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Abstract The dynamic mode decomposition (DMD)—a popular method for performing data-driven Koop-
man spectral analysis—has gained increased popularity for extracting dynamically meaningful spatiotemporal
descriptions of fluid flows from snapshot measurements. Often times, DMD descriptions can be used for pre-
dictive purposes as well, which enables informed decision-making based on DMD model forecasts. Despite
its widespread use and utility, DMD can fail to yield accurate dynamical descriptions when the measured
snapshot data are imprecise due to, e.g., sensor noise. Here, we express DMD as a two-stage algorithm in
order to isolate a source of systematic error. We show that DMD’s first stage, a subspace projection step,
systematically introduces bias errors by processing snapshots asymmetrically. To remove this systematic error,
we propose utilizing an augmented snapshot matrix in a subspace projection step, as in problems of total least-
squares, in order to account for the error present in all snapshots. The resulting unbiased and noise-aware total
DMD (TDMD) formulation reduces to standard DMD in the absence of snapshot errors, while the two-stage
perspective generalizes the de-biasing framework to other related methods as well. TDMD’s performance is
demonstrated in numerical and experimental fluids examples. In particular, in the analysis of time-resolved
particle image velocimetry data for a separated flow, TDMD outperforms standard DMD by providing dynam-
ical interpretations that are consistent with alternative analysis techniques. Further, TDMD extracts modes that
reveal detailed spatial structures missed by standard DMD.
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1 Introduction

Dynamical systems—mathematical representations of a system’s time evolution—are of great importance and
utility in the natural, social, and applied sciences, as they can provide a means of describing—and, therefore,
better understanding—complex phenomena. Often times, dynamical models can also be used in a predictive
manner, to forecast the future behavior of a particular system, from which actionable decisions can be made.
Still, reliable and insightful models can be difficult to formulate in the context of nonlinear systems, such as
fluid flows, which can exhibit complex behaviors on a broad range of spatial and temporal scales. For instance,
while fluid flows can be described mathematically from first-principles physics-based modeling (e.g., the
Navier–Stokes equations), such models often lack closed-form solutions; although numerical solutions can be
sought, significant computational resourcesmay be required, which canmake analysis and prediction unwieldy
and impractical. Even in instances for which a numerical solution can be reasonably computed, the resulting
data—on their own—will not necessarily provide useful insight into the underlying characteristics of the
fluid flow evolution. Furthermore, for many dynamical systems, first-principles modeling can be prohibitively
challenging due to the sheer scale and complexity of the system dynamics; in such instances, the best recourse
may be to determine a model from empirical data collected through system observations (i.e., a data-driven
approach).

In an effort to address these modeling challenges, the dynamic mode decomposition (DMD)was developed
in the fluid mechanics community as an equation-free data-driven technique capable of extracting dynamically
relevant spatial structures and associated temporal characteristics (i.e., growth/decay rates and oscillation
frequencies) from snapshot observations (e.g., pressure, velocity, vorticity) sampled from a fluid flow [43,46].
It was shown in [42] that DMD approximates the Koopman operator [31], an infinite-dimensional linear
operator that describes the evolution of a nonlinear dynamical system by its action on observables (defined
precisely in the next section). One may then study the dynamics of a nonlinear system using the spectral
properties of this linear operator [32]: For instance, von Neumann used this perspective in his celebrated
proof of the mean ergodic theorem [53]. Owing to its applicability in modeling nonlinear systems and to
its demonstrated success in analyzing complex fluid flows, DMD has gained increasing popularity in fluid
mechanics and beyond. For instance, DMD has been utilized in the fields of epidemiology [41], medicine [5],
neuroscience [7], power systems [8], robotics [4], sustainable buildings [8], and video processing [22].

Part of DMD’s growth in popularity can be attributed to its potential for use as a model reduction technique.
The dynamics of fluid flows, like many large-scale systems, can often be represented in a low-dimensional
manner, provided an appropriate coordinate system is utilized. For example, the low-dimensional nature of
fluid flow evolution has been well established in the context of the laminar flow over a cylinder in two spatial
dimensions [40]. Numerous such models have been constructed using the proper orthogonal decomposition
(POD)—a modal decomposition technique that extracts coherent structures from snapshot data [28]; however,
POD-based approaches require additional modeling considerations to yield low-dimensional dynamic repre-
sentations of fluid flows. In contrast, DMD extracts both a set of coherent spatial structures and their associated
(simple) dynamics, making it appealing from a dynamic modeling perspective: Modes can be categorized as
“slow” or “fast” based on their relative growth/decay rates, as in Davison’s method [10], providing a rationale
for neglecting certain modal responses for the purpose of model reduction.

With the aim of constructing low-dimensional representations of complex large-scale dynamics, various
methods for rank-reduction and optimal mode selection have been developed around DMD [9,21,29,58].
Furthermore, as a modeling technique, DMD has connections to common “data-driven” methods from
system identification (e.g., Ho’s Algorithm [27], Kung’s Algorithm [33], and the eigensystem realization
algorithm (ERA) [30]), atmospheric science (e.g., linear inverse modeling (LIM) and principal interac-
tion/oscillation pattern analysis [25]), signal processing (e.g., Prony’s Method [34]), and time series analysis
(e.g., autoregressive models [6]). A detailed discussion of DMD’s connections with ERA and LIM is presented
in [50]. Finally, we note that while DMD can be used in a model reduction capacity, it is also a versatile method
for data exploration—much in the way that POD has been used for such purposes; insights can be gleaned by
analyzing the spatially coherent structures alongwith their associated temporal characteristics, bringing to light
the “active regions” of a flow in terms of their contributions to the overall flow dynamics. For instance, DMD
has allowed experimental data to be analyzed to gain a better understanding for the instability mechanisms
associated with aerodynamically driven annular liquid sheets [12].

Despite increasing adoption as a modeling and analysis tool, the adverse influence of measurement errors
on DMD’s performance and reliability remains under-appreciated. For instance, the signal-to-noise ratio of
the observed snapshot data can alter the growth/decay rates predicted by DMD [13]—an obvious problem
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for studies that rely upon DMD to identify and distinguish between stable and unstable spatial modes. Even
when questions of stability are not a concern, the sensitivity of growth/decay rates to measurement noise can
potentially lead to a misinterpretation of the role of particular modes and their contribution to the dynamics;
incorrect approximations of the damping of dynamic modes will alter the discrimination of “slow” and “fast”
modes, thus misguiding amodel reduction approach grounded in timescale arguments. Numerous other studies
have also encountered DMD’s sensitivity to measurement errors (e.g., sensor noise), which has led to a host of
approaches aimed at mitigating noise-related effects via various forms of rank-reduction, ensemble averaging,
cross-validation, andwindowing [12,26,43–45,47,50,58]. As wewill show, although these techniques provide
a means of uniquely determining a DMD realization, the resulting analysis will be subject to systematic bias
errors when the measured snapshot data are inexact due to sensor noise or other effects. By viewing DMD
as a “best-fit” least-squares/minimum-norm operator determined from measured snapshot data, we establish
that the same sources of noise-induced bias arising in standard least-squares problems—extensively studied
in statistics and numerical analysis [14–16,19,20,35,52,59]—will also plague DMD.

In this manuscript, we address the issue of noise-induced bias by focusing on the DMD algorithm directly.
We show that the currently used formulation of DMD accounts for errors in only some of the snapshots,
whereas measurement noise typically influences all snapshots. Invariably, accounting for noise in only a
subset of the data will lead to biases, since doing so amounts to treating the remaining data as exact. To arrive
at an unbiased result, we propose a total least-squares/error-in-variables formulation of DMD, such that errors
in all the data are considered. Here, we focus on de-biasing DMD from an algorithmic standpoint; an analytical
characterization of the influence of sensor noise on DMD and alternative de-biasing strategies are considered
in the complementary work by Dawson et al. [11]. In particular, we introduce a de-biasing framework that
can be generalized to other DMD-like algorithms. To arrive at such a framework, we focus on simplifying the
unbiased formulation of DMD in a manner that decouples the de-biasing aspects of the framework from the
particular choice of DMD-like algorithm—a feature that can be realized from a projection operator perspective,
as presented in Sect. 2.

In order to develop a generalizable unbiased noise-awaremethod, we rewrite DMDas a two-step procedure:
(1) a subspace projection step and (2) an operator identification step. In this form, it becomes simple to show
that the subspace projection step introduces a systematic error in existing DMD algorithms when the snapshot
data are inexact due to sensor noise and other factors. We propose a modification to the conventional subspace
identification step, based on an augmented snapshot matrix, in order to remove the source of bias that is
systematically introduced into current formulations of DMD. The resulting noise-aware total DMD (TDMD)
framework reduces to the standard DMD algorithm when the measured snapshots are without error. Moreover,
based on the two-step analysis developed here, the de-biasing procedure is generalizable to other DMD-like
algorithms that appeal to Koopman spectral analysis, such as optimal mode decomposition [21,58], streaming
DMD [26], sparsity-promoting DMD [29], non-uniform DMD [23], and optimized DMD [9]; in such cases,
the “operator identification” step is to be replaced by the dynamical analysis algorithm of choice.

After formulating the de-biasing framework in Sect. 2, we study a simple linear system in Sect. 3 to
demonstrate the bias resulting from a standard DMD analysis of noisy data; working with a simple linear
system, for which the exact solution is known, allows a demonstration and validation of TDMD’s ability to
converge to the exact spectrum as more and more snapshots are processed. We consider a more representative
fluid flow in Sect. 4, where numerical simulation data of laminar flow over a cylinder in two-dimensions is
corrupted with synthetic additive Gaussian measurement noise, and compare the performance of DMD and
TDMD. Only a weak noise signal is added to the numerical data (i.e., high signal-to-noise ratio), such that
the resulting bias in the DMD analysis does not significantly alter the interpretation of the identified modes
(i.e., the resulting bias in the DMD eigenvalues is small); the example is used to demonstrate that TDMD
converges more rapidly (i.e., with fewer snapshots) to the exact (noise-free) spectrum than standard DMD.
In Sect. 5, DMD and TDMD are used to extract dynamical information from time-resolved particle image
velocimetry (TR-PIV) data of a separated flow. TDMD is found to outperform DMD: TDMD eigenvalues
provide an interpretation of the separated flow that is consistent with other analysis techniques, while the
associated modes reveal a more detailed description of the spatial structures involved in the dynamics.

We note that our focus here is on measurement noise and data quality, with particular attention on removing
the influence of such factors from the ensuing analysis. While TDMD provides a systematic framework for
conducting unbiased Koopman spectral analysis in the context of measurement noise, further investigation is
needed to ensure that such procedures do not remove system-specific process noise, characterizations of which
can provide descriptive physical insights. An extensive discussion of Koopman spectral analysis for systems
exhibiting weak random forcing in the form of process noise can be found in [2]. The influence of process
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noise on the Koopman spectrum, as characterized in [2], together with noise-aware techniques like TDMDwill
be essential to determine the contribution of various noise sources (i.e., data quality versus intrinsic stochastic
forcing) on the resulting analysis. Ultimately, TDMDprovides a systematic framework for conducting unbiased
Koopman spectral analysis in applied settings for which data quality can be an issue; this will be essential for
modeling complex systems and extracting credible dynamical descriptions from measured data.

2 An unbiased formulation of dynamic mode decomposition

2.1 Dynamic mode decomposition and Koopman spectral analysis

Consider a dynamical system given by x �→ f (x), where x ∈ X is the state variable. This evolution law
can be expressed in terms of the evolution of an appropriate set of scalar-valued functions of state-space
g : X → C, known as observables. From this perspective, it is useful to consider the Koopman operatorK, an
infinite-dimensional linear operator that maps observables to corresponding observables one step in the future:
Kg(x) = g( f (x)) [31,37]. The utility here rests in the fact that the dynamics of the nonlinear map f can be
determined completely from the linear Koopman operator.

In recent years, analyzing practical systems via the spectral properties of the Koopman operator (i.e., the
eigenvalues, modes, and eigenfunctions of K) has been made possible by means of DMD-like methods [8,
38,42,55,56], in which one approximates the Koopman operator from data obtained from experiments or
simulations, without explicit knowledge of the map f . In these methods, one considers a vector of observables
ψ : X → C

n (typically R
n , in practice) evaluated at specific values xk ∈ X and their images f (xk), for

k = 1, . . . ,m, and seeks a linear relationship between them:

ψ( f (xk)) = Aψ(xk), (1)

where A ∈ R
n×n . More specifically, the data consist of pairs of snapshots ψ(xk), ψ( f (xk)), which may

be obtained from an experiment, for instance, by taking measurements at two consecutive times. Using the
formalism in [50], these snapshots are stored in the n × m matrices

X := [
ψ(x1) · · · ψ(xm)

]

Y := [
ψ( f (x1)) · · · ψ( f (xm))

]
,

(2)

and from (1), one seeks a matrix A that satisfies

Y = AX. (3)

In DMD, A is given by the least-squares/minimum-norm solution to (3):

Admd := Y X+, (4)

where X+ denotes the Moore–Penrose pseudoinverse of X . It is shown in [50] and [55] that, under certain
conditions on the data and observables, the eigenvalues of A correspond to eigenvalues of the Koopman
operator K, and Koopman eigenfunctions and modes may be found from A as well. In other words, the
methodology above provides a means for conducting Koopman spectral analysis of dynamical systems directly
from snapshot data.

2.2 Dynamic mode decomposition, measurement noise, and bias

The above discussion on connections between DMD and the Koopman operator focuses on the undercon-
strained case with “perfect” snapshot data, in which (3) is satisfied exactly, and (4) gives the minimum-norm
solution. Indeed, this case is common in many situations with exact snapshot data: for instance, it holds
whenever the columns of X (the snapshots) are linearly independent.

Here, we are interested in applying Koopman spectral analysis in practical contexts with imperfect and
noisy snapshot data; hence, the underconstrained case is undesirable, as solutions will inevitably overfit the
noise. As such, we are primarily interested in the overconstrained case, in which we have more snapshots
than observables (m > n). Note that underconstrained problems can be transformed into overconstrained
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Fig. 1 DMD minimizes error with respect to the time-shifted data ψ( f (xk)) only, thus yielding a biased analysis when the
snapshots exhibit measurement noise. In contrast, TDMD minimizes the orthogonal distance between the linear fit and each data
point, thus taking all errors into consideration. By accounting for error in both ψ(xk) and ψ( f (xk)), TDMD yields an unbiased
analysis

problems via rank-reduction techniques (e.g., POD projection), thus providing a means of managing issues
of over-fitting in practice. For example, the original DMD algorithm introduced in [43] projects snapshots
onto an r -dimensional subspace (with r ≤ m) using POD projection. This is particularly important in fluid
mechanics applications, since the snapshot dimension is often substantially larger than the number of snapshots
that can feasibly be collected in practice. We will discuss subspace projection and rank-reduction later in this
section, but for now consider that the overconstrained problem corresponds to the case where (4) represents
the least-squares solution

min
A,�Y

‖�Y‖F , subject to Y + �Y = AX, (5)

where ‖ · ‖F denotes the Frobenius norm. (Note that, if the minimizing A is not unique, then (4) selects the
solution of minimum norm.) Now, assume the data measurements are corrupted by some noise, which we do
not know. One interpretation of (5) is to view Y as the “noisy” snapshots and �Y as a “noise correction”;
DMD then finds a linear relationship between the snapshots X and the “noise-free” snapshots Y + �Y .

With this interpretation, it is apparent that the snapshots in X andY are treated asymmetrically: ifwe account
for noise in the measurements Y , then it seems one should also account for noise in the measurements X and
solve the total least-squares problem

min
A,�X,�Y

∥∥
∥∥

[
�X
�Y

]∥∥
∥∥
F

, subject to Y + �Y = A(X + �X). (6)

This is the central idea we propose here.We shall see that treating X and Y asymmetrically, as in (5), introduces
a bias in the eigenvalues of A, even in the context of noisy snapshot data; in contrast, if we account for noise in
both X and Y as in (6), then the bias is removed. In fact, as shown in [17] and [51], under certain assumptions
on the data and provided that an exact linear relationship (3) between snapshots exists in the noise-free case,
then, in the presence of noise, the total least-squares solution converges to the exact solution as the number of
snapshots tends to infinity, whereas the least-squares solution does not.

Noise-induced bias in DMD can be understood graphically, as in Fig. 1. Standard DMD seeks a linear fit
that minimizes the error with respect to the time-shifted data ψ( f (xk)) only; neglecting to account for errors
in the unshifted snapshots ψ(xk) causes the linear fit to be biased away from the solution that would result
if the snapshots were noise-free. In contrast, the total DMD (TDMD) perspective considers a minimization
in a direction orthogonal to the linear fit—a fact that will become clear in the next section; doing so allows
measurement errors in both the unshifted and time-shifted snapshots to be considered, thus yielding an unbiased
solution.

We emphasize that an asymmetric handling of noise arises in any formulation of DMD that can be reduced
to a “one-sided” minimization problem, as in (5); hence, the perspective taken above is equally valid for any
such DMD method, and is not restricted to the particular formulation introduced in [50]. For instance, the
original DMD algorithm [43] for time series data exhibits this asymmetric handling of noise. The original
algorithm adds a “noise correction” term vk+1 to each time-shifted snapshot ψ(xk+1), whereas the unshifted
snapshotsψ(xk) are left unaltered; of course, this constitutes an asymmetric accounting of measurement noise,
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as reflected in (5). In contrast, an unbiased analysis of time series data requires that both the unshifted and
time-shifted snapshot data must be noise-corrected as,

X + �X := [
(ψ(x1) + v1) · · · (ψ(xm) + vm)

]

Y + �Y := [
(ψ(x2) + v2) · · · (ψ(xm+1) + vm+1)

]
.

(7)

Althoughmost of the entries in the time series snapshot data matrices X and Y in (7) will be identical—modulo
a column-wise shift—all of the entries will exhibit measurement noise contamination that must be accounted
for through the noise correction terms �X and �Y . Working with both sets of noise-corrected snapshot data,
as established in (6), will yield an unbiased analysis.

2.3 A general framework for de-biasing

A de-biased DMD algorithm can be formulated directly from (6) via the singular value decomposition (SVD),
as is common in the total least-squares literature [52]; however, a specific SVD-based formulation will not
provide useful insights that can leveraged to generalize the de-biasing framework to other DMD-like methods.
Here, we present a projection operator interpretation of DMD that makes the de-biasing framework agnostic to
the particular formulation of DMD under consideration. As we will show, the solution of (6) can be interpreted
as a two-stage procedure: (1) a de-biasing stage followed by (2) an operator identification stage. While simple,
this powerful perspective decouples the de-biasing step from the specific formulation of DMD; hence, the
two-stage perspective introduced here allows other DMD-like methods to be de-biased as well.

In order to solve the total least-squares problem (6), we appeal to a projection operator perspective [14,15,
59]. Note that (3) may be written equivalently as X∗A∗ = Y ∗, where ∗ denotes Hermitian transpose. Then,
the least-squares solution may be obtained by projecting onto the range of X∗. Writing this projection as PX∗
(and noting that orthogonal projections are self-adjoint), we see the least-squares solution Als satisfies

YPX∗ = AlsXPX∗ . (8)

(Of course, XPX∗ = X , but we leave the projection in (8) for analogywith the total least-squares case discussed
below.) It is clear that the DMD solution (4) satisfies this relation, noting that X+X = PX∗ . Hence, when the
usual DMDalgorithm is applied to overconstrained data, onemay interpret it as first performing the projections

Ȳ = YPX∗, X̄ = XPX∗ = X, (9)

and then finding the minimum-norm solution of Ȳ = AX̄ .
An analogous approach can be used to solve the total least-squares problem (6). First, construct the

augmented snapshot matrix

Z :=
[
X
Y

]
, (10)

and let Zn denote the best rank-n approximation of Z (in the Frobenius norm). Then, the solution Atls of (6)
satisfies

YPZ∗
n

= AtlsXPZ∗
n
, (11)

wherePZ∗
n
denotes the projection onto the range of Z∗

n ; thismay be found from the singular value decomposition
of Z , as shown in Step 1 of the algorithm outlined below. The solution of the total least-squares problem may
thus be obtained by first projecting the data

Ȳ = YPZ∗
n
, X̄ = XPZ∗

n
, (12)

and then finding the minimum-norm solution of Ȳ = AX̄ . In practice, one does not need to compute the
matrices Ȳ and X̄ explicitly: in the algorithm given below, we factor the projection PZ∗

n
= QQ∗ and compute

with the smaller matrices X̂ = XQ, Ŷ = Y Q.
Both the least-squares and the total least-squares solution approaches described above amount to a single

two-stage procedure consisting of (1) a subspace projection step, followed by (2) an operator identification
step, distinguished from one another by the details of the subspace projection step. That is, in the least-squares
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formulation (9), only the Y matrix is “corrected” to account for noise, and the correction (projection) depends
only on X ; in the total least-squares formulation (12), both X and Y are “corrected,” and the projection depends
on both X and Y . We shall see in the next section that the former approach introduces a bias in the eigenvalues
of A when noise is present, while the latter approach does not.

It is worth noting that, if the data matrices do satisfy Y = AX exactly for some A (i.e., if the data are
“noise free”), then X̄ = X and Ȳ = Y , for both (9) and (12). (To see this, note that if Y = AX , then
R(Y ∗) ⊂ R(X∗), and henceR(Z∗) = R(X∗), which has dimension at most n. Thus, Ȳ ∗ = PZ∗

n
Y ∗ = Y ∗ and

X̄∗ = PZ∗
n
X∗ = X∗.) In other words, in the absence of noise, both methods are equivalent.

The least-squares and total least-squares problems (5) and (6) arise when the original problem (3) is
overconstrained, with m > n. However, another common case is when we expect the dynamics to evolve on a
low-dimensional subspace, say of dimension r < n. As described earlier, in such instances, an underconstrained
problem, with n > m, can be interpreted as an overconstrained problem when viewed on the low-dimensional
subspace, provided that r < m; projecting onto an appropriate lower dimensional subspace, with dimension
r < m, also serves to remedy issues of over-fitting that arise when the data are noisy and n > m. The usual
approach in this situation is to determine a suitable low-dimensional subspace from the data, for instance using
POD, to project the snapshots onto this subspace, and then to proceed with (4), where X and Y now contain
the projected snapshots [43] (i.e., “projected DMD” as defined in [50]).

It is interesting to note that projected DMD performs a (POD) projection “on the left,” in the space of
measurements. This projection can serve to “de-noise” the snapshots by retaining only the most energetic
content. In contrast, the “exact DMD” algorithm defined in [50] and the de-biased formulation introduced
here perform projections “on the right,” in the space of snapshots, utilizing PX∗

r
and PZ∗

r
, respectively. It is the

projection on the right that is responsible for “de-biasing” DMD, when the snapshots are treated symmetrically
(i.e., when the projection is computed from both sets of snapshots X and Y ). In general, DMD can be performed
with projections on both sides (i.e., on the left and on the right), where the appropriate projection operators
are determined by considering all of the snapshots (i.e., utilize

[
X Y

]
for projections on the left, and Z =[

X∗ Y ∗ ]∗ for projections on the right). Here, we focus on de-biasing—not de-noising—and determine the
“best” r -dimensional subspace from a truncated SVD of the augmented snapshot matrix Z only, as described
below.

We emphasize that in expressing total least-squares DMD as a two-step process, the subspace projection
step (12) can be interpreted as a “pre-processing” step to be used for de-biasing other DMD-like algorithms.
Thus, the method may be used with standard implementations of, for example, optimal mode decomposi-
tion [21,58], streaming DMD [26], sparsity promoting DMD [29], non-uniform DMD [23], or optimized
DMD [9]. For instance, the de-biased algorithm for standard DMD [50] proceeds as follows:

1. Compute the singular value decomposition of Z , and store the first n right singular vectors as columns of
a matrix Q. (Then the projection PZ∗

n
is QQ∗, though we will not need this projection explicitly.)

2. Project the snapshot matrices, calculating X̂ = XQ and Ŷ = Y Q.
3. Calculate the reduced singular value decomposition X̂ = UΣV ∗.
4. Determine the DMD matrix Ãdmd = U∗Ŷ VΣ−1, which is related to the full DMD operator by Ãdmd =

U∗AdmdU .
5. The DMD eigenvalues λi are eigenvalues of Ãdmd, and the corresponding (projected) DMD modes are

vi = U ṽi , where Ãdmdṽi = λi ṽi .
6. If desired, calculate the associated frequency and growth rate for mode i , as fi = 	 λi/(2πδt) and gi =

log |λi |/δt , where δt refers to the time-shift between snapshots stored in X and Y .

(Note that if the dynamics are expected to evolve on an r -dimensional subspace with r < n, replace n with r
in Step 1 of the algorithm above.)

On a side note, the formulation here allows one to use efficient randomized SVD algorithms [36] to
expedite de-biased DMD computations—an option that would not be directly available via a “more traditional”
formulation of the total least-squares problem [52]; here, we require the singular vectors associated with the
first r singular values, rather than those associated with the last r singular values. In particular, for the de-
biasedDMDalgorithm above, a significant computational advantage can be gained by leveraging a randomized
SVD calculation in Step 1; of course, in such instances, additional care must be taken to ensure that solutions
converge with respect to the parameters invoked in a particular randomized SVD implementation. Although
the details of randomized SVD methods are outside the scope of this work and are not essential to DMD
analysis or the results presented in this study, it is worth mentioning that these methods may be exploited for
computational savings in other incarnations of DMD and Koopman spectral analysis as well.
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Lastly, the two-stage perspective taken here enables DMD-type methods to be utilized in providing an
indication of uncertainties in snapshot data. In particular, for the de-biased DMD formulation proposed here,
the “corrected” snapshot data is computed as X̄ = X + �X = XPZ∗

n
and Ȳ = Y + �Y = YPZ∗

n
, so it

follows that the snapshot “error” can be computed as,

− �X = X (I − PZ∗
n
), −�Y = Y (I − PZ∗

n
). (13)

The snapshot errors (−�X, −�Y ) provide an indication of the uncertainty associated with the snapshot data,
without a need to explicitly perform DMD beyond the subspace identification stage. In Sect. 5, we make use
of (13) to compare the error fields identified by the noise-aware computations with uncertainties determined
by alternative statistical techniques. Such comparisons serve to corroborate the noise-aware framework from
the standpoint of snapshot errors and uncertainties.

2.4 Practical considerations

While the total least-squares formulationmakes DMDmore “robust” to noise—in the sense that the framework
explicitly accounts for inexact data and does not systematically introduce bias errors when applied to noisy
data—the formulation can also make the solution procedure less stable; total least-squares problems are
known to exhibit less stability than least-squares problems, though more robust solution approaches have been
developed [16,19,51,52].While the term noise-robust is often used to describe (regularized) total least-squares
problems in the literature, in the remainder, we choose to use the term noise-aware to emphasize the need for
algorithmic techniques with greater computational robustness than may be afforded by the de-biased DMD
procedure outlined above. Such issues are outside the scope of this study, but are the focus of ongoing work.

We note that while the noise-aware framework addresses the potential pitfalls associated with measurement
noise contamination, the de-biased formulation does not address other practical challenges associated with
DMD-basedmethods. In particular, an assumption that has gone into the formulation here is that the underlying
dimension of the low-dimensional dynamics is known, whereas, in reality, this dimension must be determined
from the data in some manner. Many past studies have simply allowed the dimensions of the snapshot data
to dictate the dimensionality of the DMD representation: Without a rank-reduction procedure, the number
of DMD modes and eigenvalues is determined as min(m, n). At least in the underdetermined case (m < n),
selecting the number of DMD modes and eigenvalues according to the number of snapshots m that have been
collected seems arbitrary. A more judicious choice would be to truncate to a lower rank, if appropriate, as
indicated by some other metric, as outlined below; otherwise, the analysis will be based on an over-fitting of
noisy data. Such has been the impetus for the development of optimal mode selection techniques [9,21,29,58].

One option available to the practitioner in determining an appropriate low-dimensionalDMDrepresentation
is to impose a larger truncation level than expected during the DMD computation, followed by an optimal
mode selection technique, such as sparsity-promoting DMD [29]; however, we note that these propositions
must be explored further, as previous investigations have indicated a sensitivity of total least-squares solutions
to over-estimation of the “correct” truncation level [48]. A simpler alternative, commonly employed in the
literature, is to determine the dimension of a low-order representation from a spectral gap (if one exists) based
on a POD analysis of the snapshot data. Even when the POD analysis does not reveal a spectral gap, an
appropriate truncation level can be determined through the use of conventional model selection methods—
already established in the context of numerical analysis and system identification—such as, e.g., Akaike
Information Criterion [1], generalized cross-validation [18], Morozov’s discrepancy principle [39], or L-
curve [24].Model selection techniques haveprovenvaluable in a number of contexts to systematically overcome
over-fitting issues and for addressing problems of bias-variance trade-off. For the purposes of the current study,
we do not consider optimal rank selection procedures; instead, we are interested in comparing the standard and
noise-aware DMDmethods directly, and compare performance for a set of truncation levels where appropriate.
In Sect. 3, we also investigate the influence of over-truncation and under-truncation on DMD-based spectral
analysis.

To distinguish the unbiased formulation from standard DMD in the remainder of the manuscript, we refer
to this noise-aware framework as TDMD, owing to its relationship with total least-squares. In the following
sections, we demonstrate the effectiveness of TDMD on a series of large-scale dynamical systems with noise-
contaminated snapshot data.
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3 DMD on linear systems

In order to highlight the ability of TDMD to yield unbiased approximations of the underlying dynamics
in the context of noisy data, we consider a simple model problem for which the exact solution is known:
a low-dimensional linear system with a large number of noisy observables. The linear system considered
here has no particular physical relevance; rather, it is a simple example designed to convey our key point:
measurement noise causes DMD to over-predict the damping of dynamic modes—even in the case of simple
linear dynamics—whereas TDMD yields an unbiased characterization of the dynamics. Incorrect estimates
of the damping associated with various modes can have deleterious consequences on reduced order models
formulated around timescale arguments. Further, in some circumstances, biased estimates can lead to false
conclusions regarding the stability of modes. Indeed, an unstable mode could potentially appear stable from
the standpoint of a standard DMD-based analysis—a consequence of unphysical noise-induced damping.

In particular, we consider a linear system composed of three dynamic modes with associated eigenvalue
pairs λ1 = e(±2π i)δt , λ2 = e(±5π i)δt , and λ3 = e(−0.3±11π i)δt , with δt = 0.01 s. Note, the third mode is slightly
damped, whereas the other two are purely oscillatory. The observables are generated as a randomly chosen
linear transformation from R

6 to R
250 (i.e., n = 250, r = 6). The corresponding snapshots are corrupted by

additive zero-mean Gaussian noise N (0, 0.05). Both standard and TDMD are performed on time series data
with m = {100, 200, 500} snapshot pairs. Each method is repeated for 200 independent realizations of the
data, all generated from a different randomly selected initial condition for each state variable N (1, 0.1) and
a different noise sequence. The resulting spectra are compared in Fig. 2. Note that the signal-to-noise ratio
associated with the damped mode will diminish with time. An ensemble of shorter snapshot sequences can be
used to overcome the issue of weakening signal-to-noise ratio. However, since time series data are commonly
used in practice, we present the time series results here.

Even with a subspace projection to the known dimension of the underlying dynamics (r = 6), standard
DMD yields a biased determination of the growth/decay characteristics. The frequencies identified by standard
DMD possess a degree of bias as well. This example highlights the potential pitfalls of previously employed
“noise-mitigation” procedures such as ensemble averaging and cross-validation; DMD possesses bias in an
expected value sense, so while such methods will reduce the variance, they will not remove the bias error. In
contrast, the unbiased TDMD formulation quickly converges to the correct spectrum, in an expected value
sense, also with a decreasing variance as the number of collected snapshots increases. Thus, in this example,
TDMD correctly classifies the modes as stable/unstable and predicts the associated frequencies correctly as
well. This suggests that commonly employed noise-mitigation techniques (e.g., ensemble averaging) can be
applied with greater confidence in the TDMD setting.

Of course, the degree of bias is related to the signal-to-noise ratio. Under favorable noise conditions [11],
the resulting bias due to noise will not alter the dynamical interpretation of particular modes. Nonetheless,

(a) (b) (c)

Fig. 2 Spectrum for a linear system. As the number of snapshots m increases, the spectrum predicted by TDMD converges with
essentially no bias and slightly tighter variance compared with standard DMD. Each snapshot has dimension n = 250 and is
corrupted by zero-mean Gaussian noise N (0, 0.05). All results are computed with r = 6. The true eigenvalues (black squares)
are plotted along with the mean values from standard DMD (dark circles) and TDMD (dark triangles) based on 200 different
noise-realizations. The eigenvalues from each of the individual realizations of standard DMD (light circles) and TDMD (light
triangles) indicate the variance associated with each method. a m = 100. b m = 200. c m = 500
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even in such circumstances, TDMD seems to converge to the correct spectrum more rapidly than standard
DMD, as will be demonstrated in the next section.

The above analysis on noise-induced bias assumes that the true system rank is known a priori, but in practice
this is seldom the case. Indeed, over- and under-truncation are quite likely to arisewhen performingDMD-based
analyses. Here, we will investigate the role of over- and under-truncation on DMD/TDMD spectra for a single
realization of the noisy data analyzed in Fig. 2a, withm = 100. This case corresponds to the underconstrained
scenario that is typical of fluids datasets.

DMD/TDMD spectra for various truncation levels are reported in Fig. 3. Tiles (a)–(d) demonstrate that
over-truncation—i.e., selecting r to be less than the true system rank—can give rise to misleading spectra, as
may be expected of an analysis that discards signal along with noise. With over-truncation, DMD and TDMD
both consistently capture a single mode for various values of r ; however, the other identified eigenvalues vary
substantially between truncation levels. In contrast, under-truncation—i.e., selecting r to be greater than the
true system rank—tends to capture all three modes associated with the true system modes fairly consistently,
as seen in tiles (e)–(g). The DMD eigenvalues associated with these three modes are damped relative to the
true eigenvalues, whereas the associated TDMD eigenvalues are comparably more accurate. However, in both
DMD and TDMD, under-truncation inevitably yields spurious eigenvalues, as an artifact of “fitting the noise.”
These spurious modes are found to be substantially damped at higher truncation levels (i.e., lower r values),
but approach the unit circle as truncation level decreases (i.e., r increases). In the case of no truncation (i.e.,
r = m = 100), DMD and TDMD yield the same spectra (see tile (h)). In this case, the majority of spurious
eigenvalues lie on the unit circle, making it difficult to discern relevant modes from irrelevant modes. Further,
without truncation, both methods fail to capture one of the true modes. This observation corroborates the point
that rank-reduction should be performed when the underlying system dimension is less than the number of
observables and the data are noisy with m < n.

Determination of a suitable truncation level for DMD-based analysis is clearly an important problem, as
illustrated in this simple example. Various systematic approaches for determining a suitable truncation level
were discussed in Sect. 2. In the remaining sections, our focus is on eliminating noise-induced bias in DMD-
based methods, so we resort to using a simple rank determination strategy based on POD energy retention
arguments. This approach provides a systematic means of evaluating DMD/TDMD performance on noise-
corrupted data, without introducing additional parameters that could make comparison dubious. Still, further
investigation and development of reliable methods for rank determination is warranted—even in settings with
noise-free data.

Sample MATLAB code for this example is available as supplementary material.1

4 DMD on cylinder flow simulations

While the demonstration of TDMD on a linear system showcases the advantages of the unbiased formulation
over standard DMD in the simplest of cases, TDMD outperforms standard DMD in the analysis of more
complex systems aswell. Here, wewill study bothDMDandTDMD in the context of fluid flows by considering
numerical simulations of the canonical problem of flow past a cylinder, with synthetic noise contamination;
actual experimental datasets are considered in the next section. Ourmain objective with this numerical example
is to highlight the advantages of TDMD over DMD, even in situations for which the bias in DMD eigenvalues
becomes negligible as the number of snapshots increases. As such, we consider mild noise contamination
through the use of a simplistic model of noisy flowfield data. In particular, this example shows that TDMD
converges to the exact spectrum more rapidly than standard DMD, even when the DMD bias is negligible
as the number of snapshots increases; that is, TDMD requires fewer snapshots than standard DMD to yield
converged descriptions of the dynamics, even in scenarios for which sensor noise is minimal.

Vorticity data, as reported in [26], generated via direct numerical fluids simulations (DNS) and sampled at
a rate of fs = 100 Hz (δt = 0.01 s) are considered in this demonstration to ensure full control over (synthetic)
measurement noise; the Reynolds number based on cylinder diameter is Re = 100. To establish a baseline
set of true DMD eigenvalues and modes, standard DMD is first applied to the set of exact snapshots (i.e., no
noise corruption). Next, the effect of measurement noise is considered by adding zero-mean Gaussian sensor
noise (�X, �Y ) ∼ N (0, 0.001) to the exact vorticity snapshot data (X̄ , Ȳ ). The effect of the number of
snapshots m is studied by concatenating the original dataset (n = 59,501, m = 116) with itself, but with
different realizations of additive measurement noise; here, cases with m = {116, 232, 464} are considered.

1 See supplementary material for a MATLAB example and implementation of TDMD.
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(a)

(d)

(b)

(e)

(c)

(f)

(g)

(h)

Fig. 3 Influence of truncation level on spectra. Over-truncation leads DMD/TDMD to partially resolve the correct spectrum, as
in tiles a–d for which the imposed rank is less than the true system rank of r = 6. Under-truncation, as in tiles e–g, tends to
capture relevant spectra, at the cost of introducing (damped) spurious eigenvalues that are misleading and can potentially obscure
subsequent analysis. Without any truncation (r = m = 100), DMD and TDMD yield the same spectra, which consists of a large
number of undamped spurious modes, as in tile h. Note that without truncation, both DMD and TDMD fail to capture one of the
true eigenvalues that is always captured in cases of under-truncation. The analyses here are based on a single snapshot realization
of the data used in Fig. 2a

The rank-reduction level r = 21 is determined by seeking to retain over 99% of the energy content based
on the SVD of the noise-corrupted data stored in X . By construction of this example, the computed DMD
spectrum is not significantly altered by the noise—i.e., most of the DMD eigenvalues coincide with the true
eigenvalues (see Fig. 4). Even so, TDMD is able to handle the noise contamination more effectively; as the
number of snapshots is increased, TDMD converges to the true spectrum more quickly than standard DMD.
Further discussion of DMD convergence rates and bias levels can be found in the complementary work of
Dawson et al. [11].
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(a) (b) (c)

Fig. 4 Spectrum for the flow over a cylinder (DNS). The spectrum predicted by TDMD converges to the true spectrum more
quickly than standard DMD as the number of snapshots m increases. Here, each snapshot is corrupted by zero-mean Gaussian
measurement noise N (0, 0.001), each snapshot has dimension n = 59,501, and both methods set r = 21. The true eigenvalues
(black squares) are plotted along with the mean values from standard DMD (dark circles) and TDMD (dark triangles) based on
200 different noise-realizations. The eigenvalues from each of the individual realizations of standard DMD (light circles) and
TDMD (light triangles) indicate the variance associated with each method. a m = 116. b m = 232. c m = 464

Fig. 5 Schematic of the wind tunnel test section for the separated flat plate experiments. Flow separation is generated by imposing
an adverse pressure gradient through a blowing-suction boundary condition on the test section ceiling

5 DMD on flow separation experiments

TDMD’s ability to extract the correct spectrum from synthetically corrupted numerical data garners trust for its
use as a reliable method for fluid flow analysis; however, the assumptions of additive Gaussian measurement
noise considered in our numerical studymay be overly idealized. Further, the mild level of noise contamination
may not be representative of practical realities in physical experiments. A more compelling demonstration of
TDMD’s utility for noise-aware dynamical systems analysis can be made by working with noisy real-world
data collected from a physical experiment. As such, we now consider an experiment of separated flow over
a flat plate, conducted in the Florida State Flow Control (FSFC) wind tunnel (see Fig. 5). The specific flow
configuration studied here is expected to exhibit persistent undamped dynamics; based on the results of our
previous examples, this suggests that TDMD may prove to be a better candidate for analysis than standard
DMD.

The FSFC is an open-return wind tunnel with test section area of 30.5 cm × 30.5 cm and a length of
61.0 cm. The chord of the plate is c = 402 mm, the span is s = 305 mm, and the height is h = 0.095c (see
Fig. 5). The leading edge profile of the plate is a 4:1 ellipse and the trailing edge is rectangular.
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Fig. 6 The measurement plane, depicted by the shaded box in this schematic, is oriented streamwise and vertical, grazing the top
surface of the flat plate

Fig. 7 Average z-vorticity as computed from TR-PIV snapshots. The line of ū = 0 is the black dashed line

Fig. 8 The turbulence statistics, computed from the snapshot data, indicate increased fluctuations in the shear layer, downstream
of the separation point. The x and y limits for these measurement windows are the same as in Fig. 7

The freestream velocity is set to U∞ = 3.9 m/s such that the chord Reynolds number is Rec = 105.
To generate the separation of the laminar boundary layer, an adverse pressure gradient is generated by suc-
tion/blowing on the ceiling of the wind tunnel test section. The blowing/suction is maintained by a closed
return duct system mounted on the ceiling of the test section, by which a portion of the free stream is siphoned
off and ducted back into the flow further downstream. This is made possible by a variable speed fan mounted
within the separation system duct. The fan speed is adjusted such that the maximum suction velocity through
the entrance of the duct is 0.32U∞, and the maximum blowing velocity at the outlet is 0.31U∞.

Time-resolved particle image velocimetry (TR-PIV) measurements of the separated flow are acquired by
synchronized high speed laser and camera equipment. The measurement plane is oriented in the x − y plane,
grazing the top surface of the flat plate (see Fig. 6). Snapshots of the velocity field (n = 19,778, m = 6000)
are sampled at a rate of fs = 1600 Hz (δt = 0.625 ms). The velocity vectors are determined by computing
the cross-correlation between recursively smaller windows of the PIV image pairs. The final window size is
16 × 16 pixel, with an overlap of 75%, resulting in a final vector resolution of 8.9 vectors per mm.

The extent of the separation region is illustrated in Fig. 7 by the line of ū = 0, depicted as the black dashed
line, which is superposed on contours of mean vorticity. The length of the mean separation bubble is found to
be Lsep = 0.228c. Turbulent statistics are computed from the TR-PIV snapshots and provided in Fig. 8 as
contours of the standard deviation and covariance of the u and v velocity components. These plots show that
fluctuation levels increase dramatically in the transitioning shear layer, downstream of the separation point.
This, along with the apparent thickening of the mean shear layer (Fig. 7), indicate enhanced turbulent mixing
in this region. DMD analysis of this data, presented later, suggests that multiple modes are responsible for the
evolution of the laminar boundary layer into the high-fluctuation regions.

To further investigate the nature of the velocity field fluctuations, flow velocity time series for specific
points are extracted from the PIV measurements. These probe locations are oriented along the mean shear
layer and within the recirculation region (shown in Fig. 9). A total of six probe time series are extracted. Power
spectral density (PSD) estimates for these probe data are computed using Welch’s method [3] for a block
size of 800 samples, resulting in a frequency binwidth of 2 Hz. These data are determined to be statistically
stationary with 98% confidence by the reverse arrangement test [3].

The power spectra are plotted with respect to frequency in Fig. 10. The increased turbulent fluctuations are
evident in Probes 2, 3, and 4 as increased broadband content with respect to that of Probe 1. However, all of the
probes exhibit distinct frequency peaks at f = 108 Hz and f = 120 Hz. This suggests that the phenomena
responsible for these oscillations are global in nature, and are resilient throughout the turbulent region. These
characteristics indicate that DMD is a suitable analysis approach for these flow data.
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Fig. 9 Velocity probe locations plotted with respect to the mean vorticity field. Probes 1 through 4 are oriented horizontally
through the shear layer, and probes 5 and 6 are embedded within the recirculation region

Fig. 10 Power spectra of the velocity values extracted from the PIV fields at the points shown in Fig. 9. The data are mean
subtracted and normalized by the freestream velocity. High amplitude peaks are highlighted

We now turn attention to DMD and TDMD for analysis of the TR-PIV snapshot data. Recall that without
truncation in situations for which the snapshot dimension is larger than the number of snapshots, both methods
will overfit the data and give identical results. Here, DMD and TDMD are performed for three different
truncation levels; specifically, we set r = {10, 25, 35}, which correspond to retaining, respectively, 95.0, 95.5,
and 95.6% of energy content based on an SVD of X . Spectra and mode amplitudes for each of these r values
are presented in Fig. 11, where the mode amplitudes are computed based on all snapshots—as in [29]—and
normalized with respect to the maximum amplitude. Note that the frequencies associated with the modes
determined by TDMD are relatively consistent for each of the truncation levels, whereas the DMD frequencies
seem to be less consistent. For instance, all three of the TDMD results show a dominant mode with a frequency
of approximately 40 Hz—a mode that weakly appears in the power spectra analysis (see Fig. 10); however,
DMD only identifies this same mode for r = 10, and no longer extracts it for larger values of r .

As seen in Fig. 11a–c, the dominant oscillatory modes extracted via TDMD are much less damped than
those identified by standard DMD. For larger r , the damping of the DMD modes increases, revealing a clear
sensitivity to truncation level. Interestingly, both methods identify lightly damped modes in the frequency
range 100–120 Hz, which corresponds to the most prominent frequency peak in the power spectra; this is
the only mode that standard DMD consistently places close to the unit circle. On the other hand, TDMD
consistently picks out the mode in the 100–120 Hz range, as well as other lightly damped modes, which appear
as minor peaks in the power spectra of Fig. 10. The extraction of lightly damped modes by TDMD is consistent
with the fact that the data are statistically stationary, as reported earlier. Although neither method identifies
a mode at exactly 120 Hz for the truncation levels reported here, the 120 Hz mode is identified for larger
truncation values r . However, as the truncation level increases, the influence of noise becomes stronger: More
spurious modes appear in the analysis, and all identified modes exhibit greater damping. These observations
seem to suggest that the peaks in the power spectra at 42 and 108 Hz (see Fig. 10) may be more “dynamically
significant” than the one at 120 Hz. To make such claims with greater confidence would require an objective
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(a) (d)

(b) (e)

(c) (f)

Fig. 11 TDMD predicts modes with less damping than those predicted by DMD; further, TDMD predictions remain more
consistent for various truncation values. Spectra for r = {10, 25, 35} are presented in (a–c). Mode amplitudes are normalized
by the maximum amplitude and plotted versus frequency for r = {10, 25, 35} in (d–f)

and reliable means for optimal rank selection in the context of noisy datasets; at the moment, this important
issue remains unresolved.

In addition to the temporal characteristics of modes determined through the DMD eigenvalues, the spatial
structure of each mode is of interest as well, especially when one is interested in gaining physical insights from
DMD-based analysis. The real components of the dominant oscillatory vorticity modes—computed as the curl
of DMD/TDMDvelocitymodes—are plotted in Figs. 12 and 13 for r = 10 and r = 25, respectively; themodes
for r = 35 are excluded here for brevity. The mode shapes extracted for r = 10 are quite similar between
standard DMD and TDMD, though the modes identified by TDMD appear less grainy, especially near the
upper and lower regions of inflow to the PIV window. The differences in modes computed by the two methods
is much more pronounced for r = 25 (see Fig. 13). TDMD identifies spatial structures that standard DMD
either captures in less detail or misses completely. As one may suspect from the mean flow visualization and
Fig. 7, much of the dynamic activity occurs in the vicinity of the separation bubble (e.g., compare active regions
in the modes to the mean flow in Fig. 7). In particular, TDMD reveals a set of modes with notable structural
complexity that combine dynamically to drive the dynamics observed in the shear layer and separation bubble.
Future studies will need to be performed with snapshot data from the wake region downstream of the plate
included as well; such studies are necessary to uncover additional dynamical interplays between these various
regions of the flow.
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(a)

(b)

(c)

(d)

Fig. 12 The spatial structures associated with the oscillatory modes identified by DMD/TDMDwith r = 10 in Fig. 11a, d appear
to be consistent with one another; however, the standard DMDmodes in tiles (a, b) exhibit a larger degree of noise contamination,
and the dynamics exhibit larger damping. Here, modes of vorticity are computed from DMD/TDMD modes of velocity. Plots
(a, b) correspond to DMD, and plots (c, d) to TDMD

TDMD outperforms standard DMD in a number of ways in the analysis of the separated flow: e.g., in
contrast to standard DMD, TDMD yields consistent results for various values of r and also extracts modes
that more clearly expose detailed spatial structures associated with the active regions of the flow and appear
to be less grainy. The primary factor in TDMD’s superior performance is an unbiased treatment of snapshot
error in the framework—recall, standard DMD implicitly treats �X = 0. Since error is a large part of the
TDMD formulation, it seems natural to look more closely at the errors identified by TDMD. Recall that the
subspace projection stage serves to de-bias DMD by appropriately accounting for additive snapshot errors
(−�X, −�Y ), which can be computed directly via (13)—i.e.,−�X = X (I −PZ∗

n
) and−�Y = Y (I −PZ∗

n
).

These error fields, which are typically not computed in practice, can be compared against uncertainty fields
computed by alternative statistical methods to provide a qualitative validation of TDMD from the standpoint
of the errors.

For the current study the correlation statistics method for determining PIV uncertainty [54] is employed
due to its utility and current implementation in the PIV vector calculation in the LaVision DaVis software.
This method provides an estimate of the random uncertainty of PIV velocity vectors at every grid point, for
each snapshot. Central to the correlation statistics method for uncertainty is the assumption that the converged
correlation function between a PIV image pair is symmetric about the maximum. Therefore, the uncertainty
is determined by the observed asymmetry in the correlation function [54]. The asymmetry is defined as the
difference between corresponding side lobe levels of the computed correlation. Relating this to measurement
error is done by computing the residual velocity that results from the asymmetry, then the standard deviation
of the residual velocity is estimated from each elemental contribution to the asymmetry within an interrogation
window.

Figure 14 contains filled contours of the uncertainty for select snapshots with black contour lines depicting
the error field identified by the TDMD projection. The overlapping contours indicate that the error identified
by the TDMD projection coincides with the regions of high uncertainty. Note that the measurement error is
increased within areas of increased turbulent mixing. A notable result from the works byWilson and Smith [57]
and Timmins et al. [49] is that instantaneous velocity gradients exhibit the largest contribution to measurement
uncertainty. This is the most likely explanation for the elevated errors in this region.

The root-mean-squared value of the error fields identified by the TDMD subspace projection is compared
with the uncertainty of themean of the PIV snapshots in Fig. 15. The uncertainty of themean flow is determined
by propagating the uncertainty from the snapshot uncertainties determined by correlation statistics method.
These are computed for all 6000 snapshots, which provides a statistical measure of the error identified by the
different methods. By the inherent differences between the methods, it is not expected that Fig. 15a, b will
match quantitatively. Nevertheless, qualitative agreement is identified in the high-error regions. For example,
both results show that higher error is expected downstream of the separation point, within the high-fluctuation
region. Additionally, both methods indicate that the u-component of the measurements exhibit higher error
than the v-component in the shear layer.

From this study of flow separation using TR-PIV data, it appears that TDMD offers valuable advantages
over standard DMD. The errors computed by TDMD are qualitatively similar to the snapshot uncertainties
determined by alternative methods, and most importantly, this error is accounted on all snapshots in the
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Fig. 13 A comparison of the spatial structures associated with the oscillatory modes reported in Fig. 11b, e suggests that some
aspects of the separated flow may be characterized by different dynamics than revealed by standard DMD. All of the spatial
structures extracted by TDMD exhibit a clear coherence; in contrast, structures extracted by DMD show artifacts of noise
contamination—especially apparent in tiles (b, f). Here, r = 25 and modes of vorticity are computed from DMD/TDMD modes
of velocity. The oscillatory vorticity modes are plotted top to bottom in order of decreasing frequency for DMD (a–g) and TDMD
(h–n)

algorithm formulation. Doing so removes the bias in the eigenvalues, allowing TDMD to identify lightly
damped modes as such—in contrast to standard DMD. Further, the de-biasing nature of TDMD also seems to
improve the quality of the identified modes, revealing detailed spatial structures that are missed by standard
DMD. Lastly, although additional study is required to develop reliable methods for optimal rank selection, we
note that in the present analysis TDMD yields results that are more consistent between truncation levels than
standard DMD.
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Fig. 14 The error field associated with the TDMD pre-processing step indicates that most of the “data corrections” are made in
the same spatial regions of high data uncertainty, as estimated from the correlation statistics method of the TR-PIV data [54].
The shaded contours correspond to the 95% uncertainty bounds as quantified by Wieneke’s method (light regions have greater
uncertainty than dark regions), while the gray contour lines correspond to the error field computed in the TDMD pre-processing
stage, |�X |, normalized by the freestream

(a)

(b)

Fig. 15 Comparison of (a) the root-mean-squared value of the error fields identified by the TDMD subspace projection with
(b) the uncertainty of the mean of the PIV snapshots from the correlation statistics method. Calculations are based on a sequence
of 6000 snapshots. Despite the differences between the methods there is relative agreement in the identified high-error regions

6 Concluding discussion

By representing DMD as a two-stage process, we have identified an asymmetric treatment of snapshot data in
standard formulations of DMD. As a result, we have isolated the source of noise-induced error in DMD that
has previously been observed and reported in the literature. Importantly, our determination of this error as a
systematically introduced bias indicates that commonly employed approaches to “de-noising,” while reducing
the variance in the resulting DMD analysis, will inevitably yield biased results; the systematic introduction
of bias errors cannot be removed by various methods for averaging and cross-validation. Instead, we propose
forming an augmented snapshot matrix (10)—as in problems of total least-squares—in order to account for
the errors present in all of the available data during the subspace projection step; in doing so, one removes the
systematic introduction of error and arrives at an unbiased formulation of DMD.

Although TDMD addresses issues of noise-induced bias, other practical considerations and outstand-
ing issues surrounding DMD-based methods—discussed in Sect. 2—still remain to be resolved. While the
formulation proposed here is unbiased, further study is needed to robustify computational analysis tech-
niques; total least-squares problems are known to exhibit numerical sensitivity due to their “de-regularizing”
nature [16,19,51,52]. The de-biasing procedure presented generalizes to other DMD-like algorithms as well;
one need only apply the subspace projection step, and then replace the “operator identification” step by the
algorithm of choice (e.g., optimal mode decomposition [21,58], streaming DMD [26], sparsity-promoting
DMD [29], non-uniform DMD [23], or optimized DMD [9]). Despite these gains, techniques for distinguish-
ing between measurement and process noise are still needed.

In addition, subspace projection and rank-reduction are key ingredients for DMDanalysis of noisy snapshot
datameasured fromfluid flows. In TDMD, this projection is found by accounting for all of the snapshots, which
removes the bias introduced by previous formulations of DMD. However, as in standard DMD, determination
of this projection is accompanied by an implicit assumption that the truncation level is known ahead of time.
Though numerous studies have proposed various techniques for selecting an appropriate truncation level or set
of modes, the notion of optimal rank determination remains an open question and very well may depend on
context. Despite the progress that still needs to be made in this regard, TDMD offers a powerful perspective
for pursuing Koopman spectral analysis in the context of measurement uncertainty.
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The availability of an unbiased DMD framework will be essential to performing valid data-driven Koop-
man spectral analysis in practical real-world contexts with imperfect snapshot measurements. By invoking the
two-stage TDMD framework, Koopman operator descriptions of a dynamical system determined from exper-
imental data can be regarded with greater confidence, which will ultimately enable more accurate dynamical
descriptions of complex time-evolving systems. Moreover, forecasts of future system behavior from TDMD
models will be more representative than those based on standard DMD models, since TDMD models will be
able to ascertain the correct trends from past data, even when the data are noisy or imprecise.
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38. Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. FluidMech. 45, 357–378 (2013)
39. Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)
40. Noack, B.R., Afanasiev, K., Morzynski, M., Tadmor, G., Thiele, F.: A hierarchy of low-dimensional models for the transient

and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)
41. Proctor, J.L., Eckhoff, P.A.: Discovering dynamic patterns from infectious disease data using dynamic mode decomposition.

Int. Health 7(2), 139–145 (2015)
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