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This work uses data-driven sparsity-promoting methods to obtain low-order governing
equations for the wake of a stalled airfoil. Direct numerical simulation data of a NACA-0009
airfoil at an angle of attack of U = 15◦ is utilized in this study, with actuation being performed
by injecting momentum into the flow near the airfoil’s leading edge. Proper Orthogonal De-
composition (POD) is used to obtain a reduced order representation of the flow field. The
Sparse Identification of Nonlinear Dynamics (SINDy) framework is then implemented to ob-
tain low-order quadratic governing equations for the flow over the stalled airfoil. The SINDy
model is constrained to preserve the energy-conserving property of the quadratic nonlinear-
ity and associated triadic energy-transfer mechanisms. Low-order nonlinear models of the
unsteady flow field associated with the stalled airfoil are obtained and cross-validated using
off-design data. Furthermore, an output equation that predicts the lift coefficient is also iden-
tified and cross-validated. These low-order nonlinear models are expected to facilitate future
developments in model-based analysis and control of separated flows.

I. Introduction

Unsteady aerodynamic effects greatly impact the performance of aircraft. Especially affected are small, highly-
maneuverable, aeroelastic, and biological aircraft. Performance degradation is owed to the unsteady aerodynamic

phenomenon of flow separation, which occurs when a laminar boundary layer becomes detached from a surface and
transitions into a turbulent wake. Under certain conditions, the boundary layer may become fully separated from a
surface, resulting in an effect known as stall. In the case of airfoils, the stall condition is met when the airfoil reaches a
critical angle of attack, whereupon the fluid rolls up from the trailing edge to the leading edge until the flow becomes
fully detached from the low pressure (suction) surface [1]. Stall can lead to the formation of an unstable shear layer
and periodic vortex shedding, in addition to a reduction in lift and an increase in drag, which may result in the loss of
control over an aircraft. Therefore, managing flow separation is necessary for ensuring safe and efficient flight.

Historically, flow separation has been addressed by restricting the operational envelope of aircraft to avoid situations
where stall could occur. An alternative to this confining approach is active flow control, which offers a means to mitigate
and control aerodynamic instabilities such as stall. One popular flow control method is to utilize synthetic jets embedded
into a lifting surface to inject momentum into the crossflow [2–5]. By doing this, it is possible to manipulate the flow
and temporarily re-attach a separated shear layer to the surface, leading to transient lift enhancement [1]. Active flow
control significantly enhances aircraft performance by improving safety, flight efficiency, and robustness to aerodynamic
disturbances.
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However, the realization of real-time active flow control strategies is bottlenecked by the lack of reliable and
computationally inexpensive flight controllers. Unsteady aerodynamic effects cause complex dynamic responses and
multimodal instabilities that are difficult to control and model due to their high dimensionality and nonlinearity. This is
especially true for flows where complex geometries are involved, which requires a large number of terms to be accurately
modeled. Analytical methods that are based on the physics of flows provide accurate governing equations for a system,
but are difficult to implement for complex systems. An alternative is to directly obtain models from representative flow
data by implementing data-driven methods. However, without modification many data-driven methods do not provide
governing equations that are representative of underlying physics of the flow. In this work, a data-driven method called
“Sparse Identification of Nonlinear Dynamics” (SINDy) [6] is implemented and modified according to [7] by introducing
physics-based constraints that take advantage of the energy-conserving property of the quadratic nonlinearity inherent to
incompressible flows.

Constrained SINDy is leveraged to obtain low-order governing equations for a two-dimensional, incompressible
NACA-0009 airfoil in stall (at U = 15◦) with short-duration momentum injection above the leading edge as described by
Asztalos et al. [1]. In addition to obtaining governing equations for the flow, a method to determine output equations for
flow-dependent derived quantities is implemented and used to determine the airfoil’s lift-coefficient �ℓ (C). The end
result is a system of dynamic and output equations. It is demonstrated that constrained SINDy is an effective means of
obtaining nonlinear reduced-order models (ROM) for stall over a two-dimensional airfoil. This establishes the approch
as a viable candidate for modeling more complex multimodal flows in the future. This also creates opportunities for
future studies on nonlinear analysis and control of such flows.

The paper proceeds as follows: In section II, the current state of the art of modeling unsteady flows is discussed,
followed by an overview of the stalled airfoil system and the direct numerical simulation (DNS) approach in section III.
Section IV then describes the data-driven approach taken to obtain reduced-order quadratic governing equations for the
stalled NACA-0009 flow, including an overview of the physics that govern this type of flow. The results of the analysis
are then presented in section V, and concluding remarks are given in section VI.

II. State of the Art
Modeling unsteady flows poses unique challenges as the nonlinear dynamics result in complex systems where the

tradeoff between accuracy and computational efficiency must be carefully balanced. A plethora of methods exist with
which it is possible to accurately model unsteady aerodynamic effects such as flow separation. Unfortunately, many
numerical approaches such as direct numerical simulation (DNS) have prohibitive computational cost that make them
impractical for real-time control and prediction. Physics-based approaches provide accurate governing equations for
systems, but may be difficult to obtain for complex flows. Conversely, many data-driven approaches lack the accuracy
and flexibility to describe rapidly evolving dynamic systems, and resultant models may not reflect the underlying physics
of the fluid system.

One means to generate low-order models for unsteady dynamics is by using dynamic mode decomposition (DMD)
[8], after first applying proper orthogonal decomposition (POD) for dimensionality reduction. POD is used to identify
basis functions that can describe the dynamic behavior of the system across some parameter space of interest [9, 10].
POD is especially desirable because it can be “trained” on a desired representation of the system dynamics through the
use of so called “snapshots” [9–11]. These snapshots are obtained through the collection of observations about the
solution at different time intervals and they are used to obtain a reduced basis that optimally spans the data. Using
this reduced basis along with given time-series measurements of the system state and inputs, it is possible to obtain
models by invoking DMD [12]. This DMD approach was successfully implemented by Asztalos et. al. [1] to describe
the response of an airfoil to sudden momentum injection into the free-stream.

An alternative is to directly obtain a system’s governing equations from datasets using Spare Identification of
Nonlinear Dynamics (SINDy). SINDy obtains governing equations by taking advantage of sparsity-promoting techniques
in a regression framework [6]. By assuming that there are only a few important parameters that govern the system
dynamics, it is possible to establish sparsity, and thereby a reduced basis. To obtain the functions of interest, a time
history of the state is collected from data, and the state’s derivative is either measured or approximated. Candidate
functions are then assembled into a matrix, and a sparse regression is implemented to the matrix to identify which
nonlinearities are relevant. SINDy thereby obtains governing equations for the system in a reduced basis. The method
has been successfully used in combination with other techniques such as POD to obtain accurate estimates of a canonical
flow over a 2D cylinder [6]. Furthermore, the predictive capabilities of SINDy can be enhanced by utilizing a priori
knowledge of the system’s physics to introduce constraints that provide governing equations of a desired form. These
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constraints have been implemented in [7] to obtain low-order models of an incompressible flow over a cylinder with
= = 3 modes. The approach has recently been applied to systems with = > 3 modes in [13], whereby constrained SINDy
was used to model and control instabilities in a Kolmogorov-like flow.

III. System Description and Direct Numerical Simulation
This work examines a NACA-0009 airfoil at an angle of attack of U = 15◦ and a Reynolds number of 500, as

described in Ref. [1]. At these conditions, the airfoil generates an unstable wake which converges to a limit-cycle
solution with periodic vortex shedding (when unactuated), as shown in figure 1a. The system is actuated using a
"burst-type" momentum injection centered at a point that is G = 0.052 downstream of the leading edge and H = 0.05232
above the surface of the airfoil, where 2 is the chord of the airfoil. This single impulse signal is modeled as a body
force with a duration of ΔC3 = 1.2, which generates a pair of counter-rotating vortices, as shown in figure 1b. The
period of the vortex shedding ) ≈ 1.6 2

*inf
was computed from the unactuated case, and the onset of actuation was

varied during the duration of one vortex-shedding period. A total of 17 tests were performed with the onset of actuation
occurring every ΔC = 0.1 from (61.2 ≤ C ≤ 62.8), where C = 0 is the start of the simulation. Here and throughout, time
is nondimensionalized by the convective time unit, 2

*inf
. This work focuses on the unactuated case and the case where

actuation occurs at C = 62, which corresponds to the the maximum lift (�ℓ,max) of the limit cycle. All subsequent results
show time C+ relative to C = 60. In other words, actuation at C = 62 corresponds to C+ = 2. Furthermore, this work only
examines the flow after the actuation has concluded, so that the energy conservation assumption—to be discussed in
Sections IV.A and IV.E—can be made for the flow. For example, in the case of actuation at C+ = 2, the analysis is
started at C+ = 2.3, which is one time step after actuation ends at C+ = 2.2, as shown in figure 1c. The direct numerical
simulations (DNS) were obtained by solving the two-dimensional Navier–Stokes equations using an immersed boundary
projection method (IBM) [14, 15] incorporating a lattice Green function (LGF) formulation [16, 17]. Additional details
are given in Ref. [1].

(a) Vorticity at C+ = 0.4, baseline (b) Vorticity at C+ = 2.0, actuation starts (c) Vorticity at C+ = 2.3, actuation ends

Fig. 1 Vorticity fields near the airfoil with actuation onset at C+ = 2.0, actuation end at C+ = 2.2, and the
beginning of data-driven modeling one time-step later at C+ = 2.3.

IV. Approach
In this work, governing equations for the unsteady aerodynamics of flow over a stalled NACA-0009 airfoil with

momentum injection near the airfoil’s leading edge are identified using constrained SINDy. The following attributes
are desired from the resultant model: 1) it must be consistent with the physical equations that represent unsteady
(incompressible) flows; 2) it must balance accuracy and complexity; and 3) it must be able to predict flow-dependent
quantities of interest, such as the lift coefficient (�ℓ ). This section describes the approach taken to satisfy these objectives
for the 2-D stalled airfoil. The subsequent discussion is divided as follows:

• Section IV.A: The physics that govern the unsteady incompressible flow are examined. System dynamics and
lift-coefficient output equations are defined.

• Section IV.B: Low-rank basis functions are obtained fromDNS data using proper orthogonal decomposition (POD).
• Section IV.C: An overview of the Sparse Identification of Nonlinear Dynamics (SINDy) method is provided.
• Section IV.D: An outline of how SINDy can be modified with constraints is provided.
• Section IV.E: The constraints needed to satisfy the first objective are reviewed, and are imposed to SINDy to
ensure that the quadratic nonlinearity in the identified model remains energy conserving.

• Section IV.F: A model-selection method is introduced to find a model that balances sparsity and accuracy.
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A. Incompressible Navier–Stokes Solution
The unsteady flow resulting from the stalled NACA-0009 airfoil system can be generalized as the following dynamic

equation:
¤̃u(G, H, C) = 5 (ũ(G, H, C)). (1)

Here, ũ(G, H, C) is some state of the system at a given location and time (which will be denoted ũ for brevity), and 5 (ũ)
is the dynamics function that defines the governing equations for the system. To obtain the right hand side of (1) for the
stalled airfoil, the Navier–Stokes equations of a perturbed velocity u evolving on top of a base flow[1 are considered:

mu

mC
= −([1 · ∇)u − (u · ∇)[1 − ∇? +

1
Re
∇2u − (u · ∇)u, (2a)

0 = ∇ · u. (2b)

Here, ? is the pressure and '4 is the Reynolds number. Projecting onto the basis of divergence-free fields, the pressure
drops out and the incompressibility constraint will be satisfied automatically, yielding dynamics in the form of (1).
These dynamics can further be decomposed as:

3ũ

3C
= W(ũ)ũ + R(ũ) + I0, (3)

where W(ũ)ũ, R(ũ), and I0 are low-dimensional approximations of the Navier–Stokes nonlinear quadratic operator,
linearized operator, and affine terms, respectively. A key component of the incompressible Navier-Stokes equations
relevant to our investigation is the quadratic convective nonlinearity −(u · ∇)u. It is well known that this quadratic
nonlinearity is lossless for incompressible flows:∫

Ω

u · (u · ∇)u3Ω = 0. (4)

The quadratic (ũ2
8 ) and bilinear (ũ8 ũ 9 ) terms must therefore be energy-conserving. In other words: the nonlinear terms

can only redistribute the energy of the perturbation u among the other terms [7]. If the state of choice ũ is related
directly to the kinetic energy of the perturbation, the constraint to make the quadratic nonlinear term energy-preserving
can be written in the following form:

ũ · W(ũ)ũ = 0. (5)

The main objective for this work is therefore to obtain governing equations such that equation (1) has the form of
equation (3) subject to the lossless constraint on the quadratic term. In addition, an output equation can be introduced
to determine relevant derived quantities of interest, such as the lift coefficient �ℓ , moment coefficient �<, or drag
coefficient �� . We note that these outputs can be determined from algebraic relations with the dynamic flow state,
expressed generically as y = 6(ũ). The model we seek will thus take the form:

¤̃u = 5 (ũ) (6a)
y(C) = 6(ũ). (6b)

As we will show later, we will extend the SINDy framework to identify an output equation for the lift response of a
NACA-0009 airfoil, i.e., for the scalar output H(C) = �ℓ (C) = 6(ũ).

B. Reducing Dimensionality of Simulation Data
This section describes the procedure used to obtain low-rank basis functions for the NACA-0009 system from DNS

velocity data. For every simulated actuation case, the mean-subtracted velocity field data (u, v) is obtained from the
DNS at [=G = 2000 × =H = 500] locations in x = (G, H), for 200 snapshots in time. Therefore, for each time series of
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data containing # snapshots and starting at time C 9 the following 2A × # matrix is formed:

- ( 9) =



D(x1, C 9 ) D(x1, C 9 + ΔC) D(x1, C 9 + 2ΔC) . . . D(x1, C 9 + #ΔC)
D(x2, C 9 ) D(x2, C 9 + ΔC) D(x2, C 9 + 2ΔC) . . . D(x2, C 9 + #ΔC)

...
...

...
. . .

...

D(xA , C 9 ) D(xA , C 9 + ΔC) D(xA , C 9 + 2ΔC) . . . D(xA , C 9 + #ΔC)
E(x1, C 9 ) E(x1, C 9 + ΔC) E(x1, C 9 + 2ΔC) . . . E(x1, C 9 + #ΔC)
E(x2, C 9 ) E(x2, C 9 + ΔC) E(x2, C 9 + 2ΔC) . . . E(x2, C 9 + #ΔC)

...
...

...
. . .

...

E(xA , C 9 ) E(xA , C 9 + ΔC) E(xA , C 9 + 2ΔC) . . . E(xA , C 9 + #ΔC)



. (7)

The singular value decomposition (SVD) is then taken for each time series of data (denoted by the subscript 9):

- ( 9) = *Σ+∗, (8)

where Σ is a matrix of singular values, and the columns of* correspond to the proper orthogonal decomposition (POD)
modes of the data. The associated coefficients for the POD modes are found by observing the rows of -̃:

-̃ = *∗- ( 9) = Σ+∗. (9)

The state of the system as a function of position and time is therefore obtained in the POD basis as:

u(G, C) = ū(G) +
=∑
8=1

08 (C)q8 (G), (10)

where u(G, C) represents the velocity field, 08 (C) are the POD-coefficients, q8 (G) are the associated basis functions
(POD modes), and ū(G) is the mean velocity field. The POD modes obtained in this way describe the vortex shedding
observed as a result of the airfoil stall. In total, this work uses 200 POD modes over 200 snapshots for each simulation.
After the POD coefficients are found, the state data matrix � is defined for this work as:

� =


01 (C 9 ) 02 (C 9 ) . . . 0= (C 9 )

01 (C 9 + ΔC) 02 (C 9 + ΔC) . . . 0= (C 9 + ΔC)
...

...
. . .

...

01 (C 9 + #ΔC) 02 (C 9 + #ΔC) . . . 0= (C 9 + #ΔC)


. (11)

Although each time series contains 200 POD basis functions, the lower-order modes capture significantly more
information than the higher order modes. In figure 2, the energy contributions of POD modes for the unactuated case are
compared to the contributions of POD modes for the case where actuation occurred at C+ = 2. The results demonstrate
that the unactuated case requires significantly fewer POD modes to capture 99% of the information than the actuated
case. This is attributed to the lower order modes carrying more information about global vortical structures and higher
order modes characterizing local fluctuations [13, 18, 19]. As the actuated case exhibits more local phenomena, it
requires a larger number of POD modes (approximately = = 80) to capture the same amount of information than with
just = = 10 POD modes in the unactuated case.

C. Sparse Identification of Nonlinear Dynamics (SINDy)
By performing POD, the DNS data is projected onto a small set of orthogonal modes that describe the flow dynamics.

The resultant basis functions are useful for performing system identification to obtain reduced-order models that may be
used for control. This work utilizes SINDy to identify a set of governing equations from the reduced DNS data that
describes the stalled NACA-0009 airfoil.

To describe the SINDy algorithm, the dynamic equation (1): ¤̃u = 5 (ũ) is considered. It can be assumed that the
right hand side of (1) only has a few active terms, and is therefore sparse in the space of all possible functions that
describe the dynamics [6]. Using this observation, a sparse-regression problem is defined, where the time-derivative of
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(a) Unactuated
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(b) Pulse actuation applied at C = 2

Fig. 2 The cumulative energy content captured within each POD mode for (a) the unactuated flow and (b) the
flow with pulse actuation applied at C+ = 2.0. Without actuation, using = = 10 POD modes captures 99% of the
mean-subtracted flow energy. In contrast, using = = 10 POD modes captures only 68% of the mean-subtracted
flow energy for the the pulse actuation case. Note that nearly 100% of the energy is captured with = = 100 modes,
even though = = 200 modes were obtained from the DNS.

the state is regressed onto a set of candidate functions of the state. In this work, the state consists of the set of POD
coefficients 08 (C). Data for the time evolution of the state is stored in the matrix �, where each column describes the
evolution of an individual state variable 08 (C) in time. The associated matrix of time-derivatives used to represent the
left-hand side of the dynamic system in (1) is thus written as:

¤� =


¤01 (C 9 ) ¤02 (C 9 ) . . . ¤0= (C 9 )
¤01 (C 9 + ΔC) ¤02 (C 9 + ΔC) . . . ¤0= (C 9 + ΔC)

...
...

. . .
...

¤01 (C 9 + #ΔC) ¤02 (C 9 + #ΔC) . . . ¤0= (C 9 + #ΔC)


. (12)

To determine the function 5 (ũ) from sparse regression, the matrix Θ(�), consisting of nonlinear candidate functions of
the columns of � is defined. Candidate functions in this work are defined as polynomials, however SINDy allows for
more complex functions, such as trigonometric functions, to be employed. In this work, the assumption that the flow is
incompressible enforces that only polynomials up to the 2nd degree are used, the justification of which will come in the
next section. The matrix of candidate functions thus takes the following form [6]:

Θ(�) =


...

...
...

1 � �%2

...
...

...


. (13)

The matrix (13) is formed by evaluating all the candidate functions at each instant of time up to C# . For example, �%2 is
defined in the following way [6]:

�%2 =


02

1 (C 9 ) 01 (C 9 )02 (C 9 ) . . . 02
2 (C 9 ) 02 (C 9 )03 (C 9 ) . . . 02

= (C 9 )
02

1 (C 9 + ΔC) 01 (C 9 + ΔC)02 (C 9 + ΔC) . . . 02
2 (C 9 + ΔC) 02 (C 9 + ΔC)03 (C 9 + ΔC) . . . 02

= (C 9 + ΔC)
...

...
. . .

...
...

. . .
...

02
1 (C 9 + #ΔC) 01 (C 9 + #ΔC)02 (C 9 + #ΔC) . . . 02

2 (C 9 + #ΔC) 02 (C 9 + #ΔC)03 (C 9 + #ΔC) . . . 02
= (C 9 + #ΔC)


.

(14)

6



The SINDy algorithm seeks to obtain a sparse set of the functions defined by Θ(�) that model the dynamics consistent
with the data in ¤� [6]. The objective is therefore to find a sparse matrix of coefficients Ξ that indicates which linear
combination of Θ “best fits” the DNS data. This allows for the original dynamic system (1) to be written as:

¤� = Θ(�)Ξ. (15)

In other words, the columns of the matrix Ξ (represented as b: ) indicate which terms are active within the candidate
function matrix Θ(�). The product of Θ(�) and b: therefore constitutes the desired function 5 (a) from the initial
dynamic system (1). Simply performing a standard regression to find the columns b: would result in all elements being
non-zero [6]. To obtain the desired sparse solution, it is necessary to add an !1 regularization term to the regression
such that:

b: = arg min
b:
| | ¤�: − Θ(�)b: | |22 + _ | |b: | |1. (16)

Here, the second term of (16) promotes sparsity within Ξ through adjustment of the sparsification variable _. Increasing
the value of _ will increase the sparsity of Ξ at the expense of accuracy (and vice-versa). Equation (16) can be solved in
several ways, such as applying the LASSO method [6, 20], or the iteratively thresholded least squares method [6]. This
work applies the latter approach within the SINDy framework to solve equation (16). This allows for a simple extension
to problems with constraints, as will be described in the next section. Furthermore, the output equation (6b) y = 6(ũ) is
solved for the lift coefficient �ℓ using the unconstrained version of SINDy. This is done by taking the POD coefficient
model obtained from solving the constrained SINDy problem (1) and performing a linear least squares regression onto
DNS lift coefficient data.

D. Introducing Constraints to SINDy
The SINDy methodology described in section IV.C seeks sparse governing equations by individually regressing each

state variable. While this approach has the benefit of being agnostic to the system in question, it does not take advantage
of apriori knowledge of the system. Improvements can therefore be made by introducing physics-based constraints to
the system. The problem described in (16) is thus recast to the following equality constrained least-squares problem
over all the data [7, 13]:

min
Ξ

| |Θ(�)Ξ − ¤�| |22

s.t. �Ξ(:) = 3,
(17)

where � is a constraint matrix that allows constraints to be imposed on the vectorized coefficient matrix Ξ(:). Rather
than solving a minimization problem for each state as described in (16), this approach creates a single problem to be
solved. To obtain a sparse matrix Ξ with this formulation, (17) is solved iteratively, where the values in Ξ are compared
to the predefined sparsification value _. If the entries in Ξ are smaller than _, a row is added to � and a corresponding
zero is added to 3 in order to force the entries to zero during the next iteration [13]. Iterations are performed until the !2
norm of the difference between successive solutions of Ξ are smaller than a predefined tolerance.

E. Obtaining Physics-Based Constraints
In order to obtain reduced-order governing equations that are consistent with the Navier–Stokes form described in

equation (3) the physical properties of the incompressible fluid (2) must be captured. On its own, SINDy would not be
able to replicate these properties. However, the constrained approach described in section IV.D allow active enforcement
of desired conditions. To enforce physics-based constraints, the assumption that the quadratic and bi-linear terms in the
Navier–Stokes equation must be energy-conserving is made (as shown in equation (4)). As the POD modes are related
directly to the kinetic energy of the perturbation, the constraint to make the quadratic nonlinear term energy-preserving
can be written in the form of equation (5): ũ · W(ũ)ũ = 0. With these considerations it is possible to use the POD-basis
representation defined in (10) together with the orthonormal property of POD modes to rewrite (3) in terms of the POD
coefficients [13]:

¤08 (C) =
=∑
9=1

=∑
:=1

@8 9:0 90: +
=∑
9=1
;8 90 9 + 28 8 = 1, 2, ..., =. (18)
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The tensors in (18) can be described as follows [13]:

@8 9: = q8 · W(q 9 )q: , (19a)
;8 9 = (q8 · R(q 9 )) + (q8 · W(ū)q 9 ) + (q8 · W(q 9 )ū), (19b)
28 = (q8 · R(ū)) + (q8 · W(ū)ū) + (q8 · I0). (19c)

Equations (18) and (19) can be interpreted in terms of SINDy as follows: each vector of coefficients b: is equivalent to
the �8 , ;8 9 , and @8 9: stretched into a column vector for each POD mode [13]. A more detailed derivation of using the
terms in (19) to obtain constraints for Ξ for a model with = modes is described in [13] and is based on triadic interactions
inherent to Galerkin projection methods [21, 22]. The approach takes advantage of the symmetric nature of the term
@8 9: and the fact that it retains the energy-preserving property of the non-linearity in the Navier–Stokes equations. The
energy within each POD mode is expressed by 48 (C) = 1

20
2
8
(C) which is differentiated in time to obtain [21]:

¤48 (C) =
=∑
9=1

=∑
:=1

@8 9:080 90: +
=∑
9=1
;8 9080 9 + 2808 8 = 1, 2, ..., =. (20)

Here, the constraint on @8 9: means that the quadratic nonlinearity can only serve to exchange energy between modes and
does not contribute to the rate of change of the total energy of the system [13]. Using this and the fact that the sum of
the individual modes constitutes the total energy of the system � (C) = ∑=

8=1 0
2
8
, the following expression is written:

¤�8 (C) ∝
=∑
8=1

=∑
9=1

=∑
:=1

@8 9:080 90: = 0. (21)

Using the rules of index permutation and the symmetric property of @8 9: , the following energy-preserving constraint is
obtained for use during SINDy:

@8 9: + @ 9:8 + @:8 9 = 0. (22)

As described in [13], equation (22) imposes three categories of constraints that are used to construct a constraint matrix
� and solve (17):

1) Intrinsic constraint: Occurs when 8 = 9 = : and implies @888 = 0 for any 8. This is a result of a mode not being
able to exchange energy with itself via the quadratic nonlinearity. This creates = constraints, and = rows are
added to the matrix �.

2) Binary constraint: Occurs when 8 ≠ 9 = : or 8 = 9 ≠ : , and implies that a term of the form ¤08 ∝ 02
9
must be

balanced by a term such as ¤0 9 ∝ 080 9 . Intuitively, this constraint occurs when one mode interacts quadratically
with one other mode. To impose this, =(= − 1) rows are added to the matrix � (one for each possible binary
constraint).

3) Extrinsic constraint: Occurs when 8 ≠ 9 ≠ : , and implies that a term ¤08 ∝ 0 90: involves interactions between
mode 8 and two other modes ( 9 , :). This constraint is fully triadic, and involves the energy exchange between
three modes, and the energy exchange between two modes is mediated via a third mode. The complexity of these
interactions result in the number of constraints added as rows to � to grow rapidly: =!

3!(=−3)! =
1
6=(= − 1) (= − 2).

A total of = + =(= − 1) + 1
6=(= − 1) (= − 2) rows in � and elements in 3 are therefore added upon the first solution of

(17). Constraints for small entries in the coefficient matrix Ξ are then added on subsequent iterations until a solution is
reached [13]. This procedure results in a system of governing equations for which the quadratic nonlinearity conserves
energy, consistent with the nonlinear physics of the incompressible Navier–Stokes equations.

F. Model Selection
To find a satisfactory model, its accuracy and complexity must be balanced. An accurate model will be more

complex and therefore more difficult to interpret while a sparse model will have higher errors. The complexity of a
model is defined by model density d(_), which characterizes the number of active coefficients in the matrix �:

d(_) = card(�)
5 =

. (23)
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Here, d ranges from 0 to 1, such that when d = 0 the system is fully sparse, 5 is the number of candidate functions, = is
the number of states, and 20A3 (Ξ) is the cardinality of the coefficient matrix. The accuracy of the model is defined by
the model error n (_):

n (_) = | |�<>34; − ��#( | |2| |��#( | |2
, (24)

where �<>34; is obtained by integrating equation (15) from an initial condition, and ��#( contains the DNS results.
Both the model density and error are functions of the sparsification constant _, which was described in sections IV.C
and IV.D. In other words, each _ corresponds to a model error and density value, meaning it is the variable that must be
optimized.

The Akaike Information Criterion (AIC) uses statistical methods to balance accuracy and complexity [23]. This
method assigns an AIC score to every model, and the model corresponding to the lowest AIC score is chosen as the
optimal one. The AIC scoring equation utilized in this work is defined as:

��� = 2: + 2 log(n) − 2(: + 1) (: + 2)
:

, (25)

where : = d(_) 5 = is the number of active terms in the model. The first right-hand term of equation (25) penalizes
dense models, the second term penalizes inaccurate models, and the third term is a finite terms correction [23]. The
sparsification constant _ is swept through O(102) values, and an AIC score is computed for each case. The resultant
AIC scores are further re-scaled by the minimum of all AIC scores:

���A4;0C8E4 = ��� − ���<8=, (26)

such that the best model has an AIC score ���A4;0C8E4 = 0 [13, 23].

V. Results
This section presents the results of implementing the constrained data-driven modeling approach to obtain a

low-order nonlinear model for the stalled NACA-0009 airfoil system with actuation at C+ = 2.0. POD modes are obtained
for the C+ = 2.0 flow, and reduced to a 10-mode model. An optimal _ value is then found using the AIC model-selection
method, and a quadratic 10-mode model that satisfies the physics constraints discussed in section IV.E is obtained.
Linear and quadratic models for the lift-coefficient are also identified. The results are cross-validated by using the
discovered governing equations to reconstruct a base flow and a flow actuated at C+ = 1.4.

A. Quadratic 10-Mode Model
To obtain a sparse set of governing equations for the stalled NACA-0009 system, only the first = = 10 POD modes

were used to train the constrained SINDy algorithm. Using less then = = 9 modes results in high 2-norm errors,
while model accuracy and sparsity drop rapidly if an excess of = = 14 modes are used. This phenomenon is shown in
figure 4, where optimal models were obtained by implementing the AIC scoring procedure over a logarithmic range
of _ values for each case =. AIC scores for the = = 8, = = 10, = = 11 and = = 15 models are shown in figure 3.
Although the selected = = 11 and = = 12 models have smaller 2-norm errors than the = = 10 mode model, they are more
computationally intensive since the constraint matrix � grows as =!

3!(=−3)! =
1
6=(= − 1) (= − 2). Furthermore, the = = 10

model corresponds to a higher sparsity in the coefficient matrix Ξ, and has only 201 active terms compared to 394 active
terms in the = = 11 model and 440 active terms in the = = 12 model. The balance of lower complexity and lower error
(relative to the other models) within the = = 10 mode model made it the superior choice for this work.

A disadvantage of using the = = 10 mode model is that it captures only 68% of the mean-subtracted flow energy, as
shown in figure 2. A common approach in literature is to incorporate the dynamics described by higher-order POD
modes is to introduce an additional mode, called the shift mode [19]. The shift mode captures the transients connecting
the unstable steady state to the mean of the steady-state vortex shedding [6, 19]. Implementation of a shift mode was
attempted for the = = 10 model, however it was found to not improve accuracy while reducing sparsity. Details of the
shift-mode analysis can be found in the appendix section VIII.A.
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(d) AIC for = = 15

Fig. 3 Optimal model selection for = = 8, 10, 11, 15 mode models. Here, (���A ) are the AIC relative scores and
the sparsity ration in Ξ is a function of the sparsification constant. The low system density (high sparsity) for
the = = 8 and = = 15 are associated with very high 2-norm errors as is shown in figure 4. Due to these high
errors, the optimal = = 8 and = = 15 models do not provide meaningful models of the stalled airfoil flow.

An optimal sparsification constant of _ = 0.3533 was identified for the = = 10 mode model using the AIC
model-selection method. Figure 5a shows the optimal point obtained from an AIC sweep over a logarithmic range of _
values, resulting in a coefficient matrix (Ξ) that is 69.5% sparse (with 201 active terms). The governing equations for the
low-order modes that correspond to higher energy contributions tended to be more sparse than those for the high-order
modes, as is seen in 5b. Using the identified _, constrained SINDy was invoked to find the left hand side of equation
(15): ¤� = Θ(�)Ξ.. The left hand side obtained from SINDy ( ¤�<>34;) is shown plotted against the DNS state-derivative
( ¤��#() in figure 6. The error in ¤�<>34; was found to be negligible, and the constrained SINDy algorithm accurately
predicted the state-derivative evolution of the NACA-0009 system.

A Runge-Kutta solver was then implemented to integrate the ODEs described by equation (15) from an initial
condition and obtain the POD coefficients from SINDy (�<>34;). The results of this integration were compared to the
DNS (��#(), as seen in figure 7. Unlike the derivatives ¤�<>34; presented in figure 6, the POD coefficients (�<>34;)
exhibited a mismatch compared to the DNS solution as time increased. This issue also caused the variability in the
2-norm error plot in figure 5, as the error was computed by comparing the integrated model with data (see equation
(24)). Several time-marching schemes were tested to solve the ordinary differential equation (15) with similar results.
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Fig. 4 Optimal quadratic models for = = 3 through = = 17 POD modes. Although the = = 11 mode result
corresponds to the lowest 2-norm error, the = = 10 mode provides a more favorable complexity-misfit trade-off.

10
-1

10
0

1

1.5

2

2.5

3

2
-n

o
rm

 e
rr

o
r

10
-1

10
0

0.2

0.4

0.6

0.8

1

S
p

a
rs

it
y
 r

a
ti
o

 i
n

 

(a) 10-mode optimal _ selection
0 5 10

0

10

20

30

40

50

60

(b) Ξ(_)

Fig. 5 Optimal model for = = 10 POD modes. The optimal sparsification value was found to be _ = 0.3533
using the AIC model-selection method, and is shown as a blue point on both the top and bottom left plots. The
right-hand plot shows the active terms within the coefficient matrix Ξ for the optimal 10-mode SINDy model.
Here, the columns correspond to the states and the rows correspond to the various quadratic combinations of
the state variables.
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The modal phase-drift observed in figure 7 is possibly the consequence of either inefficiencies within the Runge-Kutta
solver, or the sensitivity of the quadratic terms in the discovered governing equations to errors or perturbations.

The effects of the phase-drift observed in the model can also be observed in figure 8, where the DNS data was
projected onto = = 200 modes and = = 10 modes to find the vorticity fields. The resulting vorticity fields were compared
with the quadratic SINDy model with = = 10 modes at several instances in time. Although the initial vorticity field
agrees closely with the DNS data, the model predictions become less accurate at the later time steps.
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Fig. 6 In red: the derivatives ( ¤�<>34;) of the POD coefficients obtained from SINDy using equation (15). In
blue: the derivatives of the DNS POD coefficients ( ¤��#(). The SINDy model is quadratic and consists of 10
POD modes with a sparsification value of _ = 0.3533.
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Fig. 7 The POD coefficients (�<>34;) obtained by integrating the result from figure 6 (shown in red) vs. the
the POD coefficients obtained from DNS (��#() shown in blue. The SINDy model is quadratic and consists of
10 POD modes with a sparsification value of _ = 0.3533.
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(a) C+ = 2.3, end of actuation (b) C+ = 2.7, lift reversal (Δ�;,<8=)

(c) C+ = 3.6, lift enhancement (Δ�;,<0G ) (d) C+ = 10 return to baseline flow

Fig. 8 Vorticity fields obtained at various times. The top plots shows the vorticity fields obtained from the
DNS data projected onto = = 200 modes, the middle plots shows DNS data projected onto = = 10 modes, and
the bottom plots are the SINDy results with = = 10 modes. The initial three figures are consistent with the DNS
model, however the phase-drift observed in figure 7 reduces the accuracy of the prediction over time.
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B. Quadratic and Linear Output Equation Models
A model for the lift coefficient �ℓ was also obtained by implementing unconstrained SINDy (as discussed in section

IV.C) to solve the output equation (6b): y = 6(�). Two sets governing equations were discovered by regressing
the POD-coefficient data onto the DNS lift coefficient data. The first model was obtained by training SINDy on
the DNS POD-coefficient data ��#( , so as to obtain a system without the phase-shift effects that resulted from the
integration of ¤�<>34; , as discussed in section V.A. The second model was discovered by training SINDy onto the
modeled POD coefficients (�<>34;) shown in figure 7. This resulted in the output equation models y = 6<>34; (�) and
y = 6�#( (�), where the subscripts on the function 6 indicate whether the system was trained on DNS or the discovered
dynamic-equation output (modeled) data.

Both linear and quadratic fits were investigated for the two aforementioned cases, as is shown in figure 9. The
sparsification constant _ was set to zero to preserve accuracy, resulting in non-sparse models. It was found that the
quadratic models more accurately modeled the training data, though they were more sensitive to errors and off-design
inputs which may indicate over-fitting. The linear models did not accurately capture the maxima and minima in the lift,
but produced smoother functions in general. For the y = 6�#(,;8=40A (��#(,C+=2.0) system, a test was performed with
= = 40 modes, which did result in a close fit with the DNS �ℓ data. However, since the dynamic model was found
to be optimal for = = 10 modes, this result was omitted in this work. A cubic fit was also implemented for both the
�<>34; and ��#( cases. Although the accuracy of these models was better than both the linear and quadratic cases (as
detailed in Appendix VIII.B), this resulted in an definitively over-fit model that did not provide meaningful results when
off-design datasets were used as inputs.

C. Model Cross-Validation with off-Design Input Data
The governing equations discovered by training the constrained SINDy algorithm on the C+ = 2.0 flow were

cross-validated with DNS data from a case with actuation at C+ = 1.4 and an unactuated flow. This was done by using
the model discussed in the previous section and solving equation (15) for inputs and initial conditions corresponding to
the C+ = 1.4 and unactuated flows.

Modes 01 and 02 of both the unactuated and C+ = 1.4 models follow the DNS data for the first few timesteps before
diverging (figure 10), which is consistent with the phase-drift that was observed for the training model. Mode 03 for
the unactuated model exhibits immediate out-of-phase behavior before temporarily converging with the DNS result at
times C = 5 and C = 14, while mode 04 exhibits the same initial accuracy as modes 01 and 02. The case actuated at
C+ = 1.4 also shows agreement at initial time steps, although higher-order modes (including 03 and 04) have a different
frequency from the DNS data. The results shown in figure 10 may imply the same problems with model sensitivity to
perturbations as the training case.

A similar procedure was repeated to obtain output equations for both the unactuated and C+ = 1.4 cases. As in
section V.B, both the integrated coefficients (�<>34;) shown in figure 10 and DNS POD Coefficients (��#() were used
as inputs to the RHS of the output equation (6b) to find the lift coefficients �ℓ . The quadratic models shown in figure 9
did not provide meaningful results when ��#( and �<>34; were used as inputs. However, the linear models performed
better, as shown in figure 11. The increasing discrepancy between the results and data as time increases for the �<>34;
cases is consistent with the phase drift observed in figures 10 and 7. The cross-validation for the C+ = 1.4 also showed
immediate out-of-phase behavior, since the training data set is out of phase with the C+ = 1.4 data. These results indicate
that the output equation model obtained in section V.B is not sufficiently accurate for use in analysis of off-design flows.
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Fig. 9 Left: Linear and quadratic output equations (y) for = = 10 modes, trained on either DNS or modeled
data, and with ��#( or �<>34; inputs. The subscript C+ = 2.0 on ��#( emphasizes that the dataset employed
for the rest of the analysis was used. The blue lines represent the DNS �ℓ data and red lines the identified
models. The linear output models fail to capture the lift enhancement that occurs at C+ = 3.6, but are locally less
sensitive to perturbations and errors. Conversely, the quadratic models better capture the lift oscillations but
are more sensitive.
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(a) Cross-validation without actuation
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(b) Cross-Validation with actuation at C+ = 1.4

Fig. 10 Cross-validation performed using the training dataset model (with actuation at C+ = 2.0) on an
unactuated flow and a flow with actuation at C+ = 1.4. The DNS data is shown in blue.
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(b) y = 6�#( (��#(,C+=1.4)

2 4 6 8 10 12 14 16 18 20

0.5

0.55

0.6

0.65

0.7

0.75

(c) y = 6<>34; (�<>34;,D=02C )

2 4 6 8 10 12 14 16 18 20

0.5

0.55

0.6

0.65

0.7

0.75

0.8

(d) y = 6<>34; (�<>34;,C+=1.4)

Fig. 11 Cross-validation of linear output equations (y) for = = 10 modes, trained on either DNS or modeled
data, and with ��#( or �<>34; inputs. The subscript C+1.4 on the input corresponds to actuation at C+ = 1.4,
and D=02C subscript indicates the unactuated flow. �ℓ DNS data is shown in blue.

VI. Conclusion
Governing equations were obtained from data for a two-dimensional, incompressible NACA-0009 airfoil in stall

(at U = 15◦) with short-duration momentum injection above the leading edge. Direct numerical simulation data of
the NACA-0009 flow [1] was reduced using proper orthogonal decomposition. A constrained version of "Sparse
Identification of Nonlinear dynamics" (SINDy) [6, 7] was implemented to take advantage of the lossless property of
the quadratic nonlinearity in the incompressible Navier–Stokes equation. This allowed for the discovered governing
equations to be consistent with the physical equations that represent unsteady, incompressible flows. A model selection
algorithm was implemented so that the resultant equations balanced accuracy and complexity, and a framework to
determine output equations for flow-dependent parameters was implemented to obtain the lift coefficient (�ℓ). A
quadratic ten-mode dynamic model with 201 active terms was found. Linear and quadratic output equations that
described the lift coefficient as a function of the flow-state were also discovered. The model was then cross-validated
using off-design datasets.

It is demonstrated that constrained SINDy is an effective means of obtaining nonlinear reduced-order models (ROM)
for complex, multimodal flows such as a two-dimensional airfoil system. Furthermore, it is shown that it is possible
to obtain output equations for relevant parameters using the same framework. However, because unsteady flows with
complex geometries feature tightly coupled dynamics and multi-modal instabilities, the equations were found to be
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extremely sensitive to noise and small perturbations. Although constrained SINDy correctly predicted the derivatives of
the state, a phase-shift was observed in the results when integration of the discovered ODEs was performed. Furthermore,
by reducing the model to ten modes, many local flow phenomena were not captured. Similarly, the output equation
models suffered from issues with over-fitting and a loss of generality. These issues became more apparent for both the
dynamic and output equations when cross-validation was performed with off-design data.

The results of this work motivate the development of future model-based analysis methods using the SINDy
framework. Although the described approach can be used for model-based analysis, robustness to small perturbations
must be improved to obtain models that can be used to control separated flows in real-time. Nonlinear stability analysis
methods such as those described in [24, 25] can be used to identify instabilities within the model. Global stability can
also be enforced for SINDy models by again leveraging the energy conserving property of the quadratic nonlinearity
to define regions to which the system must converge [26, 27]. These efforts will allow for the development of stable,
robust data-driven models with more modes.
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VIII. Appendix

A. Shift Mode Implementation
POD provides a low-rank basis that is optimal in the !2 sense, and the modes capture most of the energy contained

within the original system. For this work, = = 10 POD modes were used, which captured approximately 68% of the
energy for the actuated system as shown in figure 2. It is common in low-order modeling of fluids to introduce an
additional mode, called the shift mode, to capture the transient dynamics connecting the unstable steady state to the
mean of the steady-state vortex shedding [6]. A more detailed derivation of the shift mode can be found in [19]. The
shift mode is constructed starting from the mean-field correction D0

Δ
:

D0Δ = D0 − D4@ , (27)
where D0 is the mean flow and D4@ is the equilibrium solution. Using the mean field correction, it is possible to compute
a mode q1

Δ
that is orthogonal to the POD modes q8:

q1Δ = D
0
Δ −

#∑
8=1
(D0Δ · q8)q8 . (28)

Normalizing q1
Δ
by its 2-norm yields the shift mode qΔ:

qΔ =
D1
Δ

| |q1
Δ
| |Ω
. (29)

Finally, to obtain a shift mode coefficient 0Δ that can be appended to the POD coefficient matrix, the shift mode qΔ is
projected onto the velocity field:

0Δ = - (:)) qΔ, (30)
where - (:)) is a matrix with columns consisting of the velocity field (D and E components) at every snapshot. The
resultant shift coefficient can then be appended as a column to the matrix (12), resulting in an additional mode that is
used in the analysis.

Although the shift mode is very effective in capturing transient dynamics for unsteady flows, it was found that in the
case of the NACA-0009 system the shift mode did not increase the accuracy and reduced the sparsity of the model.
Furthermore, it was found that the shift-mode’s energy contribution was negligible relative to the other modes, as shown
in 12. The minor contribution of the shift mode is possibly a result of the actuating signal’s magnitude being very small.
Due to this, the shift mode was excluded from the analysis of the NACA-0009 system.
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Fig. 12 Energy contribution of the shift vs. the number of POD-modes used in the model. For the = = 10 mode
model, the shift mode captured less than 0.4% of the total energy within the flow.
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B. Additional Output Equation Models
A cubic model for the output equations trained on the C+ = 2.0 dataset is presented in figure 13. This model yielded

the lowest error for the training dataset, but did not provide meaningful results for the cross-validation cases.
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Fig. 13 Cubic output equation model obtained from performing a linear least squares regression of the 10-
mode SINDy system onto DNS lift coefficient data. Here blue represents the DNS data and red the discovered
model.
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