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Nonlinear stability analysis of transitional flows using quadratic constraints
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The dynamics of transitional flows are governed by an interplay between the nonnormal
linear dynamics and quadratic nonlinearity in the incompressible Navier-Stokes equations.
In this work, we propose a framework for nonlinear stability analysis that exploits the fact
that nonlinear flow interactions are constrained by the physics encoded in the nonlinearity.
In particular, we show that nonlinear stability analysis problems can be posed as convex
feasibility and optimization problems based on Lyapunov matrix inequalities, and a set of
quadratic constraints that represent the nonlinear flow physics. The proposed framework
can be used to conduct global stability, local stability, and transient energy growth analysis.
The approach is demonstrated on the low-dimensional Waleffe-Kim-Hamilton model of
transition and sustained turbulence. Our analysis correctly determines the critical Reynolds
number for global instability. For local stability analysis, we show that the framework
can estimate the size of the region of attraction as well as the amplitude of the largest
permissible perturbation such that all trajectories converge back to the equilibrium point.
Additionally, we show that the framework can predict bounds on the maximum transient
energy growth. Finally, we show that careful analysis of the multipliers used to enforce the
quadratic constraints can be used to extract dominant nonlinear flow interactions that drive
the dynamics and associated instabilities.
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I. INTRODUCTION

Many complex flow phenomena arise from the interplay between the nonnormal linear dynamics
and quadratic nonlinearity in the incompressible Navier-Stokes equations (NSE). In wall-bounded
shear flows, the high-degree of nonnormality of the linearized NSE results in a transient energy
growth (TEG) of small flow perturbations [1–3], even when the dynamics are linearly asymptotically
stable. As a result, the linear analysis tends to over predict the critical Reynolds number (Rec) for
instability in many shear flows [1,2,4]. The fact that the flow transitions at Reynolds numbers (Re)
below the predicted linear stability limit is partly attributed to the nonmodal growth that pushes
the flow state away from the equilibrium base flow [1–4]. Indeed, TEG is a necessary condition
for transition [5,6]. Nevertheless, nonmodal TEG alone is not sufficient to cause transition: It is the
interaction of nonmodal TEG with the nonlinearity that triggers secondary instabilities and drives
the state outside the region of attraction. Without the nonlinear terms, the notion of a finite region
of attraction would not make sense. Interestingly, although the nonlinearity is lossless and energy-
conserving [5,7], it can interact with the linear dynamics in such a way as to increase the maximum
transient energy growth (MTEG) that can be realized [8]. These transition scenarios cannot be fully
analyzed without accounting for the nonlinear terms in the NSE.

Analysis methods have been proposed to account for the interplay between the linear and
nonlinear terms in transitional and turbulent flows. One such approach is the resolvent analy-
sis framework [9–11], which leverages the fact that the NSE can be expressed as a feedback
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interconnection between a linear operator and a nonlinear operator—a so-called Lur’e decom-
position [12]. Resolvent analysis goes a step further to consider the nonlinearity as an implicit
forcing input on the linear dynamics [9,13]. This perspective greatly simplifies the resulting analysis
problem, as only the linear system—described by the input-output properties of the linear resolvent
operator—needs to be analyzed. Within the context of turbulent flows, resolvent analysis provides
information on how fluctuations in a time-averaged flow are attenuated or amplified from nonlinear
effects. Resolvent analysis has been successfully employed in the study of various flows [14,15],
including pipe flows [16], open cavity flows [17], and flows over riblets [18].

Related methods have been proposed to account for the nonlinearity in NSE more directly. The
passivity framework has been shown to be effective in flow control based on the nonlinear NSE
[19–21]. In these studies, the passivity property [12] of the nonlinear terms in the incompressible
NSE are leveraged to design a linear controller that can stabilize the system. Further advances
have been made in input-output methods to study performance, worst-case amplification, stability,
and transition for NSE using dissipation inequalities [22]. Dissipation inequalities derived from
NSE can be posed as linear matrix inequality (LMI) problems, which are then solved using convex
optimization methods to analyze various wall-bounded shear flows. These techniques generalize the
classical energy-based analysis approaches [1,23] and also have close ties with nonlinear Lyapunov
stability analysis approaches developed for NSE based on sum-of-squares (SOS) optimization [24].

In this paper, we propose an alternate framework for nonlinear stability analysis that uses
quadratic constraints to account for nonlinear flow interactions with minimal complexity. The
approach is predicated on the fact that nonlinear flow interactions are constrained by the physics
encoded within the nonlinear terms in the incompressible NSE—e.g., the nonlinearity is quadratic,
energy conserving, and lossless. Mathematically, these physics can be expressed as quadratic
constraints between the inputs and outputs of the nonlinearity. In turn, these quadratic constraints
serve as reduced-complexity models for the nonlinear terms, and can be incorporated within a
Lyapunov-based analysis to perform reliable stability and input-output analysis in the nonlinear
setting. The general framework introduced here is applicable to any system that has (nonnormal)
linear dynamics acting in feedback with a lossless nonlinearity—the incompressible NSE being a
special case.

To establish a proof-of-concept, we formulate and demonstrate the proposed analysis framework
on the nonlinear Waleffe-Kim-Hamilton (WKH) model of transition and sustained turbulence [5].
As with the NSE, the WKH model admits a Lur’e decomposition with nonnormal linear dynamics
and a quadratic lossless nonlinearity, making it relevant for formulating and demonstrating the
proposed quadratic constraints framework for nonlinear stability analysis of fluid flows.

The paper proceeds as follows. In Sec. II, we introduce the WKH model in Lur’e form. We
then introduce the quadratic constraints framework and associated stability analysis problem in
Sec. III. In Sec. III A, we account for the energy conserving nonlinearity in global stability analysis
via the addition of a quadratic lossless constraint. In Sec. III B, we show that additional quadratic
constraints can be introduced to conduct local stability analysis, which is needed when Re > Rec

and the equilibrium point is no longer globally asymptotically stable. In Sec. IV, we formulate the
problem for obtaining the size of the largest permissible perturbation such that the state trajectories
remain in the region of attraction. In Sec. V, we formulate an analysis problem to determine bounds
on the MTEG that can be realized by the system dynamics. In Sec. VI, we show that we can
obtain insights into dominating nonlinear flow interactions that underlie the dynamics by analyzing
the multipliers used to enforce the constraints within the analysis framework. Finally, we provide
concluding remarks of our study in Sec. VII.

The sectionwise-specific contributions of this paper are as follows:
(1) Section III A: We find that the lossless constraint alone enables prediction of the Rec for

global instability, consistent with the Rec found by other means in Ref. [6].
(2) Sections III B and III C: The “local” quadratic constraints represent the influence of the

nonlinearity when the flow is restricted to a local neighborhood about the equilibrium point. We
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also show that the local region corresponds to the region of attraction and study how the region of
attraction changes with Re.

(3) Section IV: We show that the proposed framework can be used to predict the size of largest
permissible perturbation such that system stability is ensured (i.e., a “transition threshold”). We find
that the size of the permissible perturbations decreases with increasing Re.

(4) Section V: The proposed framework can be used to estimate bounds for MTEG in the
nonlinear system. We verify the results from the proposed framework with nonlinear simulations,
which indicate that the bounds can be conservative.

(5) Section VI: We demonstrate that—without any a priori knowledge—the proposed analysis
approach is able to extract the same dominant nonlinear flow interactions whose physical importance
is argued in Refs. [5,6].

II. WALEFFE-KIM-HAMILTON MODEL OF TRANSITION AND SUSTAINED TURBULENCE

The Waleffe-Kim-Hamilton (WKH) model is a low-order mechanistic model for transition and
sustained turbulence in shear flows. The model is based on observations from direct numerical
simulations (DNS) of a plane Couette flow [25], and was introduced to highlight the importance
of nonlinear interactions with the nonnormal linear dynamics in the NSE. The WKH model was
studied in greater detail by Waleffe in Ref. [6] and is given by

⎡
⎢⎣

u̇
v̇

ẇ

ṁ

⎤
⎥⎦ = 1

Re

⎡
⎢⎣

0
0
0
σ

⎤
⎥⎦ − 1

Re

⎡
⎢⎣

λu
μv

νw

σm

⎤
⎥⎦ +

⎡
⎢⎣

0 0 −γw v

0 0 δw 0
γw −δw 0 0
−v 0 0 0

⎤
⎥⎦

⎡
⎢⎣

u
v

w

m

⎤
⎥⎦. (1)

Here, Re denotes the Reynolds number; u represents the amplitude of the spanwise modulation of
streamwise velocity; v represents the amplitude of the streamwise rolls; w represents the amplitude
of the inflectional streak instability; and m represents the amplitude of the mean shear [6]. The
constants λ, μ, ν, σ are positive parameters corresponding to viscous decay rates. The constants γ

and δ represent nonlinear interaction coefficients and should have the same sign [6].
The WKH system in Eq. (1) captures the processes underlying sustained turbulence [6]: the rolls

(v) create streaks (u) which eventually break down to maintain the rolls. In the WKH model, the
mean shear m is not frozen in time and changes due to nonlinear interactions captured by the −vu
term. A few important aspects of this model are that the instability w grows from the streaks u via
the γwu interaction term. It can also be observed that the same instability feeds streamwise rolls
by nonlinear quadratic interactions δw2. The nonlinear couplings between w and v are important in
sustaining turbulence [6]. As we will show in Sec. VI, the importance of these same interactions in
driving instabilities can be identified from our proposed analysis framework.

The WKH model admits a laminar equilibrium point at (u, v,w, m)e = (0, 0, 0, 1). For the
proposed stability analysis, we perform a change of coordinates to translate the equilibrium point
of Eq. (1) to the origin. The equilibrium point in these new coordinates is xe = (0, 0, 0, 0) and the
state is x = (u, v,w, m̄), where m̄ = m − 1. The system in this translated coordinate system is

⎡
⎢⎣

u̇
v̇

ẇ
˙̄m

⎤
⎥⎦

︸ ︷︷ ︸
ẋ

=

⎡
⎢⎢⎣

− λ
Re 1

− μ

Re − ν
Re − σ

Re

⎤
⎥⎥⎦

⎡
⎢⎣

u
v

w

m̄

⎤
⎥⎦

︸ ︷︷ ︸
Ax

+

⎡
⎢⎣

0 0 −γw v

0 0 δw 0
γw −δw 0 0
−v 0 0 0

⎤
⎥⎦

⎡
⎢⎣

u
v

w

m̄

⎤
⎥⎦

︸ ︷︷ ︸
N (x)=Q(x)x

, (2)

which makes the nonnormality of the linear dynamics explicit [26].
The WKH system in Eq. (2) can be represented as

ẋ = Ax + N (x), (3)
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FIG. 1. Lur’e representation of the WKH system Fu(L, N ).

where the linear operator A is nonnormal and asymptotically stable, and N (x) is a quadratic
nonlinearity given by N (x) = Q(x)x. Note that the nonlinear term is skew-symmetric: i.e., Q(x) =
−Q(x)T ∈ R4×4. The linear and nonlinear terms can be partitioned into Lur’e form [12], with the
two systems acting in feedback with each other (see Fig. 1):

ẋ = L(x, z) := Ax + z, (4a)

z = N (x), (4b)

where z ∈ R4. This Lur’e decomposition of the WKH system is denoted as an upper linear fractional
transformation Fu(L, N ). The advantage of writing this system in a Lur’e form is that Eq. (4a) alone
is a linear dynamical system with an input z. Although z is a nonlinear forcing given by Eq. (4b),
we can instead account for it using input-output properties of z = N (x). In this way, we are able to
perform a nonlinear analysis of WKH model through analysis of linear dynamics in Eq. (4a) subject
to constraints between x and z determined by Eq. (4b).

In all that follows, we study the proposed framework on the WKH system with two separate
sets of parameters (see Table I). Both sets of parameters have been investigated in prior studies:
the Waleffe (W) parameters in Ref. [6], and the Baggett and Trefethen (B&T) parameters in
Ref. [27]. The W and B&T parameters each yield different behaviors in the system dynamics, and
the parameters chosen in this study result in notable differences in stability regions, permissible
perturbation size, and transient energy growth [6,27]. In the remainder of this work, the only
parameter that is varied for stability and transient energy growth analysis is Re. Other choices of
parameters are possible, and changing of the nonlinear interaction coefficients will lead to different
types of bifurcations and correspondingly different stability regimes.

III. NONLINEAR STABILITY ANALYSIS USING QUADRATIC CONSTRAINTS

Lyapunov stability methods [12] can be used to analyze the stability of a system given by Eq. (4).
Here, the stability is analyzed around the equilibrium point xe = 0. To analyze stability using
Lyapunov stability methods, we define a quadratic scalar energy function V : Rn → R. The energy
function V (x) = xT Px is a candidate Lyapunov function [12]. From the Lyapunov stability theorem,
the equilibrium point xe = 0 is globally asymptotically stable when dV (x)/dt < 0 ∀ x �= 0, t > 0

TABLE I. The two parameter sets and the value of the corresponding coefficients used in this work.

Parameter value

Parameter set λ μ ν σ δ γ

W [6] 10 10 15 10 1 0.1
B&T [27] 1 1 1 1 1 1
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and P � 0.1 In other words, the system is globally asymptotically stable around the equilibrium
point xe = 0 if the energy continuously decreases in time. The time derivative of the Lyapunov
function for the nonlinear system in Eq. (4), along trajectories of the system is given by

d

dt
V (x) = 2xT P(Ax + z)

= 2xT P[Ax + N (x)].
(5)

Including the effects of N (x) to analyze stability is crucial to understanding the global asymptotic
stability of the nonlinear system. However, accounting for the nonlinear term N (x) complicates
the stability analysis and a quadratic Lyapunov function will not necessarily be a good choice
as a candidate Lyapunov function. Here, we leverage the fact that the inputs and outputs of the
nonlinearity N satisfy a set of quadratic constraints, thereby enabling stability analysis of the whole
feedback interconnection Fu(L, N ) without the full complexity involved in an explicit treatment of
the nonlinearity.

To do so, we first show that stability analysis benefits from consideration of the nonlinear term
as energy conserving and lossless, neither producing nor dissipating energy. The lossless property
can be represented as a quadratic constraint to represent the nonlinear term within the Lyapunov
analysis. The lossless constraint captures global behavior of the nonlinearity. Further, we analyze
local behavior of the nonlinearity around a neighborhood by representing its local properties as
“local” constraints. We also show that local nonlinear properties play a role in destabilizing the
system, whereas a linear stability analysis predicts the WKH system to be globally asymptotically
stable for all Re. Both global and local stability analysis and the results are discussed in the following
sections.

A. Stability: Representing lossless nonlinearity with quadratic constraints

The nonlinear term in Eq. (2) is skew-symmetric, therefore,

xT N (x) = xT Q(x)x = 0, ∀ x. (6)

The physical interpretation of this property is that the nonlinearity is energy conserving, serving
only to redistribute energy between modes. This “lossless” property of the nonlinear term is also
observed in many wall-bounded shear flows [7]. The stability analysis reduces to the following
question: Does the constraint in Eq. (6) imply V̇ (x) < 0 in Eq. (5) for all x �= 0? The answer is yes,
if there exists a P � 0 and a Lagrange multiplier ξp0 (positive or negative) such that

2xT P[Ax + N (x)] + 2ξpoxT N (x) < 0, (7)

which essentially says that the energy function V (x) decreases for any x and N (x) satisfying the
lossless constraint in Eq. (6). Consider now that the lossless property in Eq. (6) can be expressed
equivalently as a quadratic constraint between the inputs x and outputs z = N (x) of the nonlinearity:(

x
z

)T (
0 I
I 0

)
︸ ︷︷ ︸

:=M0

(
x
z

)
= 0, ∀ x and z ∈ R4, (8)

where 0, I ∈ R4×4 denote the zero and identity matrices, respectively. Thus, Eq. (7) can be recast as[
x
z

]T {[
AT P + PA P

P 0

]
+ ξp0 M0

}[
x
z

]
< 0. (9)

1The condition “∀t > 0” is implied for all Lyapunov-based arguments, even without explicit statement. Also,
the relational operators ≺ 0, � 0 (� 0, 	 0) denote positive and negative (semi-)definite matrices, respectively.
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The lossless constraint zT x = 0 is captured by the block matrix M0 ∈ R8×8 defined in Eq. (8). The
term in braces in Eq. (9) must be strictly negative definite for the strict inequality to be satisfied.
However, for a matrix to be strictly negative definite, it is necessary for all principle submatrices to
also be strictly negative definite [28,29]. The bracketed term has 0 as a principle submatrix and hence
the strict inequality in Eq. (9) cannot be satisfied. As such, we introduce a positive perturbation on
Eq. (7) to relax the requirement for a strict inequality as

2xT P[Ax + N (x)] + 2ξpoxT N (x) + 2εxT Px � 0, (10)

where ε > 0. This new condition is equivalent to V̇ (x) � −εV (x) for all x �= 0, which guaran-
tees exponential stability with a minimum convergence rate of ε when satisfied. The stability
condition in Eq. (10) can be recast in terms of the quadratic lossless constraint in Eq. (8) to
yield

[
x
z

]T {[
AT P + PA P

P 0

]
+ ξp0 M0 +

[
εP 0
0 0

]}[
x
z

]
� 0. (11)

Unlike the stability condition in Eq. (9), it is possible for this new stability condition in Eq. (11)
to be satisfied because the inequality is nonstrict. For Eq. (11) to hold, the matrix in braces has
to be negative semidefinite. However, from the generalized Schur’s complement [30] we know
that the bracketed term will be negative semidefinite if and only if both AT P + PA + εP � 0 and
P + ξp0I = 0 for some ξp0 < 0. Note that the condition AT P + PA + εP � 0 is the condition for
verifying exponential stability of the linear system and by itself does not account for the nonlinear-
ity; the addition of the quadratic constraints accounts for the lossless nonlinearity in this stability
condition. In the limit ε → 0, this condition is equivalent to A + AT ≺ 0, which is a necessary and
sufficient condition for unity maximum transient energy growth due to linear nonmodal dynamics
[31]. Thus, our analysis is consistent with the fact that unity linear MTEG is necessary for global
stability in the nonlinear system.

In light of the stability condition in Eq. (11), it follows that stability of the linear element L and
a lossless nonlinearity can be formulated as an LMI feasibility problem in the variables P � 0 and
ξp0. In particular, the system Fu(L, N ) is globally asymptotically stable if there exists P � 0 and ξp0

such that the following LMI holds for a given ε > 0:

[
AT P + PA P

P 0

]
+ ξp0 M0 +

[
εP 0
0 0

]
� 0. (12)

The feasibility of the LMI in Eq. (12) is only sufficient to establish the global asymptotic stability
of the WKH system, as it only relies on the lossless property and does not depend on any other
specific details of the nonlinearity. The condition in Eq. (12) is an LMI feasibility problem that can
be solved using standard numerical tools. Unless otherwise specified, in the remainder of this work,
we use CVX [32,33], which is a package for specifying convex optimizations, combined with the
commercially available solver MOSEK [34].

To analyze the global stability of the WKH system, we solve the LMI in Eq. (12) with ε = 10−6

for variables P and ξp0 at different values of Re. On performing the global stability analysis using the
lossless constraint, we find that the WKH model for the W parameter values (see Table I) is globally
asymptotically stable for Re � 20. This finding is consistent with Rec = 20 for global asymptotic
stability reported by Waleffe [6]. Similarly we find that the WKH system with B&T parameters (see
Table I) is globally asymptotically stable for Re � 2.

Note that the linear WKH system is globally asymptotically stable for all Re, and so the nonlinear
term is destabilizing. In the nonlinear WKH system, considering only the lossless constraint, we
show that global stability cannot be established for Re > 20 for the W parameters and Re > 2
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FIG. 2. Illustration of a scalar quadratic function x = z2 that lies inside the sector formed by lines of slope
−R and R (red). The blue dashed lines mark the maximum value of the pair (x, z) for a given slope such that
|x|�R.

for the B&T parameters. To investigate this further, we propose a set of local constraints on the
nonlinearity that enable a local stability analysis, as described in the next section.

B. Stability: Representing local properties of nonlinearity using quadratic constraints

The WKH system with the lossless constraint is globally asymptotically stable for Re � 20 for
the W parameters and for Re � 2 for the B&T parameters. To analyze the system for larger Re, we
propose a “local” stability analysis as follows: Select a local neighborhood ‖x‖2 � R2 around the
equilibrium point xe = 0. Local analysis restricts the state x to lie in a local region R, which result in
“local” constraints for N (x) within this local region. The analysis condition, given below, attempts
to use these local quadratic constraints to show that: (i) the system state remains within the local
region and (ii) it converges asymptotically back to xe = 0. These quadratic constraints are tighter
(more powerful) for smaller values of R and become looser (less powerful) as R becomes larger.
Thus, these local analysis results provide a range of results between global asymptotic stability
(roughly as R → ∞) and stability of the linearized system (roughly as R → 0). We will show later
in this section that R can be used to estimate the region of attraction (ROA) for the equilibrium point.
Recall that the nonlinearity in the WKH model is quadratic and can be expressed as z = xT Q(x)x
[see Eq. (2)]. To illustrate the approach, first consider the scalar example z = x2 (green curve in
Fig. 2). Within a given region |x| < R, the output satisfies z2 = x4 < R2x2. Which further implies
that |z| < R|x|, where R is the slope of the line. The quadratic function is restricted by the bound
R, but this bound would graphically correspond to drawing a line of slope +R and −R (red lines
in Fig. 2). The slope R can have a large value or a small value, as illustrated in Figs. 2(a) and 2(b),
respectively. If x remains in the interval [−R,+R], then the nonlinear function lies between these
two linear lines with slope ±R [gray shaded region in Figs. 2(a) and 2(b)]. The dashed blue line
in both these figures represents the maximum possible value of the pair (x, z), such that |x| � R
for a given slope. It can be seen that as the slope R is made larger [Fig. 2(a)], then the pair (x, z)
also gets bigger, thereby moving the blue dashed line further away from the origin. Similarly, as
slope of R is made smaller [Fig. 2(b)], the pair (x, z) gets smaller, thereby moving the dashed line
toward the origin, which corresponds to a reduction in maximum value of z. Finally, note that as
the slope R tends to zero, the sector shrinks to zero. Thus, R → 0 corresponds to a nonlinear term
with zero output—equivalent to a linear analysis. Conversely, as R → ∞, then this sector becomes
arbitrarily large and provides essentially no information—corresponding to a global analysis. The
sector formed by lines of slope ±R facilitates bounding the pair (x, z) to perform analysis in a
localized setting, where the value of R also determines the amount of nonlinear behavior captured
by the local constraint. A brief introduction to scalar sector bounded nonlinearities is presented
in Appendix A. The remainder of this section generalizes this basic concept to the multivariable
quadratic terms that appear in the WKH model.
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From Eq. (2), each individual nonlinear term can be expressed as a quadratic function:

z =

⎡
⎢⎣

z1

z2

z3

z4

⎤
⎥⎦ =

⎡
⎢⎢⎣

xT Q1x
xT Q2x
xT Q3x
xT Q4x

⎤
⎥⎥⎦. (13)

Here each Qi ∈ R4×4 is a symmetric matrix. Hence, each Qi has real eigenvalues, and the spectral
radius ρ(Qi ) denotes the largest (magnitude) of these eigenvalues [29]. Moreover, quadratic terms
with symmetric matrices are upper bounded as follows [29]:

|zi| = |xT Qix| � ρ(Qi )xT x, for i = 1 to 4. (14)

Next, assume the state x remains within a ball of radius R, i.e. xT x � R2. We can then square
Eq. (14) to obtain the following constraint:

z2
i � ρ(Qi )

2R2︸ ︷︷ ︸
αi (R)2

xT x, for i = 1 to 4. (15)

This is a constraint involving squares of x and zi. It can be written in a more useful quadratic
constraint form. Let Ei ∈ R4×4 denote the matrix with the diagonal (i, i) entry equal to one and all
other entries equal to zero. The constraint in Eq. (15) is equivalent to

[
x
z

]T [
αi(R)2I 0

0 −Ei

]
︸ ︷︷ ︸

Mi (R)

[
x
z

]
� 0, for i = 1 to 4. (16)

The above multivariable quadratic constraint in Eq. (16) is similar to the sector constraint in the
scalar case, shown in Eq. (A1) of Appendix A. The above constraint provides a bound on the
nonlinear term zi that holds over the local region xT x � R2. A local bound can be obtained for
each of the four quadratic nonlinearities in Eq. (16).

It should be noted that the lower right block in each Mi(R) matrix is nonzero, and so we can use
the strict inequality V̇ (x) + ξp0M0 + ∑4

i=0 ξpiMi < 0.
We will make use of these local constraints to study local stability of the WKH system in

Sec. III C, and show that they can be used for transient energy growth analysis as well in Sec. V B.

C. Results: Local stability analysis using quadratic constraints

The lossless property in Eq. (8) captures the global behavior of the quadratic nonlinearity. Given
that the WKH system is not globally stable for Re > 20, it is still beneficial to understand its local
stability properties. The linearization around xe = 0 is stable for all Re > 0 because A is Hurwitz. A
more quantitative local stability analysis can be performed around xe = 0 using the local constraints
derived in Eq. (16). Specifically, our goal is to estimate the region of attraction (ROA), which
corresponds to the set of initial conditions whose trajectories converge back to xe = 0. We will
consider the local constraints on the nonlinearity that hold over the sphere ‖x‖ � R. The local
stability analysis for the nonlinear system can be performed by solving the following LMI feasibility
problem:

P 	 I,

ξpi � 0 (for i = 1 to 4),
[

AT P + PA P
P 0

]
+ ξp0 M0 +

4∑
i=1

ξpi Mi(R) ≺ 0.

(17)
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Note that the local quadratic constraints depend on the radius R as explicitly denoted by Mi(R). If
Eq. (17) has a feasible solution, then V (x) = xT Px is a Lyapunov function. Moreover, the level set
SR := {x : V (x) < R2} is an inner approximation to the region of attraction (ROA). These facts are
formally proved in Appendix B. For a given Re and R, we solve the feasibility problem in Eq. (17).
If the problem is feasible for a region of size R, then we know that the problem is also feasible
for a region whose size is smaller than R as well. This enables us to use bisection to obtain the
lower bound on R. However, solving the feasibility problem via bisection for numerous R can be
computationally cumbersome. Hence, we repose the problem for finding the largest lower bound on
R as a quasiconvex generalized eigenvalue problem (GEVP) [35].

To find the estimate of the largest inner approximation for the ROA, we first decompose each
local constraint matrix Mi(R) as

Mi(R) = R2

[
ρ(Qi )2 0

0 0

]
︸ ︷︷ ︸

M̃i

+
[

0 0
0 −Ei

]
︸ ︷︷ ︸

M̂i

. (18)

Now an estimate for the ROA can be obtained by using a change of variables t = −R2 and solving
the GEVP,

minimize t,

subject to P 	 I,

ξpi � 0 (for i = 1 to 4),
[

AT P + PA P
P 0

]
+ ξp0 M0 +

4∑
i=1

ξpi M̂i ≺ t
4∑

i=1

ξpi M̃i,

(19)

where ξpi (i = 1 to 4) are Lagrange multipliers for the local constraints. These Lagrange multipliers
also provide information on the relative contribution of each constraint in the local region, as will
be discussed in Sec. VI. In this work, the GEVPs are solved using LMI-Lab [36].

The analysis condition in Eq. (19) can be used to estimate the largest lower bound of R as a
function of Re. The resulting relationship between Re and R is shown in Fig. 3. Note that R decreases
monotonically as Re tends to ∞. This implies that the local stability region shrinks as Re increases.
However, R tends to ∞ as Re decreases to 20 as shown in Fig. 3(a) for the W parameter case. In the
W parameter case, the local stability region increases in size as Re → 20. This is consistent with the
previous global stability result, where Re � 20 was found to be global stable using only the lossless
constraint.

Similarly, we also analyze the local stability for the B&T parameters in Fig. 3(b). Here, the
system is globally stable for Re � 2, demarcated by the dashed red line in Fig. 3(b). The same
relation between R and Re is observed with the B&T parameter as with W parameters; that is, the
size of R is decreases with increasing Re.

IV. ESTIMATING PERMISSIBLE PERTURBATION AMPLITUDES

We have shown that the GEVP in Eq. (19) can be solved to obtain the largest lower bound on
R. Now we aim to identify the largest perturbation size R0, such that trajectories originating in a
sphere of radius R0 will converge back to the equilibrium. The sphere of radius R0 is obtained by
finding the largest inner approximation of the ROA—this sphere is a sublevel set of the ellipsoid
V (x) � R2. The size and shape of the ellipsoid depends on the energy weight matrix P found in
Eq. (19). We will show that the GEVP can be used to estimate the largest perturbation amplitude R0

that drives the trajectory to the edge of stability.
Consider initial conditions inside a sphere of radius R0 around the equilibrium point such that

||x0||2 � R2
0. Let q := λmax(P)/λmin(P) be the condition number of P with λmax and λmin being the
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FIG. 3. As the Re is increased, the local stability region R decreases. The red dashed line shows the Re for
global stability limit. In panels (a) and (b) as we approach the global stability limit, the size of R → ∞. As
Re → ∞, the size of region R → 0, which corresponds to the linear analysis of infinitesimal perturbations.

largest and smallest eigenvalues of P, respectively. The condition number q of matrix P provides
information on the skewness of the bounding ellipsoid. To bound the skewness of the elliptical
set, we can simply bound P as I � P � qI . We now seek to determine the largest sphere of initial
conditions ‖x0‖2 � R2

0 such that trajectories remain inside the ROA. From the inequality I � P � qI
and V̇ (x) < 0, it follows that ‖x‖2 � xT Px � xT

0 Px0 � q‖x0‖2, which implies that ‖x‖2 � q‖x0‖2.
Therefore, we have ‖x‖2 � qR2

0 = R2, and we can find the largest allowable sphere of radius R0.
To do so, we can now use the decomposition of Mi = R2M̃i + M̂i [see Eq. (18)] and the relation
R2 = qR2

0, then solve the following GEVP:

minimize t0,

subject to I � P � qI,

ξpi � 0 (for i = 1 to 4),
[

AT P + PA P
P 0

]
+ ξp0 M0 +

4∑
i=1

ξpi M̂i ≺ t0q
4∑

i=1

ξpi M̃i,

(20)

where t0 = −R2
0. To solve for the largest permissible perturbation amplitude, we solve Eq. (20) over

a grid of q values, then pick the solution corresponding to the largest R0.
We verify our findings by comparing the R0 obtained from the proposed quadratic constraints

(QC) framework with the nonlinear optimal perturbations obtained using nonlinear direct-adjoint
looping (DAL), as detailed in Refs. [8,37]. In the DAL method, a so-called “minimal seed” is
obtained using the calculus of variations and a gradient method to find the nonlinear optimal
perturbation on a sphere of radius R0. If divergent trajectories are found for perturbations of
size R0, then we update the upper and lower bounds on R0 via bisection. Once the upper and
lower bounds converge to some tolerance ε > 0 (here ε = 10−8) and no divergent trajectories
are found, we terminate the bisection procedure. Since DAL uses the exact nonlinear equations
of motion, it provides accurate estimates for the minimal seed of the nonlinear system and the
permissible amplitude. In addition to the DAL method, we also compare with results from the
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FIG. 4. The maximum allowable perturbation size R0 as a function of Re for W and B&T parameters
compared against the SOS framework and DAL method.

sum-of-squares (SOS) framework using quadratic energy functions [24]. Both the SOS and QC
framework use Lyapunov-based methods to compute the largest sphere of radius R0, which is an
inner approximation of the ROA, and hence these methods are conservative in their estimates of the
permissible perturbation amplitude.

In Fig. 4, we report the largest radius of initial conditions R∗
0 versus Re using the three methods

mentioned above. For the B&T parameters we show results of the DAL (
), SOS framework (�),
and QC framework (©) in Fig. 4(b). However, for the W parameters we compare the results of
the SOS framework and QC framework only in Fig. 4(a), this is because for the W parameters no
divergent trajectories were found using DAL. Even though there are no divergent trajectories the
SOS framework and QC framework provide conservative estimates for R0, as expected.

For the B&T parameters, the largest allowable perturbation size for Re = 100 is found to be
R∗

0 ≈ 1.5 × 10−5 using the QC framework; this is a conservative estimate relative to R∗
0 = 10−4 in

Ref. [27]. As seen in both figures in Fig. 4, we observe that the R∗
0 predicted by the QC framework is

conservative. Since the QC framework does not use detailed information of the nonlinear terms—it
only uses a few constraints that characterize the input-output behavior of the nonlinear terms—this
behavior is expected. In exchange for this conservatism, the QC framework is less computationally
expensive compared to the SOS and DAL methods, which are more computationally expensive
and may not be suitable for large systems. We finally note that recent works by Liu and Gayme
[38]—which appeared during the review of this manuscript—have aimed to reduce conservatism of
these estimates within the QC framework.

V. NONLINEAR TRANSIENT ENERGY GROWTH ANALYSIS USING QUADRATIC
CONSTRAINTS

In this section, we aim to determine the least upper bound on the maximum transient energy
growth (MTEG) in the nonlinear system using the QC framework. We first review how the MTEG
bounds can be obtained for a linear system by solving a GEVP. We then extend this GEVP to de-
termine the MTEG in the nonlinear system using the QC framework. For a globally asymptotically
stable linear system ẋ = Ax, the state trajectories x(t ) → 0 for any initial condition. If the matrix A
is nonnormal, then the system energy E := xT x will grow on transient time scales before decaying
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back to zero. The definition of energy E here is without loss of generality, since any energy of the
form E = x̃T W x̃ is recovered with x = W 1/2x̃. In what follows, the associated MTEG, given by �,
is defined as

� := max
t�0

max
‖x(0)‖=1

‖x(t )‖2 . (21)

We can obtain an upper bound q on the MTEG (�) using Lyapunov theory. Specifically, as-
sume V (x) = xT Px is a Lyapunov function for a given system with I � P � qI . If the initial
condition x0 lies in the ellipsoid {x : xT Px � 1}, then x(t ) remains in this level set for all
t � 0 [31,39]. Thus, x(t )T Px(t ) � x(0)T Px(0). Combining this with I � P � qI yields E (t ) �
x(t )T Px(t ) � x(0)T Px(0) � qE (0). Therefore, � � q [40]. The least upper bound q∗ is defined
as q∗ := λmax(P)λmax(P−1) such that P = PT � 0 and P satisfies AT P + PA ≺ 0. The problem of
estimating q∗ can be formulated as that of minimizing the condition number of P and is obtained by
solving the following GEVP [31,41]:

q∗ := minimize q,

subject to I � P � qI ,

AT P + PA ≺ 0.

(22)

Here, the bounds I � P � qI ensure that λmax(P)/λmin(P) � q. This optimization with LMI con-
straints and a linear cost involving variables (P, q) is known as a semidefinite program (SDP).
The LMI constraints imply that V (x) := xT Px is a Lyapunov function for the system such that
V [x(t )] � V [x(0)] for all t � 0. The bounds on P further imply that ‖x(t )‖2 � q∗‖x(0)‖2. These
LMI constraints are conservative in general, and hence q∗ is a (possibly nontight) upper bound on
the MTEG. Next, we will extend these ideas for MTEG analysis of nonlinear systems using QCs.

A. Global MTEG analysis using quadratic constraints

An optimization problem similar to Eq. (22) can be formulated to study the MTEG in the
nonlinear WKH system. The lossless property for the nonlinear term in Eq. (8) can again be used as
a global constraint. Taking a similar approach as in Sec. III A, we perturb the Lyapunov inequality
to ensure a feasible solution can exist when only the lossless constraint is used. This yields the
following optimization for a given ε > 0:

q∗ := minimize q,

subject to I � P � qI ,[
AT P + PA P

P 0

]
+ ξp0 M0 +

[
εP 0
0 0

]
� 0.

(23)

Equation (23) is now a SDP in the variables (P, q, ξp0 ). As before, the LMI constraints imply that the
Lyapunov function evaluated at the initial time upper bounds the Lyapunov function for all t � 0.
The bounds on P imply that E (t ) � q∗E (0) and are obtained by means of a Lyapunov function
that describes a trajectory bounding ellipsoid, known as an invariant set. As with the linear MTEG
analysis in Eq. (22), the quadratic constraint analysis problem in Eq. (23) is expected to yield a
conservative upper bound on MTEG.

B. Local MTEG analysis using quadratic constraints

The ability to obtain MTEG bounds is of interest even beyond the globally stable regime
considered in Sec. V A. Hence, we use the local properties of the nonlinearity derived in Sec. III C
to study the “local” MTEG performance in the nonlinear system.

A formulation similar to Eq. (23) can be used to study the effect of nonlinearity on MTEG in the
nonlinear system. To perform the local MTEG analysis, additional local constraints are added to the
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optimization problem listed in Eq. (23). The local constraints that capture input-output properties of
the nonlinear term are captured by matrices Mi (for i = 1 to 4) defined in Eq. (18). The addition of
these constraints facilitates the study of local MTEG on the nonlinear system. The local MTEG for
the nonlinear system is computed via the following convex optimization:

minimize q,

subject to I � P � qI ,

ξpi � 0 (for i = 1 to 4) ,

[
AT P + PA P

P 0

]
+ ξp0 M0 +

4∑
i=1

ξpi Mi ≺ 0.

(24)

We will identify MTEG bounds for the system about a local equilibrium point xe = 0 by solving
this optimization for P, q, ξp0 , and ξpi (for i = 1 to 4). The proof in Appendix B also applies for
Eq. (24), therefore ensuring the states always remain inside the invariant set for all time t � 0.

C. Results: MTEG analysis using quadratic constraints

1. Global MTEG analysis

By solving the SDP in Eq. (23) with ε = 10−6, we find that the MTEG bound is unity for all
Re < 20 using the W parameters. It is interesting to note that the linear part of the WKH system
exhibits unity MTEG for Re < 20 as well. Yet, the same MTEG bound from Eq. (23) is stronger
because it applies to the nonlinear system Fu(L, N ) with a lossless nonlinearity. Similarly, from
global MTEG analysis of the WKH system with B&T parameters, we find that the system is globally
stable for Re � 2 and the system holds unity MTEG for Re < 2.

2. Local MTEG analysis

For a given Re and local region R, we solve Eq. (24) for the MTEG bounds for both the W and
B&T parameters. In Fig. 5, we compare MTEG bounds from the QC framework with Monte Carlo
simulations and the MTEG obtained from the DAL method [8,37]. From Figs. 5(a) and 5(b), we
see that MTEG bounds obtained from Eq. (24) (solid blue lines) are conservative. In Fig. 5, the
solid gray curves correspond to the TEG from random initial conditions sampled with ‖x0‖ = R√

q ,
and the red curves correspond to MTEG resulting from the nonlinear optimal perturbation obtained
using DAL. For the W parameters and the B&T parameters, the MTEG bounds are reported for
R = 10−2 and R = 10−4, respectively. The initial condition for the Monte Carlo simulations are
obtained using the same R value and the corresponding q obtained from solving Eq. (24). Even
though the QC framework provides a conservative estimate on the MTEG bounds, it can be an
effective tool in analyzing transient energy growth in more complex system where DAL and Monte
Carlo-based estimates are computationally cumbersome, or in situations where exact information
about the nonlinear terms may not be precisely known.

VI. LAGRANGE MULTIPLIER ANALYSIS: DRAWING PHYSICAL INSIGHTS INTO
NONLINEAR FLOW INTERACTIONS

In addition to providing a framework to analyze stability and transient energy growth, the
quadratic-constraints-based methods can be used to gain insights into the physics and dominating
mechanisms underlying these dynamics. These insights are obtained by analyzing the Lagrange
multipliers obtained from solving the GEVP in Eq. (20) as well as the SDP convex optimiza-
tion problem in Eq. (24). The Lagrange multipliers provide information on the marginal cost of
violating the associated constraints, thus indicating the relative importance of the corresponding
constraints in the optimization problem. This allows for a quantitative analysis that can be used

044401-13



KALUR, SEILER, AND HEMATI

FIG. 5. 5000 Monte Carlo simulations from various initial conditions such that ‖x0‖2 � R√
q , with R = 10−2

and R = 10−4 for W parameter and B&T parameters, respectively. The solid blue line shows the MTEG upper
bound for nonlinear system predicted by the quadratic constraint framework proposed here. The solid gray
curves show the Monte Carlo simulations for various initial conditions and the red curve shows the worst case
MTEG of the nonlinear system.

for identifying dominant nonlinear interactions. Here, we analyze the Lagrange multipliers for the
W parameters, since Waleffe discusses these nonlinear interaction terms in Ref. [6], providing a
basis for comparison. However, the same conclusions are obtained from the Lagrange multiplier
analysis of the B&T parameters as well. The Lagrange multipliers obtained from solving Eq. (20)
for R0 with the W parameters over various Re are shown in Fig. 6. In Fig. 6(a) we observe that
the importance of the nonlinear terms varies as Re is varied. In the initial phase for Re < 175,
we see the dominating Lagrange multipliers are ξp1 and ξp2 corresponding to nonlinear interaction
terms −γw2 + vm̄ and δw2, respectively. As Re increases, we see that the Lagrange multipliers
ξp2 (corresponding to δw2) and ξp3 (corresponding to γwu − δwv) become more dominant with
respect to the other multipliers. In Fig. 6(a), it can be seen that ξp2 is approximately 100 times
more dominant than ξp3 for Re > 200. Further, ξp3 is orders of magnitude larger than the multipliers
associated with the other nonlinearities. Over all Re, the most dominant Lagrange multiplier is ξp2

(i.e., the nonlinear term δw2), while the least dominating Lagrange multiplier is ξp4 (i.e., nonlinear
interaction −vu). Inspecting Lagrange multipliers alone may not provide the complete picture, as
the Lagrange multipliers can be influenced by the scaling of the constraint matrix Mi. Hence, we also
plot the singular values of ξpi Mi—denoted by σmax(ξpi Mi )—in Fig. 6(b). The singular value analysis
captures the overall contribution of each nonlinear interaction term, thereby also verifying these
findings. Similarly in Fig. 7(a), we show the Lagrange multipliers obtained from MTEG analysis
[Eq. (24)] of the W parameters for R = 0.01. Again it can be observed that the nonlinear terms δw2

and γwu − δwv—from ξp2 and ξp3 , respectively—are the dominant flow interactions contributing
to MTEG in the WKH system. We obtain similar findings related to dominating flow interactions
when comparing Lagrange multipliers obtained from the R0 analysis results from Eq. (20). Waleffe
discusses the importance of the nonlinearities δw2 and γwu − δwv in feeding v̇ and ẇ, thereby
serving central roles in sustaining turbulence and conserving energy, respectively. We note that this
analysis of Lagrange multipliers allowed the same dominant nonlinear flow physics to be identified
without reliance upon any prior knowledge or physical insight. Similar trends are observed for
other values of R. The same is true for the B&T parameters. When we investigate the Lagrange
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FIG. 6. Results obtained from solving R0 in Eq. (20) with W parameters. The dominating nonlinear terms
for stability can be identified by analyzing Lagrange multipliers ξpi in panel (a) and its associated singular
values σmax(ξpi Mi ) in panel (b).

multipliers for the MTEG bound from Eq. (24), we observe that the Lagrange multiplier ξp3 [shown
in Fig. 7(a)] associated with the nonlinear term γwu − δwv consistently increases in magnitude
with increasing Re, while Lagrange multipliers ξp0, ξp1, and ξp4 always have magnitude � 1. The
multiplier ξp3 has a magnitude of ≈110 at Re = 150 and it steadily increases by a factor of 6
at Re = 280. It should be noted that this increase in magnitude of ξp3 —while other multipliers

FIG. 7. Results obtained from solving for q∗ in Eq. (24). The dominant nonlinear terms for TEG can be
identified by analyzing the dominant Lagrange multipliers ξpi in panel (a) and its associated singular values
σmax(ξpi Mi ) in panel (b).
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FIG. 8. Local MTEG analysis for W parameters with global lossless constraint and the two most dominant
local constraints compared against the MTEG of system with global and all local constraints for Re = 100 and
R = 0.01.

are relatively constant—shows the dominance of the associated nonlinear term. The same can
be verified by studying the maximum singular values, σmax(ξpi Mi ) as shown in Fig. 7(b). To
demonstrate the dominance of these nonlinear interactions, we perform MTEG analysis in Eq. (24)
while retaining only the local constraints associated with the dominating nonlinear interactions
(ξp2 , ξp3 ) and neglecting the other local interactions (ξp1 , ξp4 ). We choose R = 0.01 as before, but
now use only the lossless constraint along with constraints associated with ξp2 and ξp3 (see green
line in Fig. 8) and compare results with the case where all the constraints are retained (see blue
line in Fig. 8). The MTEG profile based on analysis using two dominating nonlinear interactions
(δw2, γwu − δwv) and the lossless constraint closely approximates the MTEG response of the
whole nonlinear system. We observe similar qualitative trends for any other value of R for which
the optimization problem is feasible and also for the B&T model parameters.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented a quadratic constraints framework to perform stability and transient
energy growth analysis of nonlinear systems. The proposed framework facilitates stability and
transient energy growth analysis in global and local settings around a given equilibrium point.
The framework uses exact information from the linear dynamics, while nonlinear interactions are
replaced by quadratic constraints that capture input-output properties of the nonlinearity.

We demonstrated the proposed analysis approach on the WKH model of transitional and tur-
bulent flow. We first study the stability of the WKH model, for which the linear part is globally
asymptotically stable for all Re. It is found that the nonlinear WKH system with W parameters is
globally stable for Re � 20, consistent with previous results found in the literature. Similarly the
global stability of the WKH system for B&T parameters is verified for Re � 2. It is also observed
that the energy conserving nonlinear terms destabilize the system beyond the globally stable regime.

In order to assess stability and maximum transient energy growth performance beyond the
globally stable regime, we introduced a new “local” analysis framework to analyze local stability
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and transient energy growth properties. The local analysis provides an inner approximation for the
region of attraction (ROA), which is determined by solving a GEVP. In addition to the ROA analysis,
the solution procedure can be used to estimate permissible perturbation amplitudes. These analysis
methods were compared with more computationally intensive SOS and DAL methods.

We also introduced a method for estimating maximum transient energy growth bounds when the
system is either globally stable or simply locally stable. It was found that the maximum transient
energy growth (MTEG) bound was unity below the critical Reynolds number for global stability.
In the locally stable regime, we estimated the bounds on the MTEG and compared our results with
those obtained from Monte Carlo simulations and DAL.

Last, analyzing the Lagrange multipliers associated with each local constraint provided further
insights into the physics. By comparing the relative magnitudes of the Lagrange multipliers, we
were able to identify the dominating nonlinear interactions without any prior knowledge of the
flow physics. The dominant nonlinear terms identified by this analysis were in agreement with the
physical mechanisms originally described in Ref. [5].

The general QC framework proposed here shows promise in analyzing complex systems with
quadratic and lossless nonlinearities, such as the incompressible NSE; however, there are com-
putational challenges involved in generalizing this quadratic-constraint-based analysis for high
dimensional fluids systems. The primary hurdle rests in the fact that computational demands of
general purpose solvers for the convex optimization methods proposed here scale with O(n6), where
n is the state dimension [42]. Potential avenues forward may rely upon accurate reduced-order
models, dedicated solvers, or some combination thereof. Nonetheless, the ideas proposed here
establish exciting avenues for fluid flow analysis that—with further development—are expected
to provide valuable insights about complex flow physics and their control.
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APPENDIX A: SECTOR-BOUNDED NONLINEARITIES

A comprehensive review of sector bounded systems can be obtained in Refs. [12,43]. Given a
nonlinearity φ : R → R, φ lies in a sector [κ, β] if for all q ∈ R, p = φ(q) lies between the lines of
slope κ and β at each point in time. This property can also written in terms of the input and output
of the nonlinearity as a quadratic inequality of the form (βq − φ(q))(φ(q) − κq) � 0 ∀q ∈ R, or
equivalently, [

q
p

]T [ −κβ 1
2 (κ + β )

1
2 (κ + β ) −1

][
q
p

]
� 0 ∀q ∈ R,

p = φ(q).

(A1)

Graphically this is shown in Fig. 9, where the shaded region contains the nonlinearity φ.

APPENDIX B: THE SET BOUNDED BY LOCAL REGION R IS INVARIANT

The role of R in this analysis can be made more precise. Assume there is a feasible solution P > 0
for the linear matrix inequality in Eq. (17). Then the Lyapunov function V (x) = xT Px satisfies
dV [x(t )]/dt < 0 as long as x(t )T x(t ) � R2. This implies that trajectories converge back to xe = 0
if the initial conditions are sufficiently close to the origin. In particular, the constraint P > I implies
that xT x < V (x). A simple proof by contradiction can be used to demonstrate that if V [x(0)] < R2

then: (i) the trajectory x(t ) remains in the local region ‖x(t )‖2 � R2 and (ii) the trajectory x(t )
decays to the origin. In summary, the set SR := {x : V (x) < R2} is a domain of attraction.
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FIG. 9. Illustration of a generic sector bounded nonlinearity.

Proof. Define the set SR := {x : V (x) < R2}. Assume x(0) ∈ SR and let x(t ) denote the cor-
responding state trajectory from this initial condition. Assume there exists a time T1 such that
x(T1) /∈ SR and let T0 be the smallest (infimum) of times such that x(t ) /∈ SR. The solution x(t )
is a continuous function of time and hence x(t ) ∈ SR for all t ∈ [0, T0) and, moreover, x(t ) is
on the boundary of SR so that V [x(T0)] = R2. As noted above, P > I implies that if x(t ) ∈ SR,
then ‖x(t )‖2 < R2. Therefore, the local quadratic constraints are valid for all t ∈ [0, T0]. The
constraints in Eq. (17) imply that, for a sufficiently small ε > 0, the Lyapunov function satisfies
dV [x(t )]/dt � −εx(t )T x(t ) ∀ t ∈ [0, T0]. Integrating yields the following bound for any x(0) �= 0:

V [x(T0)] � V [x(0)] < R2. (B1)

This contradicts the assumption that V [x(T0)] = R2 and hence trajectories must remain in SR.
Moreover, the Lyapunov condition dV/dt � −εx(t )T x(t ) ∀ t ∈ [0, T0] implies that the trajectories
in this region decay asymptotically back to the origin.
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