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Current low-dimensional aerodynamic-modeling capabilities are greatly challenged in the face of aggressive flight

maneuvers, such as rapid pitchingmotions that lead to aerodynamic stall. Nonlinearities associatedwith leading-edge

vortex development and flow separation push existing real-time-capable aerodynamics models beyond their

predictive limits,whichputs reliable real-time flight simulationandcontrol out of reach. In thepresentdevelopment, a

push toward realizing real-time-capablemodels with enhanced predictive performance for flight operations has been

madeby considering the simpler problemofmodeling an aggressively pitching airfoil in a low-dimensionalmanner.A

parameter-varying model, composed of three coupled quasi-linear sub-models, is proposed to approximate the lift,

drag, andpitching-moment response of an airfoil to arbitrarily prescribedaggressive ramp–holdpitchingkinematics.

An output-error-minimization strategy is used to identify the low-dimensional quasi-linear parameter-varying sub-

models from input–output data gathered from low-Reynolds-number (Re � 100) direct numerical fluid dynamics

simulations. The resulting models have noteworthy predictive capabilities for arbitrary ramp–hold pitching

maneuvers spanning a broad range of operating points, thus making the models especially useful for aerodynamic

optimization and real-time control and simulation.

Nomenclature

(A, B, C, D) = full parameter-varying state-space system

( ~A, ~B, ~C, ~D) = quasi-linear parameter-varying sub-model
state-space system

Cd, Cl, Cm = drag, lift, and quarter-chord pitching-moment
coefficients

Cd;α�0°, Cl;α�0°,
Cm;α�0°

= drag, lift, and quarter-chord pitching-moment
coefficients at α � 0°

c = chord length
G�z� = known discrete-time dynamics
K ≔ _αc∕�2U� = reduced frequencies
p = linear parameter-varying-model parameter/

pseudoinput vector
t� = convective time, Ut∕c
U = freestream fluid speed
u = linear parameter-varying-model input vector
x = total aerodynamic state vector, ( ~x, p)
~x = identified internal model state
y = output vector (Cl, Cd, Cm) of forces and

moments
yi, y = sub-model force/moment output, i ∈

�Cl; Cd; Cm�
ytrain = training-maneuver simulated force/moment-

output data
α = angle of attack, or pitch angle

_α = pitch rate
�α = pitch angular acceleration
ϵrms = rms error with respect to simulated output

data
ξ = optimization parameter for model identi-

fication
ρ = fluid density

I. Introduction

AGILE flight maneuvers are tightly coupled with unsteady
aerodynamic effects; body motions lead to vortex shedding,

whereas the velocities induced by shed vortices lead to aerodynamic
body forcing. Numerous low-dimensional models have been
developed to characterize these unsteady aerodynamic processes,
most notably motivated by progress in biologically inspired flight
systems. The ability to model the force response of a flight vehicle
to unsteady motions, in a computationally efficient manner, is
essential for real-time flight simulation, control, and optimization.
Unfortunately, current approaches to low-dimensional unsteady
aerodynamic modeling yield inadequate predictions when faced
with aggressive flight maneuvers that move an air vehicle through
many operating regimes characterized by appreciably different
wake-vortex interactions. This is problematic, for example, in the
realm of flight simulation for pilot training, in which realistic
models are needed to adequately train pilots to effectively manage
compromising flight scenarios (e.g., sharp wind gusts and
aerodynamic stall). The accuracy and reliability of low-dimensional
models over a broad operating range also play a major role in
aerodynamic optimization, because the topology of a given cost
function inherently depends on the specific dynamic model used.
Work on unsteady aerodynamic modeling is long-standing and

consistently improving. Numerousmodels, grounded in fundamental
aerodynamic principles, have continued to expand aerodynamic
predictive capabilities to progressively more ambitious situations.
Beginning in the 1920s and 1930s, Wagner [1] and Theodorsen [2]
developed elegant models that relied upon a decomposition of the
aerodynamic-force response into contributions from circulatory
(i.e., vortex induced) and noncirculatory (i.e., added mass)
components. To extend this general framework to a broader range
of aerodynamic maneuvers, numerous models have been developed
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since then, based on various vortex representations, such as vortex
sheets [3–8], continuous sequences of point vortices [9–12], and
finite sets of point vortices with evolving strengths [13–17]. Most
vortex models are able to predict forces and moments with
remarkable accuracy over a wide range of kinematics, because they
account for the most relevant parameters that influence the
aerodynamic response (i.e., the evolving distribution of vorticity in
the flow). Unfortunately, owing to their large dimensionality, the
models that exhibit superb predictive capabilities are too
computationally costly to be used in real time. On the other hand,
the models that are suitable for real-time implementation currently
lack sufficient accuracy to be effective in many applications.
To this end, a multitude of aerodynamic-modeling approaches

have invoked the data-driven paradigm of dynamic systems theory to
identify low-dimensional computationally efficient models for real-
time utilization. Data-driven methods are often desirable because
they work with empirical aerodynamic input–output response data
directly, thus allowing a low-order model to be “trained” on a
representation of the dynamics it is intended to reproduce. Recently,
the eigensystem realization algorithm (ERA), a data-driven method,
was used to construct linear state-space models of an airfoil
undergoing pitch, plunge, and surge maneuvers [18,19]. The models
realized from the ERA approach proved successful in conjunction
withH∞ control methods—which are robust to model uncertainty—
for tracking commanded lift trajectories. However, the models
demonstrated inadequate predictive capabilities, for the purpose of
realistic flight simulation and aerodynamic optimization, when
subjected to dynamics that moved away from the operating points
about which the models were designed.
Gain scheduling between sets of linear models, such as ERA

models, has been proposed as a means of resolving the shortcomings
of local linear state-space representations. The approach of gain
scheduling between linear models has been used successfully in
various application areas, including aircraft flight control [20–22];
however, the framework is not without drawbacks. For example, it is
often the case that a large collection of linear models and slow
variations between operating points is required to satisfy controller
performance specifications [23], thus making the framework ill-
suited for aggressive aerodynamic maneuvers, in which variations
between operating points are, by definition, rapid.
In response to the limitations associated with gain scheduling

between linear models, much research has focused on linear
parameter-varying (LPV) systems, in which the system matrices are
known functions of a measurable set of time-varying parameters.
Gain-scheduled controller design within the LPV framework allows
for tighter performance bounds and can deal with fast variations of
the operating point [24]. The LPV framework has been applied
successfully to the modeling and control of various aircraft systems
[25–27], butmuch of this work has focused onvariations in Reynolds
and Mach numbers; progress on LPV methods for aggressive flight
maneuvers remains underdeveloped.
It is important to note that previous system-modeling efforts have

focused on predicting lift and pitching moment, without
demonstrations of drag modeling. Of course, if such models are
intended for use in flight simulation, they must be capable of
accurately predicting all of the components in the resultant forces and
moments. In the case of an airfoil, for example, a suitablemodel must
accurately predict lift, drag, and pitching moment—or, equivalently,
axial force, normal force, and pitching moment.
In the present paper, we study the viability of using parameter-

varying models for accurately predicting the full force and moment
responses to aggressive aerodynamic maneuvers. Encouraged by
observations reported in [28,29]—that the empirical force response
data of an unsteady airfoil, with both leading- and trailing-edge
vortex shedding, can be accurately reproduced, over a short time
window, by a small set of vortex parameters (i.e., the position and
strength of two point vortices)—we devise a parameter-varying
model that uses the angle of attack α and its associated rate of change
_α as proxies for the pertinent vortex parameters influencing the force
andmoment response to rapid pitchingmotions.We propose amodel
structure in the form of three quasi-LPV (qLPV) subsystems—LPV

systems whose scheduling parameters include a subset of the states
[22,26]—and invoke an output-error minimization procedure to
identify the sub-models from empirical aerodynamic force and
moment response data generated in direct numerical fluids
simulations. Motivated by our desire to better understand the
principles that govern the aerodynamics of unsteady flight, we
restrict our attention to idealized geometries and simple motions.
Specifically, we study the response of a flat-plate airfoil to aggressive
pitching kinematics. The pitchingmaneuvers are fully prescribed and
flight dynamics effects are neglected. Further, the freestreamvelocity
remains fixed at all times, such that the pitch angle and angle of attack
α are equivalent. The resulting qLPV models yield respectable
predictive capabilities for lift, drag, and pitching moment over a
broad range of operation (i.e., jαj ≤ 25°), testifying to the promise of
parameter-varying representations in the context of aggressive
aerodynamic-response modeling.
We begin, in Sec. II, by discussing the general notion of parameter-

varying models in an aerodynamic context. This discussion is
followed by a development of the qLPV model structure used to
represent the lift, drag, and pitching-moment response to commanded
pitch accelerations �α. Section III introduces and develops the system-
identification method used for realizing qLPV models from input–
output data, whereas details pertaining to the generation of
aerodynamic input–output data formodel identification are presented
in Sec. IV. In Sec.V, force andmoment predictions from the identified
qLPV model are compared with results from direct numerical
simulations over a variety of operating regimes; the qLPV model is
also compared with an ERA lift-response model in an effort to
highlight the advantages of parameter-varying models over linear
models in the context of unsteady aerodynamic-response modeling.

II. Pitching-Airfoil Parameter-Varying-Model
Formulation

The aim of the present study was to use empirical input–output
data, measured from either numerical simulations or physical
experiments, to identify a low-order model that accurately represents
the dynamic liftCl, dragCd, and pitching-momentCm response of an
airfoil to arbitrary pitching maneuvers. In an effort to better ascertain
a fundamental understandingwith regard tomodeling, we restrict our
attention to a flat-plate airfoil undergoing fully prescribed pitching
motions about its quarter-chord point, as depicted in Fig. 1.
Additionally, we enforce that the freestream velocity U remains
constant throughout a maneuver, such that the angle of attack α and
the pitch angle are equivalent. We also take �α, the angular
acceleration about the pitch axis, as the system input, because
pitching maneuvers of physical interest can be generated from this
choice.
To be of any use in effectively modeling aggressive pitch

maneuvers, the identified model must be able to approximate the
response of the airfoil to strong variations in the relevant flow states.
For simplicity, we make a particular choice to use the airfoil
kinematic states—angle of attack and its associated rate of change (α,
_α)—as proxies for the aerodynamic states that may be more pertinent
to the overall dynamics, but are either difficult to measure directly or
challenging to represent adequately in a low-dimensional manner (e.
g., vorticity distribution, as depicted in Fig. 2). Our choice to
parameterize the airfoil response via the state of the airfoil (α, _α) is a
reasonable one, because the state of the fluid varies significantly
based on the angle of attack and the pitch rate; as highlighted in Fig. 2,
there is a significant contrast between the flow state for different
angles of attack at a fixed pitch rate and for different pitch rates at a

Fig. 1 Pitching-airfoil study configuration.
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given angle of attack. Because we know that the airfoil state evolves
by means of a double integrator with respect to the input

�
αk�1

_αk�1

�
�

�
1 Δt
0 1

��
αk
_αk

�
�

�
Δt2∕2
Δt

�
�αk (1)

these parameters are readily available and, therefore, a convenient
choice from a modeling standpoint. Here, we have expressed the
evolution of the airfoil state from time tk to time tk�1 by means of its
discrete-time state-space representation, in which Δt � tk�1 − tk.
Lastly, note that the maneuvers considered here are performed about
a base angle of attack αo � 0 and associated rate _αo � 0; however,
the modeling approach is equally valid for non-zero αo and _αo and
can be generalized to such instances byworkingwith deviations from
these base states instead [i.e., work with �αk − αo� and � _αk − _αo�].
In addition to our particular choice to set (αk, _αk) as parameters, we

also include a set of internal states ~xk to model the time evolution of
any unaccounted flow physics. Although the internal state could be
chosen to correspond to the evolution of a physical quantity (e.g.,
surface stress distribution [31]), here, we opt to determine ~xk from a
subspace-identification procedure (see Sec. III). Based on these
choices, the general dynamic system that maps from angular-
acceleration inputs �αk to a column vector of force and moment
outputs yk � �Clk ; Cdk ; Cmk

� ∈ R3 can be expressed as

xk�1 � A�αk; _αk�xk � B�αk; _αk� �αk (2a)

yk � C�αk; _αk�xk �D�αk; _αk� �αk (2b)

in which the total aerodynamic state xk ≔ � ~xk;αk; _αk� ∈ Rn is a
columnvector composed of the airfoil states (αk, _αk) and a set of yet to
be identified internal states ~xk ∈ Rn−2. By parameterizing the system
dynamics bymeans of the airfoil states, which are also included in the
total aerodynamic state vector xk, the system evolution takes the form
of a qLPV system—an LPV system for which the parameters
correspond to a subset of the system states [22,26].
The goal of the identification problem is to approximate (A, B, C,

D) from input–output data measured during a training maneuver,
such that themodel in Eq. (2) robustly captures the dynamic response
to arbitrary “untrained”maneuvers.Rather than setting out to identify
the full model in Eq. (2) from a single invocation of a system-
identification procedure, we decompose the problem into three
separate single-input/single-output (SISO) parameter-varying sys-
tems tomake the identification procedure (discussed in Sec. III) more
manageable. Such decomposition allows the individual sub-models
to be coupled to one another; thus, the full model is able to maintain
important dynamic interplays, between the simplified SISO sub-
models, that may be necessary for an accurate prediction. For
example, the drag sub-model requires an additional parameterization
by the lift coefficient predicted by the lift sub-model to yield reliable
predictions (see Sec. V for a full discussion). In principle, rather than
decomposing the system into separate sub-models for lift, drag, and

pitching moment, a single common model could be used instead;
however, in practice, nonlinear couplings—such as those needed for
reliable drag prediction—would pose a significant challenge from the
standpoint of system identification. Here, upon identifying the
individual subsystem models, we combine the identified models to
construct the full systemmodel (2), a schematic of which is presented
in Fig. 3.
In addition to decoupling the full system model into three SISO

sub-models, we further simplify the system-identification task by
assuming that each of these sub-models has affine parameter
dependence [see Eqs. (3c–3f)]. In doing so, we arrive at a set of qLPV
subsystems (i.e., LPV systems parameterized by a subset of the
system states), for which the state-space representation of subsystem
i ∈ fCl; Cd; Cmg can be expressed as

xik�1 � Ai�αk; _αk�xik � Bi�αk; _αk� �αk (3a)

yik � Ci�αk; _αk�xik �Di�αk; _αk� �αk (3b)

in which

Ai�αk; _αk� � Ai
0 � Ai

ααk � Ai
_α _αk (3c)

Bi�αk; _αk� � Bi
0 � Bi

ααk � Bi
_α _αk (3d)

Ci�αk; _αk� � Ci
0 � Ci

ααk � Ci
_α _αk (3e)

Di�αk; _αk� � Di
0 �Di

ααk �Di
_α _αk (3f)

which is simply aweighted sum of several linear models with (αk, _αk)
serving asweights. Here, the script formatting for the systemmatrices
is dropped to highlight the fact that a particular choice has been made
on the functional form of each subsystem model. This qLPV form is
convenient because existing algorithms from the LPV system-
identification theory can be invoked (with little modification) to
determine the systemmatricesAi�αk; _αk�,Bi�αk; _αk�,Ci�αk; _αk�, and
Di�αk; _αk�, as will be shown in Sec. III. For a given set of parameters,
this model reduces to a locally linear state-space model, which is
typical of LPVand qLPV systems [32]. Although the qLPVmodel in
Eq. (3) is similar to a gain-scheduledmodel (i.e., one that interpolates
between a collection of linear models), it is not restricted to slow
variations in the scheduling parameters [22–24]; thus, the system
model in Eq. (3) is well suited for predicting the response to
aggressive pitching maneuvers characterized by rapid variations in
(αk, _αk). For notational convenience, in the remainder, we will drop
the superscript i corresponding to each sub-model, keeping in mind

a) = 15° b) = 30° c) = 45°

d) = 15° e) = 30° f ) = 45°

Fig. 2 State of fluid varies with state of airfoil (α, _α). Figure adapted
from [29].

Fig. 3 Decomposition of the parameter-varying aerodynamic model
into three qLPV sub-models for system identification.
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that future developments are based on the definitions of inputs,
parameters, outputs, and states that vary between sub-models.
Special considerations must be made for modeling the drag

response; we acknowledge that the absence of a nonlinear coupling
term in the drag model leavesmuch of the relevant dynamic behavior
unmodeled. Numerical experiments indicate that including Cl as a
parameter in the drag sub-model substantially improves drag-
response predictions (see Sec. V for further discussion). As such, we
include a nonlinear coupling term by including the output of the lift
sub-modelClk as a model parameter in the qLPV drag sub-model, as
shown in Fig. 3. Thus, the qLPV drag sub-model has dynamics
expressed by

xk�1 � A�αk; _αk; Clk�xk � B�αk; _αk; Clk� �αk (4a)

yk � C�αk; _αk; Clk �xk �D�αk; _αk; Clk� �αk (4b)

in which

A�αk; _αk; Clk� � A0 � Aααk � A _α _αk � ACl
Clk (4c)

B�αk; _αk; Clk� � B0 � Bααk � B _α _αk � BCl
Clk (4d)

C�αk; _αk; Clk� � C0 � Cααk � C _α _αk � CCl
Clk (4e)

D�αk; _αk; Clk� � D0 �Dααk �D _α _αk �DCl
Clk (4f)

Modeling the nonlinear coupling in this manner does not hinder
our ability to invoke existing algorithms for identifying systems with
affine parameter dependence, because we have chosen to decompose
the full aerodynamic-response model into three SISO subsystems.
That is, we can perform the identification procedure on the drag
model independent of the lift model; Cl now serves a measurable
parameter in the drag sub-model, thus keeping the modeled drag
response in the qLPV form required for the system-identification
methods presented in Sec. III.

III. qLPV Model Identification

Our ultimate goal is to determine an approximate dynamic
representation for the aerodynamic pitching response of an airfoil
from available input–output data, such that the resulting model
adequately reproduces the true system dynamics. As discussed in
Sec. II, we anticipate that (αk, _αk) will serve as suitable proxies for the
state of the surrounding fluid during airfoil pitching motions.
Furthermore, we expect that (αk, _αk), together with a set of
appropriately identified internal states that model the dynamic
evolution of any remaining flow physics, will provide an adequate
template for computing aerodynamic-response models from input–
output data.
Because the evolution equations corresponding to the airfoil states

are already known [i.e., Eq. (1)], it makes sense to recast the full
qLPV model into a set of known dynamics and a set of unknown
dynamics (see Fig. 4); then, by relaxing the definitions of inputs and
states for the purpose of system identification, the quasi-linear

terms—that is, the quadratic and bilinear terms arising from the fact
that (α, _α) are included both as model states and model parameters—
can be treated as known inputs to the system. Such a rearrangement is
beneficial because it allows a straightforward application of existing
techniques for LPV system identification to be applied for qLPV
system identification. Figure 4 graphically depicts this decom-
position of each sub-block into knowndynamics—represented by the
discrete-time transfer function G�z� associated with a double
integrator, as in Eq. (1) and unknown dynamics, which are assumed
to evolve according to a qLPV system structure ( ~A, ~B, ~C, ~D), as in
Eqs. (3) and (4).
Once a particular realization for the unknown qLPV model is

identified, the original (desired) qLPV form can be obtained through
a reversal of the rearrangement procedure, which amounts to a simple
exercise in accounting. We emphasize that such rearrangements are
permitted because the evolution of the system parameters is known
ahead of time; hence, we can compute a sequence of pseudoinputs
pk ≔ �αk; _αk� ∈ R2, or in the case of the drag sub-model
pk ≔ �αk; _αk; Clk� ∈ R3, to be used during the identification step.
We thenmovepk from the total state vector xk to the augmented input
vector uk ≔ � �αk;pk�, leaving only the identified internal state ~xk to
serve as a state vector duringmodel identification. In other words, we
focus on finding a realization for the unknown qLPV representation:

~xk�1 � ~A�pk� ~xk � ~B�pk�uk (5a)

yk � ~C�pk� ~xk � ~D�pk�uk (5b)

in which the qLPV system matrices ( ~A, ~B, ~C, ~D) relate back to the
original qLPV systemmatrices (A,B,C,D) through a rearrangement
of columns corresponding to the elements of pk between the two
representations. In this form, the quadratic and bilinear terms
associated with the airfoil states (i.e., the quasi-linear terms) are
treated as inputs, which are fully known; the representation can be
identified by means of output-error minimization techniques; next,
we describe a particular technique for performing this identification,
although a variety of alternative techniques can be employed instead.
The objective of the system-identification procedure adopted here

is to determine, for each sub-model, a set of systemmatrices ( ~A, ~B, ~C,
~D) that minimizes the output error with respect to the training output
data ytraink , given the training input data uk (cf., Sec. IV). We express
this as a constrained minimization problem that uses the elements
of the LPV system matrices, ξ ≔ � ~A; ~B; ~C; ~D�, as optimization
parameters:

min
ξ

J�ξ� ≔
XN
k�1

kytraink − yk�ξ�k22 (6a)

such that ~xk�1�ξ� � ~A�pk� ~xk�ξ� � ~B�pk�uk (6b)

yk�ξ� � ~C�pk� ~xk�ξ� � ~D�pk�uk (6c)

in which yk�ξ� is the model-predicted output, which is determined
from the model associated with ξ.
Although we can compute a minimizing solution to this

constrained nonlinear and nonconvex optimization problem via
gradient-descent methods (e.g., Levenberg–Marquardt [33] in the
present study), two additional challenges must be addressed
beforehand; owing to the structure of the qLPV system in Eq. (5) in
conjunction with the fact that the quasi-linear terms in the model are
already known, both of the issues described next can be addressed
by appealing to techniques originally developed for LPV systems.
First, the nonuniqueness of a state-space realization introduces
further complexity when determining the descent directions in the
optimization algorithm; care must be taken to exclude descent
directions for which the cost function does not change, because
these solutions will yield the same input–output behavior [34,35].

Fig. 4 Each sub-model can be decomposed into known dynamics G�z�
and unknown qLPV dynamics.
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In the present work, we invoke the method proposed by Lee and
Poolla [34] and extended to the LPV output-error minimization
problem by Verdult and Verhaegen [35] to exclude such descent
directions during the gradient-descent iterations. Second, the
optimization problem is further complicated by the presence of
multiple local minima, many of which are associated with models
that yield unsatisfactory predictive performance for maneuvers that
deviate from the training maneuver. Numerical solutions of the
optimization problem can be sensitive to the initial model iterate. As
such, we follow the subspace method of Verdult and Verhaegen
[35], which relies on approximate dynamic relations between
various terms in the LPV system, to determine an initial model
iterate for the gradient search algorithm; this general approach has
been shown to lead to initial model guesses suitable for the output-
error minimization problem in a variety of contexts [24]. Here, a
kernel formulation is implemented to yield solutions to the
subspace-identification problem in a computationally tractable
manner [36]. We note that subspace methods can also be used to
give an indication of the appropriate dimension to impose on the
identified internal state ~xk ∈ Rn−2, thus guiding our choice in the
selection of dimensions for the system matrices. In the present
study, the LPV system-identification computations discussed
previously are performed using the BILLPV Toolbox, v2.2.¶

IV. Aerodynamic Input–Output Training Data

Now that we have proposed a parameter-varying representation for
the aerodynamic response of a pitching airfoil, and determined a
means of identifying the specific qLPV sub-models that comprise it,

we are left with the final step of providing suitable input–output data
for model identification. In an effort to provide a “sufficiently rich”
training maneuver, we generate input–output response data
associated with a flat plate undergoing fully prescribed sequences
of pseudorandom ramp–hold pitching kinematics, that is, no effort is
made to include flight dynamics effects in the system. The
pseudorandom ramp–hold maneuver in α arises by twice integrating
a sequence of pulse inputs—pseudorandom in magnitude, pulse
width, and frequency—in �α, as in Eq. (1). Moreover, the imposed
maneuvers are simulated such that the freestream velocityU remains
fixed at all times, and the pitch angle and the angle of attack α are
equivalent throughout a maneuver. These maneuvers have been
considered previously in the context of ERA-based pitching-airfoil
models by Brunton et al. [18,19]. Additionally, in the present
development, we compute the aerodynamic response of a flat-plate
airfoil, pitching about its quarter-chord (see Fig. 1), by means of an
immersed boundary projectionmethod (IBPM) [37,38] atRe � 100;
this was also the technique used by Brunton et al. [18,19], thus
providing a reasonable baseline for comparing identified qLPV
models with identified ERA models [18,19]. The specific training
maneuver used for model identification in this study is shown in
Fig. 5. The aerodynamic forces and moments are nondimension-
alized by ρU2c∕2 and ρU2c2∕2, respectively, in which ρ is the fluid
density and c is the length of the chord.
Finally, we note that the force/moment training data must be

preprocessed, such that the steady-state α � 0° baseline value is
removed from each signal prior to performing system identification.
In other words, the identification is performed on �Cl − Cl;α�0°�,
�Cd − Cd;α�0°�, and �Cm − Cm;α�0°�, with the steady-state α � 0°
contribution reintroduced as a constant term in the output equation. In
the present work, we only need to account for this contribution in the
drag equations, because the steady-state lift and pitching moment are
zero for a flat plate at α � 0°.

Fig. 5 Pseudorandom ramp-hold pitching maneuver with jαj≤25° used for model identification.

¶Private Communication with V. Verdult and M. Verhaegen, “BILLPV
Toolbox, v2.2,” 2010, http://www.dcsc.tudelft.nl/datadriven/billpv/ [retrieved
June 2014].
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V. qLPV Pitching Model Results and Discussion

In the present section, we set out to identify a qLPV realization for
airfoil pitching dynamics using the output-minimization approach
described in Sec. III. To do so, we begin with the simulated force and
moment response of the airfoil to the prescribed pseudorandom
ramp–hold pitching maneuver shown in Fig. 5. The identified sub-
models capture the dynamic response to lift, drag, and pitching
moment over 60 convective time units to within an rms error
ϵrms ∼O�10−2� or better. To demonstrate the validity of the model,
we use the qLPV realization identified from the maneuver in Fig. 5 to
predict the dynamic response to several “untrained”maneuvers over
50 convective time units and with differing jαj bounds.
Predictions from the identified lift sub-model are favorable across

all of the untrained pitching maneuvers with jαj ≤ 25° that were
considered, as presented in Fig. 6. In fact, the identified parameter-
varying model yields predictions with consistent levels of error
across all regimes: ϵLPVrms � 3.7 × 10−3 at jαj ≤ 5° (Fig. 6a), ϵLPVrms �
2.1 × 10−2 at jαj ≤ 15° (Fig. 6b), and ϵLPVrms � 6.5 × 10−2 at jαj ≤ 25°
(Fig. 6c) . An ERA model, identified as in Brunton et al. [19] from
impulse-response simulations beginning from α � 0°, exhibits
diminishing predictive accuracy with increased pitch amplitude:
ϵERArms � 1.5 × 10−2 at jαj ≤ 5° (Fig. 6a), ϵERArms � 2.8 × 10−2 at jαj ≤
15° (Fig. 6b), and ϵERArms � 1.4 × 10−1 at jαj ≤ 25° (Fig. 6c). This
comparison demonstrates the superiority of a parameter-varying
model over a single linear model in predicting the unsteady
aerodynamic response to maneuvers performed at both small and
large angles of attack. On the other hand, if the additional precision
gained from the parameter-varying framework is not essential, then
the linear time-invariant nature of an ERA model may prove more
convenient from a controller-design standpoint.
The drag model performs similarly (cf., Fig. 7), with ϵLPVrms �

4.3 × 10−3 at jαj ≤ 5° (Fig. 7a), ϵLPVrms � 4.9 × 10−3 at jαj ≤ 15°
(Fig. 7b), and ϵLPVrms � 1.6 × 10−2 at jαj ≤ 25° (Fig. 7c). However, we
note that this is only the casewhenCl is included as a parameter in the
drag sub-model, as parameterization by (α, _α) alone is not sufficient
for reliable drag predictions. A crude explanation for this relates back
to the steady-state drag curve, which is a nonlinear function of the
angle of attack. Because, in the case of a flat plate, the drag for�α are
indistinguishable from one another, a linear model based on α alone

will be a poor approximation. Although we can improve the
approximation by introducing jαj, sinα, and other nonlinear
parameterizations, numerical experiments indicate that the preceding
explanation is incomplete.We find that introducingCl as a parameter
leads to orders-of-magnitude improvement in the model’s predictive
performance, which may be attributed to the close relationship
between Cl and the bound circulation of the airfoil, that is, Cl may
improve the predictions because it serves as a proxy for circulatory
contributions to the drag.
Finally, the pitching-moment sub-model also demonstrates

consistent performance across all three maneuvers (cf., Fig. 8):
ϵLPVrms � 8.5 × 10−4 at jαj ≤ 5° (Fig. 8a), ϵLPVrms � 2.8 × 10−3 at jαj ≤
15° (Fig. 8b), and ϵLPVrms � 4.3 × 10−3 at jαj ≤ 25° (Fig. 8c).
Despite the promising predictive performance demonstrated by the

identified parameter-varying model for ramp–hold pitch maneuvers
with jαj ≤ 25°, the framework based on (α, _α) quickly deteriorates for
jαj beyond approximately 30°. This observation indicates that, for
larger angles of attack, (α, _α) alone is not an adequately rich set of
proxy parameters for the relevant fluid-flow physics. In fact, the
degradation in predictive performance is likely associated with the
natural vortex shedding that ensues for jαj ≥ 27°, which cannot be
adequately captured by the airfoil kinematic states.
To reliably predict and model the unsteady aerodynamic response

at larger angles of attack, a parameter-varying approach will
necessarily require additional parameters to either augment or replace
the set (α, _α). Viable candidates are expected to relate back to
pertinent flow qualities, such as the evolving vorticity distribution, to
serve as a rich set of proxies for the fluid-flow state. As such, one
possible choice would be to use point-vortex states (i.e., position and
strength) computed by a low-order point-vortex model (e.g., the
impulse matching model presented in Wang and Eldredge [17]) as
parameters in a parameter-varying model. In this way, even if the
vortexmodel is only qualitatively accurate, which is the case formost
low-dimensional vortex models [29], the parameters will serve as
indicators of the underlying flow physics. Assuming an appropriate
selection of parameters, the system-identification framework
trains the parameter-varying aerodynamic-response model with
representative input–output data. That is, the model is “tuned” to the
given set of parameters in amanner that enables reliable input–output
response predictions; hence, qualitative descriptions of the flowfield

a) b) ° °° c)

Fig. 6 Identified qLPV lift model exhibits robust predictive accuracy across a range of motions.
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should be adequate in the context of parameter-varying aerodynamic-
response modeling, making vortex parameters a feasible candidate
for future studies.

VI. Conclusions

In this study, a parameter-varying description for the unsteady
aerodynamic response of a pitching airfoil was formulated based on
physical insights gathered from the simulated flowfield from a series

of canonical pitch-up maneuvers. An output-error minimization
approach was leveraged to identify a qLPV model realization from
input-output data, using the airfoil states (α, _α) as model parameters.
Numerical experiments indicated that including an additional
parameterization by a model-predicted Cl improved predictive
performance in the drag response. Based on this observation, the full
qLPV system was decomposed into three SISO qLPV sub-models in
an effort to make model identification tractable, while allowing for
coupling between sub-models. The identified model successfully

a) b) c)

Fig. 7 Identified qLPV drag model exhibits robust predictive accuracy across a range of motions.

a) b) c)

Fig. 8 Identified qLPV pitching-moment model exhibits robust predictive accuracy across a range of motions.
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predicted the lift, drag, and pitching-moment response in a series of
untrained ramp–hold pitching maneuvers for jαj ≤ 25°. Compar-
isons with a linear ERAmodel highlighted the relevance of nonlinear
terms in modeling the aerodynamic lift response in larger-amplitude
pitch maneuvers. Despite the success in the regime of jαj ≤ 25°,
additional work remains to be conducted to enable reliable
predictions at larger angles of attack. One potential means of
extending the parameter-varying framework to accommodate such
maneuvers may be to incorporate parameters computed in a low-
order vortex model, in an effort to better characterize the qualitative
evolution of pertinent flow states in the identified model.
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