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Current low-dimensional aerodynamic modeling capabilities are greatly challenged in the

face of aggressive flight maneuvers, such as rapid pitching motions that lead to aerodynamic

stall. Nonlinearities associated with leading-edge vortex development and flow separation

push existing real-time-capable aerodynamics models beyond their predictive limits. The

inability to accurately predict the aerodynamic response of an aircraft to sharp maneuvers

makes flight simulation for pilot training unrealistic and, thus, ine↵ective at adequately

preparing pilots to safely handle compromising flight scenarios. Inaccurate low-dimensional

models also put practical approaches for aerodynamic optimization and control out of reach.

In the present development, we make a push toward realizing real-time-capable models

with enhanced predictive performance for flight operations by considering the simpler

problem of modeling an aggressively pitching airfoil in a low-dimensional manner. We

propose a parameter-varying model, composed of three coupled quasi-linear sub-models,

to approximate the response of an airfoil to arbitrarily prescribed aggressive ramp-hold

pitching kinematics. An output error minimization strategy is used to identify the low-

dimensional quasi-linear parameter-varying sub-models from input-output data gathered

from low-Reynolds number (Re = 100) direct numerical fluid dynamics simulations. The

resulting models have noteworthy predictive capabilities for arbitrary ramp-hold pitching

maneuvers spanning a broad range of operating points, thus making the models especially

useful for aerodynamic optimization and real-time control and simulation.

Nomenclature

↵ Angle of attack, or pitch angle

↵̇ Pitch rate

↵̈ Pitch angular acceleration

✏
rms

Root mean square error with respect to simulated output data

⇠ Optimization parameter for model identification

⇢ Fluid density

(A,B, C,D) Full parameter-varying state-space system

(Ã, B̃, C̃, D̃) Linear parameter varying sub-model state-space system

c Chord length

Cd, Cl, Cm Drag, lift, and pitching moment coe�cients

Cd,↵=0

o , Cl,↵=0

o , Cm,↵=0

o Nominal drag, lift, and pitching moment at ↵ = 0o

p Linear parameter-varying model parameter/pseudo-input vector

t⇤ Convective time, Ut/c
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u Linear parameter-varying model input vector

U Free stream fluid speed

x̃ Identified internal model state

x Total aerodynamic state vector, (x̃,p)

y Output vector (Cl, Cd, Cm) of forces and moments

yi, y Sub-model force/moment output, i 2 (Cl, Cd, Cm)

ytrain Training maneuver simulated force/moment output data

I. Introduction

Agile flight maneuvers are tightly coupled with unsteady aerodynamic e↵ects; body motions lead to
vortex shedding, while the velocities induced by shed vortices lead to aerodynamic body forcing. Numerous
low-dimensional models have been developed to characterize these unsteady aerodynamic processes, most
notably motivated by progress in biologically inspired flight systems. The ability to model the force response
of a flight vehicle to unsteady motions, in a computationally e�cient manner, is essential for real-time
flight simulation, control, and optimization. Unfortunately, current approaches to low-dimensional unsteady
aerodynamic modeling yield inadequate predictions when faced with aggressive flight maneuvers that move an
air-vehicle through many operating regimes characterized by appreciably di↵erent wake vortex interactions.
This is problematic, for example, in the realm of flight simulation for pilot training, where realistic models are
needed to adequately train pilots to e↵ectively manage compromising flight scenarios (e.g., sharp wind gusts
and aerodynamic stall). Accuracy and reliability of low-dimensional models over a broad operating range
also plays a major role in aerodynamic optimization, since the topology of a given cost function inherently
depends on the specific dynamical model used.

Work on unsteady aerodynamic modeling is long-standing and consistently improving. Numerous models,
grounded in fundamental aerodynamic principles, have continued to expand aerodynamic predictive capabil-
ities to progressively more ambitious situations. Beginning in the 1920s and 1930s, Wagner and Theodorsen
developed elegant models that relied upon a decomposition of the aerodynamic force response into contri-
butions from circulatory (i.e., vortex induced) and non-circulatory (i.e., added mass) components.1,2 To
extend this general framework to a broader range of aerodynamic maneuvers, numerous models have been
developed since then, based on various vortex representations such as vortex sheets,3,4, 5, 6, 7, 8 continuous
sequences of point vortices,9,10,11,12 and finite sets of point vortices with evolving strengths.13,14,15,16,17

Most vortex models are able to predict forces and moments with remarkable accuracy over a wide range of
kinematics because they account for the most relevant parameters that influence the aerodynamic response
(i.e., the evolving distribution of vorticity in the flow). Unfortunately, owing to their large dimensionality,
the models that exhibit superb predictive capabilities are too computationally costly to be used in real-time.
On the other hand, the models that are suitable for real-time implementation lack su�cient accuracy to be
e↵ective in many applications.

To this end, a multitude of aerodynamic modeling approaches have invoked the data-driven paradigm of
dynamical systems theory to identify low-dimensional computationally e�cient models for real-time utiliza-
tion. Data-driven methods are often desirable because they work with empirical aerodynamic input-output
response data directly, thus allowing a low-order model to be “trained” on a representation of the dynamics
it is intended to reproduce. Recently, the eigensystem realization algorithm (ERA), a data-driven method,
was used to construct linear state-space models of an airfoil undergoing pitch, plunge, and surge maneu-
vers.18,19 The models realized from the ERA approach proved successful in conjunction with H1 control
methods—which are robust to model uncertainty—for tracking commanded lift trajectories. However, the
models demonstrated inadequate predictive capabilities, for the purpose of realistic flight simulation and
aerodynamic optimization, when subjected to dynamics that moved away from the operating points about
which the models were designed.

Gain scheduling between sets of linear models, such as ERA models, has been proposed as a means
of resolving the shortcomings of local linear state-space representations. The approach of gain-scheduling
between linear models has been used successfully in various application areas, including aircraft flight con-
trol;20,21,22 however, the framework is not without drawbacks. For example, it is often the case that a
large collection of linear models and slow variations between operating points is required to satisfy controller
performance specifications,23 thus making the framework ill-suited for aggressive aerodynamic maneuvers,
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where variations between operating points is, by definition, rapid.
In response to the limitations associated with gain scheduling between linear models, much research has

focused on linear parameter-varying (LPV) systems, where the system matrices are known functions of a
measurable set of time-varying parameters. Gain-scheduled controller design within the LPV framework
allows for tighter performance bounds and can deal with fast variations of the operating point.24 The LPV
framework has been applied successfully to the modeling and control of various aircraft systems,25,26,27 but
much of this work has focused on variations in Reynolds and Mach numbers; progress on LPV methods for
aggressive flight maneuvers remains underdeveloped.

In the present manuscript, we study the viability of using parameter-varying models for accurately
predicting force and moment responses to aggressive aerodynamic maneuvers. Encouraged by observations
reported in Hemati (2013) and Hemati et al. (2014)—that empirical force response data of an unsteady
airfoil, with both leading and trailing edge vortex shedding, can be accurately reproduced, over a short time
window, by a small set of vortex parameters (i.e., the position and strength of two point vortices)28,29—we
devise a parameter-varying model that uses the angle of attack ↵ and its associated rate of change ↵̇ as
proxies for the pertinent vortex parameters influencing the force and moment response to rapid pitching
motions. We propose a model structure in the form of three quasi-LPV (qLPV) sub-systems—LPV systems
whose scheduling parameters include a subset of the states22,26—and invoke an output-error minimization
procedure to identify the sub-models from empirical aerodynamic force and moment response data generated
in direct numerical fluids simulations. Motivated by our desire to better understand the principles that govern
the aerodynamics of unsteady flight, we restrict our attention to idealized geometries and simple motions.
Specifically, we study the response of a flat plate airfoil to aggressive pitching kinematics. The pitching
maneuvers are fully prescribed (i.e., no e↵ort is made to include flight dynamics e↵ects in the system), and
the free-stream velocity remains fixed at all times, such that the pitch angle ✓ and the angle of attack ↵ are
equivalent throughout a maneuver. The resulting qLPV models yield respectable predictive capabilities for
lift, drag, and pitching moment over a broad range of operation (i.e., |↵|  25o), testifying to the promise of
parameter-varying representations in the context of aggressive aerodynamic response modeling.

We begin by discussing the general notion of parameter-varying models in an aerodynamic context fol-
lowed, in Section II, by a development of the qLPV model structure used to represent the lift, drag, and
pitching moment response to commanded pitch accelerations ↵̈. Section III introduces and develops the sys-
tem identification method used for realizing qLPV models from input-output data, while details pertaining
to the generation of aerodynamic input-output data for model identification are presented in Section IV. In
Section V, force and moment predictions from the identified qLPV model are compared with results from
direct numerical simulations over a variety of operating regimes; the qLPV model is also compared with an
ERA lift response model in an e↵ort to highlight the advantages of parameter-varying models over linear
models in the context of unsteady aerodynamic response modeling.

II. Pitching Airfoil Parameter-Varying Model Formulation

The aim of the present study is to use empirical input-output data, measured from either numerical
simulations or physical experiments, to identify a low-order model that accurately represents the dynamical
lift (Cl), drag (Cd), and pitching moment (Cm) response of an airfoil to arbitrary pitching maneuvers. In an
e↵ort to better ascertain a fundamental understanding with regards to modeling, we restrict our attention to
a flat-plate airfoil undergoing fully-prescribed pitching motions about its quarter-chord point, as depicted in
Figure 1. Additionally, we enforce that the free-stream velocity U remains constant throughout a maneuver
such that the angle of attack ↵ and the pitch angle ✓ are equivalent. We also take ↵̈, the angular acceleration
about the pitch axis, as the system input, since pitching maneuvers of physical interest can be generated
from this choice.

To be of any use in e↵ectively modeling aggressive pitch maneuvers, the identified model must be able
to approximate the response of the airfoil to strong variations in the relevant flow states. For simplicity,
we make a particular choice to use the angle of attack and its rate of change (↵, ↵̇) as proxies for the
aerodynamic states that may be more pertinent to the overall dynamics, but are either di�cult to measure
directly or challenging to represent adequately in a low-dimensional manner (e.g., vorticity distribution, as
depicted in Figure 2). Our choice to parameterize the airfoil response via the state of the airfoil (↵, ↵̇) is
a reasonable one, since the state of the fluid varies significantly based on the angle of attack and the pitch
rate; as highlighted in Figure 2, there is significant contrast between the flow state for di↵erent angles of

3 of 14

American Institute of Aeronautics and Astronautics



U ↵̇
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Figure 1: Pitching airfoil study-configuration. We restrict our attention to the response of a flat-plate airfoil
undergoing fully-prescribed pitching kinematics about its quarter-chord point. Moreover, we maintain a constant
free-stream velocity U such that the angle of attack ↵ and pitch angle ✓ are equivalent to one another throughout a
maneuver.

attack at a fixed pitch rate and for di↵erent pitch rates at a given angle of attack. Since we know that the
airfoil state evolves by means of a double integrator with respect to the input,
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these parameters are readily available and, therefore, a convenient choice from a modeling standpoint. Here,
we have expressed the evolution of the airfoil state from time tk to time tk+1

by means of its discrete-time
state-space representation, where �t = tk+1

� tk.

K = 0.2

(a) ↵ = 15o (b) ↵ = 30o (c) ↵ = 45o

K = 0.7

(d) ↵ = 15o (e) ↵ = 30o (f) ↵ = 45o

Figure 2: The state of the fluid varies significantly with the state of the airfoil (↵, ↵̇). Here, we visualize snapshots
of the vorticity-field associated with a canonical pitch-up maneuver of a flat-plate rotating about its leading-edge for
(a,d) ↵ = 15o, (b,e) ↵ = 30o, and (c,f) ↵ = 45o at reduced frequencies of K = 0.2 (top row) and K = 0.7 (bottom
row), where K := ↵̇c/(2U). The parameter-varying models of the present study make use of (↵k, ↵̇k) as proxies for
the dominant flow structures, augmented by a set of evolving internal states essential for modeling the dynamics of
any unaccounted flow physics. Figure adapted from Hemati et al. (2014).

In addition to our particular choice to set (↵k, ↵̇k) as parameters, we also include a set of internal states
x̃k in order to model the time-evolution of any unaccounted flow physics. Based on these choices, the general
dynamical system that maps from angular acceleration inputs ↵̈k to a column vector of force and moment

4 of 14

American Institute of Aeronautics and Astronautics



outputs yk = (Clk , Cdk , Cmk) 2 R3 can be expressed as,

xk+1

= A(↵k, ↵̇k)xk + B(↵k, ↵̇k)↵̈k (2a)

yk = C(↵k, ↵̇k)xk +D(↵k, ↵̇k)↵̈k, (2b)

where the total aerodynamic state xk := (x̃k, ↵̇k,↵k) 2 Rn is a column vector composed of the airfoil states

(↵k, ↵̇k) and a set of yet to be identified internal states x̃k 2 Rn�2. By parameterizing the system dynamics
by means of the airfoil states, which are also included in the total aerodynamic state vector xk, the system
evolution takes the form of a quasi-linear parameter-varying (qLPV) system—an LPV system for which the
parameters correspond to a subset of the system states.22,26

The goal of the identification problem is to approximate (A,B, C,D) from input-output data measured
during a training maneuver, such that the model in (2) robustly captures the dynamical response to arbitrary
“untrained” maneuvers. Rather than setting out to identify the full model in (2) from a single invocation of
a system identification procedure, we decompose the problem into three separate single-input single-output
(SISO) parameter-varying systems in order to make the identification procedure (discussed in Section III)
more manageable. Such a decomposition allows the individual sub-models to be coupled to one another;
thus, the full model is able to maintain important dynamical interplays, between the simplified SISO sub-
models, that may be necessary for accurate prediction (e.g., the drag sub-model requires an additional
parameterization by the lift coe�cient predicted by the lift sub-model in order to yield reliable predictions,
as will be discussed in Section V). Upon identifying these individual systems, we can combine the identified
models to construct the full system model (2), a schematic of which is presented in Figure 3.

↵̈(tk) Cd(tk)

Cl(tk)

Cm(tk)

C
on

ca
te
n
at
e

qLPV Drag Model

qLPV Lift Model

y(tk)

qLPV Pitching
Moment Model

Parameter-Varying Aerodynamic Model

Figure 3: Decomposition of the parameter-varying aerodynamic model into three qLPV sub-models for system
identification.

In addition to decoupling the full system model into three SISO sub-models, we further simplify the
system identification task by assuming that each of these sub-models has a�ne parameter dependence. In
doing so, we arrive at a set of qLPV sub-systems (i.e., LPV systems parameterized by a subset of the system
states), for which the state-space representation of sub-system i 2 {Cl, Cd, Cm} can be expressed as,

x

i
k+1

= Ai(↵k, ↵̇k)x
i
k + Bi(↵k, ↵̇k)↵̈k (3a)

yik = Ci(↵k, ↵̇k)x
i
k +Di(↵k, ↵̇k)↵̈k (3b)

where

Ai(↵k, ↵̇k) = Ai
0

+Ai
↵↵k +Ai

↵̇↵̇k, (3c)

Bi(↵k, ↵̇k) = Bi
0

+Bi
↵↵k +Bi

↵̇↵̇k, (3d)

Ci(↵k, ↵̇k) = Ci
0

+ Ci
↵↵k + Ci

↵̇↵̇k, (3e)

Di(↵k, ↵̇k) = Di
0

+Di
↵↵k +Di

↵̇↵̇k, (3f)

which is simply a weighted sum of several linear models with (↵k, ↵̇k) serving as weights. The qLPV form
is convenient because existing algorithms from LPV system identification theory can be invoked (with little
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modification) to determine the system matrices Ai(↵k, ↵̇k), Bi(↵k, ↵̇k), Ci(↵k, ↵̇k), and Di(↵k, ↵̇k), as will
be shown in Section III. For a given set of parameters, this model reduces to a locally linear state-space
model, which is typical of LPV and qLPV systems.30 Although the qLPV model in (3) is similar is to a
gain scheduled model (i.e., one that interpolates between a collection of linear models), it is not restricted to
slow variations in the scheduling parameters;23,24 thus, the system model in (3) is well-suited for predicting
the response to aggressive pitching maneuvers characterized by rapid variations in (↵k, ↵̇k). For notational
convenience, in the remainder, we will drop the superscript i corresponding to each sub-model, keeping in
mind that future developments are based on the definitions of inputs, parameters, outputs, and states that
vary between sub-models.

Special considerations must be made for modeling the drag response; we acknowledge that the absence
of a nonlinear coupling term in the drag model leaves much of the relevant dynamical behavior unmodeled.
Numerical experiments indicate that including Cl as a parameter in the drag sub-model substantially im-
proves drag response predictions (c.f., Section V for further discussion). As such, we include a nonlinear
coupling term by including the output of the lift sub-model Clk as a model parameter in the qLPV drag
sub-model, as shown in Figure 3. Thus, the qLPV drag sub-model has dynamics expressed by,

xk+1

= A(↵k, ↵̇k, Clk)xk + B(↵k, ↵̇k, Clk)↵̈k (4a)

yk = C(↵k, ↵̇k, Clk)xk +D(↵k, ↵̇k, Clk)↵̈k (4b)

where

A(↵k, ↵̇k, Clk) = A
0

+A↵↵k +A↵̇↵̇k +AClClk , (4c)

B(↵k, ↵̇k, Clk) = B
0

+B↵↵k +B↵̇↵̇k +BClClk , (4d)

C(↵k, ↵̇k, Clk) = C
0

+ C↵↵k + C↵̇↵̇k + CClClk , (4e)

D(↵k, ↵̇k, Clk) = D
0

+D↵↵k +D↵̇↵̇k +DClClk . (4f)

Modeling the nonlinear coupling in this manner does not hinder our ability to invoke existing algorithms for
identifying systems with a�ne parameter dependence, since we have chosen to decompose the full aerody-
namic response model into three SISO sub-systems. That is, we can perform the identification procedure on
the drag model independent of the lift model; Cl now serves a measurable parameter in the drag sub-model,
thus keeping the modeled drag response in the qLPV form required for the system identification methods
presented in Section III.

III. Quasi-LPV Model Identification

Our ultimate goal is to determine an approximate dynamical representation for the aerodynamic pitching
response of an airfoil from available input-output data such that the resulting model adequately reproduces
the true system dynamics. As discussed in Section II, we anticipate that (↵k, ↵̇k) will serve as suitable
proxies for the state of the surrounding fluid during airfoil pitching motions. Furthermore, we expect that
(↵k, ↵̇k), together with a set of appropriately identified internal states that model the dynamical evolution of
any remaining flow physics, will provide an adequate template for computing aerodynamic response models
from input-output data.

Since the evolution equations corresponding to the airfoil states are already known (i.e., Equation (1)), we
can recast the qLPV model into LPV form by relaxing the definitions of inputs and states for the purpose of
system identification. Doing so is beneficial because the quasi-linear terms—i.e., the quadratic and bilinear
terms arising from the fact that (↵, ↵̇) are included both as model states and model parameters—can be
treated as known inputs to the system. Furthermore, such a rearrangement allows existing techniques for
LPV system identification to be applied for qLPV system identification. Once the LPV representation is
identified, the original qLPV form desired can be obtained through reversing the rearrangement procedure,
which amounts to a simple exercise in accounting. We emphasize that such rearrangements are allowed
because we know the evolution of the system parameters, given by (1), a priori ; hence, we can compute a
sequence of pseudo-inputs pk := (↵k, ↵̇k) 2 R2, or in the case of the drag sub-model pk := (↵k, ↵̇k, Clk) 2 R3,
to be used during the identification step. We then move pk from the total state vector xk to the augmented
input vector uk := (↵̈k,pk), leaving only the identified internal state x̃k to serve as a state vector during
model identification. In other words, we perform system identification on the LPV representation of the
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system,

x̃k+1

= Ã(pk)x̃k + B̃(pk)uk (5a)

yk = C̃(pk)x̃k + D̃(pk)uk, (5b)

where the LPV system matrices (Ã, B̃, C̃, D̃) relate back to the qLPV system matrices (A,B, C,D) through
a rearrangement of columns corresponding to the elements of pk between the two representations. In this
form, the quadratic and bilinear terms associated with the airfoil states (i.e., the quasi-linear terms) are
treated as inputs, which are fully known; as such, the representation in (5) corresponds to an LPV model,
which can be identified by means of output-error minimization techniques.

The objective of the system identification procedure adopted here is to determine, for each sub-model, a
set of system matrices (Ã, B̃, C̃, D̃) that minimizes the output-error with respect to the training output data
ytraink , given the training input data uk (c.f., Section IV). We express this as a constrained minimization
problem that uses the elements of the LPV system matrices, ⇠ := (Ã, B̃, C̃, D̃), as optimization parameters,

min
⇠

J(⇠) :=
NX

k=1

kytraink � yk(⇠)k2
2

(6a)

such that x̃k+1

(⇠) = Ã(pk)x̃k(⇠) + B̃(pk)uk (6b)

yk(⇠) = C̃(pk)x̃k(⇠) + D̃(pk)uk, (6c)

where yk(⇠) is the model-predicted output, which is determined from the model associated with ⇠.
Although we can compute a minimizing solution to this constrained nonlinear and non-convex opti-

mization problem via gradient descent methods (e.g., Levenberg-Marquardt31 in the present study), two
additional challenges must be addressed beforehand. First, the non-uniqueness of a state-space realization
introduces further complexity when determining the descent directions in the optimization algorithm; care
must be taken to exclude descent directions for which the cost function does not change, since these solutions
will yield the same input-output behavior.32,33 In the present work, we invoke the method proposed by Lee
and Poolla (1997) and extended to the LPV output-error minimization problem by Verdult and Verhaegen
(2001) to exclude such descent directions during the gradient descent iterations. Second, the optimization
problem is further complicated by the presence of multiple local minima, many of which are associated
with models that yield unsatisfactory predictive performance for maneuvers that deviate from the training
maneuver. Numerical solutions of the optimization problem are very sensitive to the initial model iterate.
As such, we follow the subspace method of Verdult and Verhaegen (2001), which relies on approximate
dynamical relations between various terms in the LPV system, to determine an initial model iterate for the
gradient search algorithm; this general approach has been shown to lead to initial model guesses suitable for
the output-error minimization problem in a variety of contexts.24 Here, a kernel formulation is implemented
to yield solutions to the subspace identification problem in a computationally tractable manner.34 We note
that subspace methods can also be used to give an indication of the appropriate dimension to impose on
the identified internal state x̃k 2 Rn�2, thus guiding our choice in the selection of dimensions for the system
matrices. In the present study, the LPV system identification computations discussed above are performed
using the BILLPV Toolbox, v2.2.35

IV. Aerodynamic Input-Output Training Data

Now that we have proposed a parameter-varying representation for the aerodynamic response of a pitch-
ing airfoil and determined a means of identifying the specific qLPV sub-models that comprise it, we are left
with the final step of providing suitable input-output data for model identification. In an e↵ort to provide suf-
ficiently rich frequency content in the training maneuver, we generate input-output response data associated
with a flat-plate undergoing fully-prescribed sequences of pseudo-random ramp-hold pitching kinematics (i.e.,
no e↵ort is made to include flight dynamics e↵ects in the system). The pseudo-random ramp-hold maneuver
in ↵ arises by twice integrating a sequence of pulse inputs—pseudo-random in magnitude, pulse-width, and
frequency—in ↵̈, as in (1). Moreover, the imposed maneuvers are simulated such that the free-stream veloc-
ity U remains fixed at all times, and the pitch angle ✓ and the angle of attack ↵ are equivalent throughout
a maneuver. These maneuvers have been considered previously in the context of ERA-based pitching airfoil
models by Brunton et al. (2013) and Brunton et al. (2014).18,19 Additionally, in the present development,
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we compute the aerodynamic response of a flat-plate airfoil, pitching about its quarter-chord (c.f., Figure
1), by means of an immersed boundary projection method (IBPM)36,37 at Re = 100; this was also the
technique used by Brunton et al. (2013) and Brunton et al. (2014), thus providing a reasonable baseline
for comparing identified qLPV models with identified ERA models.18,19 The specific training maneuver
used for model identification in this study is shown in Figure 4. The aerodynamic forces and moments are
non-dimensionalized by ⇢U2c/2 and ⇢U2c2/2, respectively, where ⇢ is the fluid density and c is the length of
the chord.

Finally, we note that the force/moment training data must be preprocessed such that the steady-state
↵ = 0o baseline value is removed from each signal prior to performing system identification. In other words,
the identification is performed on (Cl�Cl,↵=0

o), (Cd�Cd,↵=0

o), and (Cm�Cm,↵=0

o), with the steady-state
↵ = 0o contribution re-introduced as a constant term in the output equation. In the present work, we only
need to account for this contribution in the drag equations, since the steady-state lift and pitching moment
are zero for a flat-plate at ↵ = 0o.

V. Quasi-LPV Pitching Model Results and Discussion

In the present section, we set out to identify a qLPV realization for airfoil pitching dynamics using the
output-minimization approach described in Section III. To do so, we begin with the simulated force and
moment response of the airfoil to the prescribed pseudo-random ramp-hold pitching maneuver shown in
Figure 4. The identified sub-models capture the dynamical response to lift, drag, and pitching moment
over 60 convective time units to within a root-mean-squared error ✏

rms

⇠ O(10�2) or better. In order to
demonstrate the validity of the model, we use the qLPV realization identified from the maneuver in Figure 4
to predict the dynamical response to several “untrained” maneuvers over 50 convective time units and with
di↵ering |↵| bounds.

Predictions from the identified lift sub-model are favorable across all of the untrained pitching maneuvers
with |↵|  25o that were considered, as presented in Figure 5. In fact, the identified parameter-varying
model yields predictions with consistent levels of error across all regimes: (a) ✏LPV

rms

= 3.7⇥ 10�3 at |↵|  5o,
(b) ✏LPV

rms

= 2.1 ⇥ 10�2 at |↵|  15o, and (c) ✏LPV

rms

= 6.5 ⇥ 10�2 at |↵|  25o. An ERA model, identified
as in Brunton et al. (2014) from impulse response simulations beginning from ↵ = 0o, exhibits diminishing
predictive accuracy with increased pitch amplitude: (a) ✏ERA

rms

= 1.5⇥10�2 at |↵|  5o, (b) ✏ERA

rms

= 2.8⇥10�2

at |↵|  15o, and (c) ✏ERA

rms

= 1.4 ⇥ 10�1 at |↵|  25o. This comparison demonstrates the superiority of
a parameter-varying model over a single linear model in predicting the unsteady aerodynamic response to
maneuvers performed at both small and large angles of attack.

The drag model performs similarly (c.f., Figure 6), with (a) ✏LPV

rms

= 4.3 ⇥ 10�3 at |↵|  5o, (b) ✏LPV

rms

=
4.9 ⇥ 10�3 at |↵|  15o, and (c) ✏LPV

rms

= 1.6 ⇥ 10�2 at |↵|  25o. However, we note that this is only the
case when Cl is included as a parameter in the drag sub-model, as parameterization by (↵, ↵̇) alone is not
su�cient for reliable drag predictions. A crude explanation for this relates back to the steady-state drag
curve, which is a nonlinear function of the angle of attack. Since, in the case of a flat-plate, the drag for
±↵ are indistinguishable from one another, a linear model based on ↵ alone will be a poor approximation.
Although we can improve the approximation by introducing |↵|, sin↵, and other nonlinear parameterizations,
numerical experiments indicate that the explanation above is incomplete. We find that introducing Cl as
a parameter leads to orders of magnitude improvement in the model’s predictive performance, which may
be attributed to the close relationship between Cl and the bound circulation of the airfoil; that is, Cl may
improve the predictions because it serves as a proxy for circulatory contributions to the drag.

Finally, the pitching moment sub-model also demonstrates consistent performance across all three ma-
neuvers (c.f., Figure 7): (a) ✏LPV

rms

= 8.5 ⇥ 10�4 at |↵|  5o, (b) ✏LPV

rms

= 2.8 ⇥ 10�3 at |↵|  15o, and
(c) ✏LPV

rms

= 4.3⇥ 10�3 at |↵|  25o.
Despite the promising predictive performance demonstrated by the identified parameter-varying model

for ramp-hold pitch maneuvers with |↵|  25o, the framework based on (↵, ↵̇) quickly deteriorates for |↵|
beyond approximately 30o. This observation indicates that for larger angles of attack, (↵, ↵̇) alone is not
an adequately rich set of proxy parameters for the relevant fluid flow physics. In order to reliably predict
and model the unsteady aerodynamic response at larger angles of attack, a parameter-varying approach will
necessarily require additional parameters to either augment or replace the set (↵, ↵̇). Viable candidates are
expected to relate back to pertinent flow qualities, such as the evolving vorticity distribution, in order to serve
as a rich set of proxies for the fluid flow state. As such, one possible choice would be to use point vortex states
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Figure 4: Training maneuver moves the airfoil through a wide range of parameter regimes. We identify the three
qLPV sub-models based on the “truth” training data generated in numerical simulations for the pseudo-random ramp-
hold pitching maneuver with |↵|  25o shown above. The resulting RMS errors associated with each of identified
sub-models for this training maneuver are ✏

rms

= 2.3⇥ 10�2 for Cl, ✏rms

= 6.2⇥ 10�2 for Cd, and ✏
rms

= 1.9⇥ 10�3

for Cm.

(i.e., position and strength) computed by a low-order point vortex model (e.g., the impulse matching model
presented in Wang and Eldredge (2013)) as parameters in a parameter-varying model. In this way, even if
the vortex model is only qualitatively accurate, which is the case for most low-dimensional vortex models,29

the parameters will serve as indicators of the underlying flow physics. Assuming an appropriate selection of
parameters, the system identification framework trains the parameter-varying aerodynamic response model
with representative input-output data. That is, the model is “tuned” to the given set of parameters in
a manner that enables reliable input-output response predictions; hence, qualitative descriptions of the
flowfield should be adequate in the context of parameter-varying aerodynamic response modeling, making
vortex parameters a feasible candidate for future studies.
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VI. Conclusions

In this study, we formulated a parameter-varying description for the unsteady aerodynamic response of
a pitching airfoil based on physical insights gathered from the simulated flowfield from a series of canonical
pitch-up maneuvers. We proceeded to frame an output-minimization problem in order to identify a model
realization from input-output data, using (↵, ↵̇) as model parameters. Numerical experiments indicated that
including an additional parameterization by Cl improved predictive performance in the drag response. Based
on this observation, we decomposed the full qLPV system into three single-input single-output qLPV sub-
models in an e↵ort to make model identification tractable, while allowing for coupling between sub-models.
The identified model successfully predicted the force/moment response in a series of “untrained” ramp-hold
pitching maneuvers for |↵|  25o. Comparisons with a linear ERA model highlighted the relevance of non-
linear terms in modeling the aerodynamic response in larger amplitude pitch maneuvers. Despite the success
in the regime of |↵|  25o, additional work remains to be conducted to enable reliable predictions at larger
angles of attack. One potential means of extending the parameter-varying framework to accommodate such
maneuvers is to incorporate parameters computed in a low-order vortex model, in an e↵ort to characterize
the qualitative evolution of the flowfield in the identified model.

VII. Acknowledgments

The authors extend their thanks to Pieter Gebraad, Vincent Verdult, and Michel Verhaegen for providing
access to the BILLPV Toolbox, v.2.2. This work was supported by the Air Force O�ce of Scientific Research
under awards FA9550-13-C-0012 and FA9550-12-1-0075

References
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