake. The resulting model is then time integrated
for several, randomly chosen initial conditions and the trajectories are shown in Fig. where the starting point
for each trajectory is shown by a filled black circle. All these trajectories converge to a limit cycle (i.e., an attractor)
indicating a bounded response of the model.

As mentioned in Section[[IL.B] the optimization in Eq. (I3) is non-convex due to the bilinear term A, P. Therefore,
we grid over A to reformulate (T3)) as

20
b flﬁf,y Y (20)

subject to (I1), P > yI

where 4; € A; with A; € (0,1) as the specified grid. Note that the above optimization in (20) is a semi-definite
program or SDP (convex) and we solve this SDP to obtain y for 4; € A;. Then, the optimal trapping region radius
isR* =1/ \/Ey*) where y* = max,,ep,y. Variation of the trapping region radius for 2; € A; for this example is
illustrated in Fig. [8(b)] The optimal (minimum) radius of the trapping region obtained here is approximately 26.65
and corresponds to A; = 0.0098. However, the limit cycle shown Fig. [B(a)| can be inscribed in a circle of radius
approximately equal to 3. Thus, the trapping region radius obtained through the analysis here is roughly one order
of magnitude higher but it can provide a quick estimate on the ultimate bound of the responses for a model that we
synthesize. The generalized energy associated with the trajectories in Fig. [8(a)|are depicted in Fig. For the results
in Fig. we have utilized the generalized energy matrix P associated with the minimum trapping radius (which is
obtained by solving the optimization in (Z0) for 2; = 0.0098).

The energy monotonically decreases outside of the trapping region and oscillates about a fixed value as the trajectories
converge onto the limit cycle.

V. Conclusions and future work
In this work, we proposed a trigonometric closure using sine-cosine pairs of different frequencies that can be
integrated with a low-order linear model as a non-linear forcing term. The utility of using a trigonometric closure model
is three fold:

* Approximation of manifolds: Because many high-dimensional physical systems evolve on a low-dimensional
manifold, accurately approximating this manifold can improve predictive fidelity of a low-order model. Using
sine-cosine pairs of multiple frequencies can be interpreted as approximating this low-dimensional complex
manifold using a Fourier series with limited terms. The number of frequencies can be a hyperparameter to improve
the approximation.

» Expressive basis: Choosing sine-cosine pairs as the basis functions of a closure model forms an expressive basis.
It has the ability to generate higher and broadbanded frequency output signals from a narrow-banded input. We
demonstrated this property for the test case of a cylinder wake where the narrow-banded leading modes were
mapped to broadbanded and high frequency higher-order truncated modes reasonable well.

* Boundedness guarantees: The ROM is guaranteed to be long-time bounded when the linear operator is stable, i.e.,
when it has spectral radius strictly less than 1. We showed that in such a case, the ROM admits a trapping region
whereby the ROM states are guaranteed to converge to an ellipsoid in the state space. In addition, we formulated a

*This is done for illustration purposes as well as satisfying AssumptionE]required for the trapping region analysis.
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Fig. 8 System synthesized from a 2 state 2 frequency per mode cylinder wake model: (a) Time history of
trajectories evolving from randomly chosen initial conditions which are indicated by black filled circles; (b)
Trapping region radius as a function of 1,; (c) Time evolution of generalized energy V = x"Px for the trajectories
in (a). Here, P is computed using the optimization in Eq. (20) for 1, = 0.0098, which corresponds to the minimum
radius in (b).

convex optimization—more specifically, a semi-definite program—to compute the smallest norm-ball inscribing
the ellipsoid. Radius of the norm-ball serves as an estimate of the ultimate bound for the trajectories of the ROM
with trigonometric closures.
We demonstrated these features of the proposed trigonometric closure model on a transient cylinder wake and a periodic
cylinder wake. Results show that this closure model improves the predictive fidelity and makes the resulting ROM
long-time bounded.

The proposed trigonometric closure is a purely data-driven model and the frequencies and the operators are obtained
via optimization over the training snapshots. Although we use DMD to obtain the linear operator for the examples
included in this paper, other techniques can also be used. Therefore, simultaneously computing a stable linear operator
and a trigonometric closure model by minimizing the prediction error subject to appropriate constraints is one possible
future direction. Many physical systems are governed by quadratic nonlinear dynamics including the Navier-Stokes
equations, Lorenz system, etc., and the quadratic nonlinearity in the ROM would play a crucial role in capturing the rich
dynamics displayed by these systems. Therefore, another potential line of work could be to integrate this closure model
to a linear-quadratic model where the quadratic nonlinearity may satisfy the lossless property [20, 21]. Overall, the
framework in this paper should lay the foundation for future studies on employing the proposed trigonometric closure as
a correction and lifting term for low-order models geared towards various engineering applications.
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A. Alternative Characterization of Trapping Region
The following result provides an alternative characterization of the trapping region for system (7)) in terms of a norm
ball.

Theorem 2 Under Assumption system () admits a trapping region {X € R” : X% < R*} whose radius R is given by

ab||P|| b 1/2
R=0 e (V) + 2P @

where P > 0 such that ATPA — P < 0 and A, = Aax (ATPA - P) with a = ||Al|, b == |[B.

Proof: Consider the generalized energy V(X(k)) := %)A(T(k)Pf((k) with a P > 0 and set 7(k) := 7(f;;,%(k)) to
simplify notations. Then, the change in energy is given by V(X(k+1)) -V (X(k)) = %ﬁT(k+ DPx(k+1)-— %f{T(k)Pﬁ(k),
which can be expressed as
V(x(k+1)) —V(x(k))
1 AT A 1 ATrA 1 AT A 1 PN
= EAT(k) (ATPA - P) %(k) + 5f(T(k)ATPBT(k) + 5TT(k)BTPAf((k) + ETT(k)BTPBT(k).

Applying the Cauchy—Schwarz inequality to the right hand side of the above and using Assumption [I]yields an upper
bound on the change in energy as

1 1
V(&(k+1)) = V(%K) < SAmlR(OII + ablIPIIR(K) ] + 55%|IP] (22)

where A, := Apax (ATPA - P), a :=||A], b := ||BJ|. Since A is stable under Assumption there exists P > 0 such
that ATPA — P < 0. Thus, choosing such a P makes 4, < 0 and the upper bound in (22)) becomes negative for

ab||P]|

" b 12
RG> T + o (VLI + a2 IPI)

2

Therefore, the set {& € R” : *'% < R?} with R as in Eq. (ZI) is forward invariant with respect to the dynamics (7),
which makes it a trapping region. This completes the proof. O

The radius R in Eq. (2I)) grows monotonically with ||P|| and the optimal (i.e., minimum) radius would correspond
to a minimization in ||P|| subject to the associated constraints. This can be posed as the following optimization:

min ||| (23)
P>0,ATPA-P<0 (24)
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which can be equivalently expressed as

min s (25)
s P

>0, 26

P I (26)

P> 0,ATPA-P < —| 1,1 27)

with a grid for |A,,|. Thus, the optimal radius would correspond to the minimum of the optimal solutions obtained from
solving the above optimization (which is an SDP in variables s, P) over the specified |4,,| grid.
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